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Quick introduction to Interpretability logic

Visser introduced in 1990 a generalization of Provability logic (GL)
to better capture relative strength of various arithmetical formulas.

We work in closed fragment (no propositional variables)
and minimized language (no superfluous connectives)
so all formulas are given by grammar rule:

F ::= ⊥ | (F → F ) | F � F

>, ¬, ∨, ∧, ↔, 2, 3 are expressible from these
e.g. 2ϕ :⇐⇒ (ϕ→ ⊥)�⊥
“T proves ϕ” = “T extended with ¬ϕ interpretes contradiction”
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Formulating the question. . .

In GL, closed formulas have normal forms (Artemov, 1987)
In ILF, they have the same normal forms (Hájek & Švejdar, 1991)
In IL, many of them (but not all!) also do (Čačić & Vuković, 2011)
How many?

What does that question even mean? (Is ℵ0 a valid answer?-)

How many pairs of integers are coprime?

6π−2 = lim
n

#{(x , y) ∈ {−n..n}2 : gcd(x , y) = 1}
#{−n..n}2

Integers are ordered. Formulas are ordered, too: by complexity.

Definition (“share”)

µZ := lim
n

#{ϕ ∈ IL
(n)
0 : ϕ is of the form Z} =: zn

#IL
(n)
0 =: fn

where IL
(n)
0 is the set of all closed IL formulas with n connectives.
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Some classes of formulas we will consider

(dashed arrows show
action of negationL)

all F ::= ⊥ | F → F | F � F
affirmative A ::= F → A | G → F | F � F

negative G ::= ⊥ | A→ G
direct M ::= A� G
cross X ::= M → ⊥

B1 ::= ⊥� F
B2 ::= F � A
B3 ::= A�⊥
B4 ::= G � X
B5 ::= X �⊥

basic normal B ::= B1 | B2 | B3 | B4 | B5

locally normal L ::= ⊥ | B | L→ L
normal N ::= G | M | L | (N → ⊥)�⊥

G

A

F

M

X

⊥
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Explanations of classes

Affirmative formulas hold on all terminal worlds in Veltman models.
Negative formulas hold on no terminal world.
Direct formulas are the “modalization” of negative formulas.
Cross formulas are negations of direct formulas.
B1..5 we’ve shown to have local GL equivalents. B is their union.
L is the Boolean closure of B.

So, formulas in L also have local GL equivalents (by substitution).
Also, negative and direct formulas have global GL equivalents.
And finally, normal formulas are the 2-closure of all that.

So, all normal formulas have the same normal forms as in GL.
We want to know their share, µN .
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Multiplication lemma: crucial for calculation

Definition (“spread”: a very useful auxiliary parameter)

σZ :=
∞∑
n=0

zn
8n+1

= lim
t↑ 1

8

t z(t)
(
z is the ogf for (zn)n

)
Lemma (“Multiplication”; Mnemonic: µZ = (σZ )′. )

σU�V = σUσV and µU�V = µUσV + σUµV (and same for →) .

Proof for σ (for µ the proof is much more complicated �).

If W := U �
(→)

V , then w0 = 0 and wn+1 =
∑n

k=0 ukvn−k , so

σW =
∞∑
n=0

wn

8n+1
=
∞∑
n=1

wn

8n+1
=
∞∑
n=0

wn+1

8n+2
=
∞∑
n=0

n∑
k=0

ukvn−k8−n−2

=
∑∑
06k6n

uk
8k+1

vn−k
8n−k+1

=
∞∑
k=0

uk
8k+1

∞∑
n=k

vn−k
8n−k+1

= σUσV .
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Here be dragons. . .

For the class {⊥}, which we write without braces, we can calculate
σ⊥ = 1

8 + 0
64 + 0

512 + · · · = 1
8 and µ⊥ = lim (1, 0, 0, . . .) = 0.

Also, for whole F , µF = limn
fn
fn

= 1. But even σF is a big problem.

� Warning: don’t try this in peer-reviewed texts!

Rigorous treatment of the following calculations is very hard. I’m
greatly thankful to my colleague V. Kovač for writing that part of
the article correctly. Here we’ll proceed carelessly�.

