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RW

RW is the relevant logic R [A. Anderson, N. Belnap Jr., Entailment:

the logic of relevance and necessity, vol. 1, Princeton University Press,

Princeton, New Jersey, 1975. p. 341] without the contraction axiom:

(W ) (α→ .α→ β)→ .α→ β

Brady: RW is decidable logic [R. T. Brady, The Gentzenization and

decidability of RW, Journal of Philosophical Logic, 19, 35-73, 1990.R. T.

Brady, The Gentzenization and decidability of RW, Journal of

Philosophical Logic, 19, 35-73, 1990.]
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The Hilbert–type formulation of RW

Ax1. α→ α

Ax2. α→ β → .β → γ → .α→ γ

Ax3. α→ .(α→ β)→ β

Ax4. α ∧ β → α

Ax5. α ∧ β → β

Ax6. α→ β ∧ α→ γ.→ .α→ (β ∧ γ)

Ax7. α→ α ∨ β
Ax8. β → α ∨ β
Ax9. (α→ γ) ∧ (β → γ).→ .(α ∨ β)→ γ

Ax10. α ∧ (β ∨ γ)→ (α ∧ β) ∨ (α ∧ γ)

Ax11. α→∼ β.→ .β →∼ α
Ax12. ∼∼ α→ α

R ′.
` α ` α→ β

` β
R ′′.

` α ` β
` α ∧ β
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The first problem

How to enable the inference of the distribution law:

α ∧ (β ∨ γ).→ .(α ∧ β) ∨ (α ∧ γ)

in the absence of the thinning rule?
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The proof of the distribution law in Gentzen’s LK and LJ

α ` α

α, β ` α
(Thinning)

β ` β

α, β ` β
(Thinning)

α, β ` α ∧ β
(` ∧)

α, β ` (α ∧ β) ∨ (α ∧ γ)
(` ∨)

...

α, γ ` (α ∧ β) ∨ (α ∧ γ)

α, β ∨ γ ` (α ∧ β) ∨ (α ∧ γ)

α ∧ (β ∨ γ), α ∧ (β ∨ γ) ` (α ∧ β) ∨ (α ∧ γ)
(∧ `)

α ∧ (β ∨ γ) ` (α ∧ β) ∨ (α ∧ γ)

` α ∧ (β ∨ γ).→ .(α ∧ β) ∨ (α ∧ γ)
(`→)

(Contraction)

(∨ `)
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A puzzle

α ` α

α, β ` α
(Thinning)

α ` β → α
(`→)

` α→ (β → α)
(`→)

The solution: we need two types of sequences of formulae [J. M. Dunn, A

’Gentzen system’ for positive relevant implication, The Journal of Symbolic

Logic 38, pp. 356-357, 1973.] [G. Minc, Cut elimination theorem for

relevant logics, Journal of Soviet Mathematics 6, 422-428, 1976.]
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The informal meaning of a Gentzen sequent

α1, . . . , αn ` β1, . . . , βn

(α1 ∧ . . . ∧ αn)→ (β1 ∨ . . . ∨ βn)

A sequence of formulae appearing in the antecedent of a sequent in LJ and

LK , represents the conjunction of those formulae.
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Two different conjunctions in R (and in R+)

An effect of the absence of thinning:

classical connectives split into dual pairs.

extensional (truth–functional) conjunction ∧

intensional conjunction (fusion) ◦

Γ[α] ` ∆

Γ[α ∧ β] ` ∆

Γ[β] ` ∆

Γ[α ∧ β] ` ∆

Γ[α, β] ` ∆

Γ[α ◦ β] ` ∆

Consequently, two types of sequences would be required to gentzenise R+:

extensional sequences to stand in for ordinary ’extensional’ conjunction ∧

intensional sequences to stand in for fusion ◦.
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Intensional and extensional sequnces of formulae in LR+

α ` α

α, β ` α
(Thinning)

α ` α

α, β ` α
(extensional thinning) and

α ` α

α;β ` α
(intensional thinning)

α, β ` α is interpreted as α ∧ β → α

α;β ` α is interpreted as α ◦ β → α

(α ◦ β)→ γ.→ .α→ (β → γ) is valid, but

(α ∧ β)→ γ.→ .α→ (β → γ) is not

α;β ` α

α ` β → α
is valid, but

α, β ` α

α ` β → α
is not.
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The proof of the distribution law, in a two–sided sequent

system with both intensional and extensional sequences

α ` α

α, β ` α
(KE `)

β ` β

α, β ` β
(KE `)

α, β ` α ∧ β

α, β ` (α ∧ β) ∨ (α ∧ γ)
(` ∨)

(` ∧) ...

α, γ ` (α ∧ β) ∨ (α ∧ γ)

α, β ∨ γ ` (α ∧ β) ∨ (α ∧ γ)

α ∧ (β ∨ γ), α ∧ (β ∨ γ) ` (α ∧ β) ∨ (α ∧ γ)
(∧ `)

α ∧ (β ∨ γ) ` (α ∧ β) ∨ (α ∧ γ)
(WE `)

(∨ `)
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The second problem

How to disable the inference of the modal fallacy:

α→ (β → β)

in the presence of the cut rule?

