
Reducibility method: an overview

Silvia Ghilezan∗

Faculty of Technical Sciences
University of Novi Sad, Serbia

This is an overview of the development and application of the reducibility
method in different aspects of logic and computation. The results are obtained
over the last twenty years in collaboration with Henk Barendregt, Mariangi-
ola Dezani-Ciancaglini, Daniel Dougherty, Jelena Ivetić, Pierre Lescanne, Silvia
Likavec and Viktor Kunčak.

The reducibility method is a well known framework for proving reduction
properties of terms typeable in different type systems. It was introduced by
Tait in [10] for proving the strong normalization property for the simply typed
lambda calculus. The main idea of this method is to relate terms typeable in
a certain type system and terms satisfying certain reduction properties such
as strong normalisation, head normalisation etc. Emerging from these proofs,
the reducibility method became a widely accepted technique for proving various
reduction properties of terms typeable in different type systems. This method
was used to prove strong normalization of polymorphic (second-order) lambda
calculus, intersection type systems, calculus with explicit substitutions and var-
ious other type systems. The reader is referred to [1], a comprehensive reference
book on type systems.

The basic concept of the method can be represented by a unary predicate
Pα(t), which means that a term t typeable by α satisfies the property P . To
this aim types are interpreted as suitable sets of terms called saturated or stable
sets. Then, the soundness of type assignment is obtained with respect to these
interpretations. A consequence of soundness is that every term typeable in the
type system belongs to the interpretation of its type. This is an intermediate
step between the terms typeable in the given type system and terms satisfying
the considered property P . In general, the principal notions of the reducibility
method are:

• type interpretations (based on the considered property P );

• term valuations;

• saturation and closure conditions;

• soundness of the type assignment.

∗Partially supported by the Ministry of Education Science and Technological Development of
Serbia, projects ON174026 and III44006.

1



In [4] the reducibility method is applied to completely characterise the
strongly normalizing lambda terms in the lambda calculus with intersection
types. Suitable modifications of the reducibility method lead to uniform proofs
of other reduction properties. An overview can be found in [6]. In [2] the re-
ducibility method is applied to characterise normalising, head normalising and
weak head normalising terms as well as their persistent versions. In [5] the
reducibility is developed for a resource aware term calculus.

In the setting of classical logic, the reducibility method is not well suited to
prove strong normalization for λµ-calculus, the simply typed classical term cal-
culus. The symmetric candidates technique used to prove strong normalisation
employs a fixed-point technique to define the reducibility candidates in [3].

Extending on the reducibility method, logical relations were introduced by
Statman in [9] to proof the confluence (the Church-Rosser property) of βη-
reduction of the simply typed λ-terms. It became a well-known method for
proving confluence and standardisation in various type systems. Similarly to the
reducibility method, the key notions are type interpretations. Logical relations
in turn is a method based on binary relations Rα(t, t′), which relate terms t and
t′ typeable by the type α that satisfy the relation R. Types are then interpreted
as admissible relations.

In programming languages it is often necessary to relate terms either from
the same language or from different languages in order to show their equivalence.
To this aim logical relations became a powerful tool in programming languages,
see Pierce [8]. Some of the most important applications.

• Observational equivalence: logical relations prove that terms obtained by
optimisation are equivalent.

• Compiler correctness: logical relations are employed to relate the source
and target language.

• Security information flow: logical relations prove that the system prevents
high security data to leak in low security output.

References

[1] H.P. Barendregt, W. Dekkers, R. Statman, Lambda Calculus with Types,
Cambridge University Press, 2013.

[2] M. Dezani-Ciancaglini, S. Ghilezan and S. Likavec, Behavioural inverse limit
models, Theoretical Computer Science 316:49-74 (2004).

[3] D. Doughert, S. Ghilezan and P. Lescanne, Characterizing strong normal-
ization in the Curien-Herbelin symmetric lambda calculus: extending the
Coppo-Dezani heritage, Theoretical Computer Science 398:114-128 (2008).

[4] S. Ghilezan, Strong normalization and typability with intersection types.
Notre Dame Journal of Formal Logic 37:44–52 (1996).

2



[5] S. Ghilezan, J. Ivetić, P. Lescanne, S. Likavec, Intersection Types for the
Resource Control Lambda Calculi. ICTAC 2011, Lecture Notes in Computer
Science 6916:116-134 (2011).

[6] S. Ghilezan and S. Likavec, Reducibility: A Ubiquitous Method in Lambda
Calculus with Intersection Types, Electronic Notes in Theoretical Computer
Science 70 (2003).

[7] S. Ghilezan, V. Kuncak, Confluence of Untyped Lambda Calculus via Simple
Typesi. ICTCS 2001, Lecture Notes in Computer Science 2206:38-49 (2001).

[8] B. Pierce, Types and Programming Languages, MIT Press, 2002.

[9] R. Statman, Logical relations and the typed λ-calculus. Information and
Control 65:85-97 (1985).

[10] W. W. Tait, Intensional interpretations of functionals of finite type I.
Journal of Symbolic Logic 32:198–212 (1967).

3