Now let’s calculate σF . From F = ⊥+ (F → F ) + (F � F )
(writing + for disjoint union, then µ and σ are “additive”) we get
σF = 1

8 + 2σ2
F : a quadratic equation with only solution σF = 1

4 .

This doesn’t prove σF exists, but if we know it, then we do know
all other spreads exist (majorized series with nonnegative terms),
and 0 ≤ σZ ≤ σF = 1

4 . For shares it’s more complicated: we have
to prove each exists “separately”. Here we’ll just assume they do.

Vedran Čačić Combinatorial aspects of Interpretability Logic



Corollaries of multiplication: Boolean closure

Now let’s consider the Boolean closure of some class V , whose all
formulas have � as their main connective.

Corollary (“Boolean closure”)

If W ::= ⊥ | V |W→W (disjoint union), then

σW =
1

2

(
1−

√
1

2
− 4σV

)
and µW =

µV
1− 2σW

.

Proof.

For σW we get quadratic equation σW = 1
8 + σV + σ2

W , and one
solution (with + in place of blue −) is ≥ 1

2 >
1
4 , so it cannot be

the “true” σW . The other solution is as given above.
Also, multiplication lemma for µ gives us linear equation
µW = 0 + µV + 2µWσW , with solution as above.
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Corollaries of multiplication: negativity

Negative formulas can be defined in any Boolean closed class U.

Corollary (“Negativity”)

If W ::= ⊥ | (U \W )→W (where W ⊆ U), then

σW =
1

2

(
σU − 1 +

√
(σU − 1)2 +

1

2

)
and µW =

σWµU
1− σU + 2σW

.

Proof.

Since W ⊆ U, we have W + (U \W ) = U, so µU\W = µU − µW
and same for σ (they are subtractive, not only additive). Now
multiplication lemma gives quadratic σW = 1

8 + (σU − σW )σW
with one solution negative (since σU ≤ 1

4 ) and the other as above,
and linear equation µW = 0 + (σU − σW )µW + (µU − µW )σW ,
with solution as above.
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Starting steps

So far we have handled (found spread and share for) ⊥ and F .
Negativity handles G , and then subtractivity handles A = F − G .

Then multiplication lemma handles B1..5, M and X .
The expressions do become more and more complicated (we won’t
even bother writing them here), but Mathematica helps.☼

What about B? We can’t just sum the shares of B1..5, since they
are not disjoint. But barely: of

(5
2

)
= 10 pairs, 8 are disjoint.

Remaining two intersections are easily analyzed using

Definition (“equal distribution”)

Z ∼ Y means zn = yn for all n.

Of course, Z ∼ Y implies µZ = µY and σZ = σY .
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Inclusion–exclusion principle

B1 ∩ B2 = (⊥� F ) ∩ (F � A) = ⊥� A ∼ A�⊥ = B3

B1 ∩ B4 = (⊥� F ) ∩ (G � X ) = ⊥� X ∼ X �⊥ = B5

B1

B2

B3

B4

B5

∼B3 ∼B5diagram of B :

So, µB = µB1 + µB2 +��µB3 + µB4 +HHµB5 −����µB1∩B2 −XXXXµB1∩B4

= µB1 + µB2 + µB4 , and same for σ.
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One more complication

Now we can use the Boolean closure to handle L.
But N presents the same problem as B, only much harder.
[. . . calculation. . . ]

ML

2N

G (not to scale,)

2G2M

=: P

B3
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Example of a [. . . calculation. . . ] for the previous slide

L ∩2N = (��⊥ | B |���L→ L) ∩ ((N → ⊥)�⊥)

= (����⊥� F |����F � A|A�⊥|����G � X |X �⊥) ∩ ((N → ⊥)�⊥)

= (A�⊥ | X �⊥) ∩ ((N → ⊥)�⊥)

= ((A | X ) ∩ (N → ⊥))�⊥
= ((���

�
F → A | G → F |���F �F | M → ⊥) ∩ (N → ⊥))�⊥

= (((G | M) ∩ N)→ (F ∩ ⊥))�⊥
= (((G | M) ∩ N)→ ((⊥ | F → F | F � F ) ∩ ⊥))�⊥
= (((G | M) ∩ (L | G | M | 2N))→ ⊥)�⊥
= ((G | M)→ ⊥)�⊥
= 2(G | M)

= 2G | 2M

Automatizing this reasoning is more complicated than it seems./
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Stitching it all together

Applying multiplication lemma twice with V := ⊥, we have

Corollary (2)

µ2Z =
µZ
64

and σ2Z =
σZ
64

.