The empty left–hand side in the left premise of the cut rule:

Γ ` α Σ[α] ` β

Σ[Γ] ` β

can lead to irrelevance:

` β → β

β → β ` β → β

α, β → β ` β → β
(KE)

α ` β → β

` α→ .(β → β)
(→ r)

(cut)
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A solution: The addition of t as primitive

{
t

t → (α→ α)

Two approaches:

Cut:

Γ ` α Σ[α] ` β

Σ[Γ] ` β
(Γ non–empty)

` α Σ[α] ` β

Σ[t] ` β

` β → β

β → β ` β → β

α, β → β ` β → β
(KE)

α, t ` β → β
(cut)

Sequents must have non–empty antecedents (they have t there instead).

t ` β → β

β → β ` β → β

α, β → β ` β → β
(KE)

α, t ` β → β
(cut)
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A note: With the cut rule restricted to instances where Γ is

non–empty, only, the Cut–Elimination would not be

provable

The proper form of the cut rule:

π1

Γ;α ` β

Γ ` α→ β
(`→)

π2

` α

π3

β `

α→ β `
(→`)

Γ `
(cut)

Improper forms:

` α Γ;α ` β

Γ ` β
and

` α Γ;α `

Γ `
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Giambrone’s Gentzen system for RW+

The cut–free Gentzen system LRW ◦t of RW ◦t

t is added as a place filter to ensure the non–emptiness of antecedents

◦ is added to provide the interpretation for intensional sequences

The expansion of LRW ◦t+ to include empty antecedents.

The Gentzen system of RW+.
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The third problem

How to add negation to Giambrone’s LRW+?

Brady’s [R. T. Brady, The Gentzenization and decidability of RW, Journal

of Philosophical Logic, 19, 35-73, 1990.] solution: LRW is the

single–conclusion sequent system based on signed formulae.

Originally, to enable the inference of ∼∼ α→ α, Gentzen allowed

multiple–conclusion sequents:

α ` α

`∼ α;α
(`∼)

∼∼ α ` α

`∼∼ α→ α
(`→)

(∼`)
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Problems with multiple–conclusion sequents

π1

Γ1 ` α; ∆1

π2

Γ1 ` β ∨ γ; ∆1

Γ1 ` α ∧ (β ∨ γ); ∆1

(` ∧)

π3

Γ2; (α, β ∨ γ) ` ∆2

(Γ2;α ∧ (β ∨ γ)), (Γ2;α ∧ (β ∨ γ)) ` ∆2

(∧ `)

Γ2;α ∧ (β ∨ γ) ` ∆2

(WE `)

Γ1; Γ2 ` ∆1; ∆2

(cut)

The mix rule:
Γ1 ` α; ∆1 Γ2; (α, Γ3) ` ∆2

Γ2; (Γ1, Γ3) ` ∆1; ∆2

π2

Γ1 ` β ∨ γ; ∆1

π1

Γ1 ` α; ∆1

π3

Γ2; (α, β ∨ γ) ` ∆2

Γ2; (Γ1, β ∨ γ) ` ∆1; ∆2

(mix)

Γ2; (Γ1, Γ1) ` ∆1; ∆1; ∆2

Γ2; Γ1 ` ∆1; ∆1; ∆2

· · · permutations

Γ1; Γ2 ` ∆1; ∆1; ∆2

· · · ??? for
non–empty ∆1

Γ1; Γ2 ` ∆1; ∆2

(WE `)

(mix)
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Brady’s LRW

Tα ` Tα

F ∼ α ` Tα
(F ∼`)

T ∼∼ α ` Tα
(T∼`)

Fα ` Fα

T ∼ α ` Fα
(T ∼`)

F ∼∼ α ` Fα
(F ∼`)

` T ∼∼ α→ α
(`T→)

The unusual second premise of the rule (` T →) is needed to pair with the rule

(T →`) in the mix–elimination argument.
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π2

Γ′ ` Tβ ∨ γ

π1

Γ′ ` Tα

π3

Γ′′; (Tα,Tβ ∨ γ) ` Sγ

Γ′′; (Γ′,Tβ ∨ γ) ` Sγ
(cut)

Γ′′; (Γ′, Γ′) ` Sγ

Γ′′; Γ′ ` Sγ

· · · permutations

Γ′; Γ′′ ` Sγ

(WE `)

(cut)

Brady’s system contains over 50 inference rules. E. g. there are 8 different rules

for →:

four of them for the rule (T →`),

two of them for (F →`),

one for (` F →) and

one rule for (` T →), which is, unusually, two–premise rule.
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We ask

How to obtain a Gentzen system of RW directly?

We formulate the right–handed sequent system GRW , based on multisets

instead of sequences.

A two–sided sequent system is not suitable for RW .

RW is commutative logic, therefore the use of multisets as data structures

appears as most natural in this context.
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Our system

1. We obtain the cut–free Gentzen system GRW for RW directly (we do not

proceed via extended system RW ◦t).

2. The inference rules of GRW are simple and natural.

3. The proof of the Cut–Elimination Theorem in GRW is clear and simple.
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Thank you!
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