In fact, the previous image is a fractal, since the oval labeled 2N
has the structure of the whole image (N), 64 times smaller.

µN = µM + µG +
µN
64

+ µL − µB3 − µP −
µM + µG

64
− S
SS

µG
64

+ S
SS

µG
64

µN = µM + µG +
64

63
(µL − µB3 − µP)

What’s P? P = G ∩ L is the “relativization” of G to L.
P ::= ⊥ | (L \ P)→ P, so negativity handles it.
Plugging it all in, and Simplifying, and simplifying,, we get ;
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The Answer to Life, Universe and share of normal formulas

59
63
− 67

21
√

17
+ 2

7

(
11− 169

9
√

17

)√
2

23
√

17−61

(((√
23
√

17−61
16

+ 1√
2

)−2

+ 1

)− 1
2

+ 1

)
= µN > 93.77% > 15

16 .

So, less than one sixteenth of closed IL formulas of high enough
complexity don’t have normal form from GL.

If we wrote one of them on each of these slides,
likely all but one would have GL normal form.,

For low enough complexities it’s even better,
for the simplest closed IL formula without GL equivalent is
χ := (⊥ → ⊥)� ((⊥ → ⊥)�⊥ → ⊥)→ (⊥ → ⊥)�⊥.

Of course, the real share of formulas having global GL equivalents
is probably higher than µN : since our grammars are context-free,
we don’t even recognize e.g. χ→ χ as equivalent to >.
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But it’s not all. . .

In fact, there is a result in my dissertation which can be used here
to enlarge µN—at the cost of no longer having a radical expression
(it is exact, but it is an isolated root of an 8th degree polynomial)

Theorem (“Generalization theorem”)

Two closed IL formulas are globally equivalent if and only if their
generalizations (“boxes”) are locally equivalent.

Since formulas in N have global equivalents, that means 2N is
actually in L (more specifically, in B, since the main connective is
�), and that enlarges our classes slightly.

It’s easily seen that old B5 is

B5 = X �⊥ = (M → ⊥)�⊥ = 2M ⊆ 2N ,

so we can “insert” 2N in place of B5 in our schema.
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New definitions

B5 := 2N

N := L | M | G

Other classes have same definitions, but B, L and P still change
because their constituents change.

Nontrivial intersections are, as before

B1 ∩ B2 = ⊥� A ∼ B3

B1 ∩ B4 = ⊥� X ∼ 2M (= old B5)

G ∩ L =: P

L ∩M = B3

and a new one: B3 ∩ B5 = 2G
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Complications. . .

Unfortunately, now B, L and N are so interrelated that it’s
impossible to just solve quadratic equations and get radical
expressions. We get a polynomial

66173295868194116705409927972947

+139215430008457910190632065130179t

−1736870612842870351020666465141512t2

+1092068190952835376217877321747492t3

+5149696516234972045870328786482800t4

−9478785402089921550540672467936576t5

+6726424050519374538084831392052480t6

−2250118036025586603533984812523520t7

+300015738136744880471197975003136t8

with 8 distinct roots, four of which are real and only two are
between 0 and 1.
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Did I justify having 20 slides?

I could even have one more!

t3 = 0.3121 . . .

t4 = 0.9533 . . . = µN > 1− 1

21
X

How do we know new µN is actually t4 and not t3? Well, it has to
be greater than µG + µM , but so is t3. It really has to be larger
than the old µN , but can we avoid first computing the old one?

Actually, this is a moot discussion. We would have to show that
share of new N actually exists, and in process we would probably
get some quality bounds.

How do do it? I don’t know, ask V. Kovač. He’s the wizard here.-
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