
LFP - A Logical Framework with External
Predicates1

Furio Honsell, Università di Udine, Italy
Marina Lenisa, Università di Udine, Italy

Petar Maksimović, INRIA Sophia Antipolis Méditerranée, France
and Mathematical Institute of the Serbian Academy of Sciences and

Arts, Serbia
Ivan Scagnetto, Università di Udine, Italy

Luigi Liquori, INRIA Sophia Antipolis Méditerranée, France

The Edinburgh Logical Framework LF, presented in [2], is a first-order con-
structive type theory featuring dependent types. It was first introduced as a
general meta-language for logics, as well as a specification language for generic
proof-checking/proof-development environments. In this abstract, we present
an extension of LF with predicates and oracle calls, which is accomplished by
defining a mechamism serving for the locking and unlocking of types and terms.

Following the standard specification paradigm in Constructive Type Theory,
we define locked types using introduction, elimination, and equality rules. We
introduce a lock constructor for building objects LP

N,σ[M ] of type LP
N,σ[ρ], via

the introduction rule (O·Lock), presented below, and a corresponding unlock de-
structor, UP

N,σ[M ], and an elimination rule (O·Unlock) which allows elimination
of the locked type constructor, under the condition that a specific predicate P is
verified, possibly externally, on an appropriate correct, i.e. derivable, judgement.

Γ ⊢Σ M : ρ Γ ⊢Σ N : σ

Γ ⊢Σ LP
N,σ[M ] : LP

N,σ[ρ]
(O·Lock)

Γ ⊢Σ M : LP
N,σ[ρ] Γ ⊢Σ N : σ P(Γ ⊢Σ N : σ)

Γ ⊢Σ UP
N,σ[M ] : ρ

(O·Unlock)

The equality rule for locked types amounts to a new form of reduction we
refer to as lock-reduction (L-reduction), UP

N,σ[LP
N,σ[M ]] →L M , which allows

elimination of a lock, in the presence of an unlock. The L-reduction combines
with standard β-reduction into βL-reduction.

LFP is parametric over a potentially unlimited set of predicates P, which are
defined on derivable typing judgements of the form Γ ⊢Σ N : σ. The syntax of
LFP predicates is not specified, with the main idea being that their truth is to be
verified via a call to an external validation tool ; one can view this externalization
as an oracle call. Thus, LFP allows for the invocation of external “modules”
which, in principle, can be executed elsewhere, and whose successful verification

1This work was supported by the Serbian Ministry of Education, Science, and Technological
Development (projects ON174026 and III044006).

1



can be acknowledged in the system via L-reduction. Pragmatically, locked types
allow for the factoring out of the complexity of derivations by delegating the
{checking, verification, computation} of such predicates to an external proof
engine or tool. The proof terms themselves do not contain explicit evidence
for external predicates, but just record that a verification {has to be (lock),
has been successfully (unlock)} carried out. In this manner, we combine the
reliability of formal proof systems based on constructive type theory with the
efficiency of other computer tools, in the style of the Poincaré Principle [5].

In this abstract, we only outline the main results on LFP , which have been
treated in detail in [3, 4]. As far as meta-theoretic properties are concerned,
strong normalization and confluence of the system have been proven without
imposing any additional assumptions on the predicates. However, for subject re-
duction, we require the predicates to be well-behaved, i.e.closed under weakening
and permutation of the signature and context, substitution, and βL-reduction in
the arguments. LFP is decidable, if the external predicates are decidable. Fur-
thermore, a canonical presentation of LFP is constructed, in the style of [1, 6],
based on a suitable extension of the notion of βη-long normal form, allowing for
simple proofs of the adequacy of the encodings.

When it comes to illustrating the main benefits of LFP in practice, we have
provided a number of relevant encodings. We have encoded in LFP the call-
by-value λ-calculus, as well as its extension supporting the design-by-contract
paradigm. We also provide smooth encodings of side conditions in the rules
of Modal Logics, both in Hilbert and Natural Deduction styles, and also show
how to encode sub-structural logics, i.e.non-commutative Linear Logic. We
also illustrate how LFP can naturally support program correctness systems and
Hoare-like logics. We show that other related systems can be embedded into
LFP via locked types, and provide pseudo-code for some of the used predicates.

As far as expressiveness is concerned, LFP is a stepping stone towards a
general theory of shallow vs. deep encodings, with our encodings being shallow
by definition. Clearly, by Church’s thesis, all external decidable predicates in
LFP can be encoded, possibly with very deep encodings, in standard LF. It
would be interesting to state in a precise categorical setting the relationship
between such deep internal encodings and the encodings in LFP .

LFP can also be viewed as a neat methodology for separating the logical-
deductive contents from, on one hand, the verification of structural and syn-
tactical properties, which are often needlessly cumbersome but ultimately com-
putable, or, on the other hand, from more general means of validation.

From a philosophical point of view, the mechanism of locking and unlocking
types in the presence of external oracles, which we are introducing in LFP ,
effectively opens up the Logical Framework to alternate means of providing
evidence for judgements. In standard LF, there are only two ways of providing
this evidence, namely discovering types to be inhabited or postulating that types
are inhabited by introducing appropriate constants. The locked/unlocked types
of LFP open the door to an intermediate level, one provided by external means,
such as computation engines or automated theorem proving tools. However,
among these, one could also think of graphical tools based on neural networks,

2



or even intuitive visual arguments, as were used in ancient times for giving
the first demonstrations of the Pythagoras’ theorem, for instance. In a sense,
LFP , by allowing formal accommodation of any alternative proof method to pure
axiomatic deduction, vindicates all of the “proof cultures” which have been used
pragmatically in the history of mathematics, not only in the Western tradition.

The traditional LF answer to the question “What is a Logic?” was: “A sig-
nature in LF”. In LFP , we can give the homologue answer, namely “A signature
in LFP”, since external predicates can be read off the types occurring in the
signatures themselves. But, we can also use this very definition to answer a far
more intriguing question:

“What is a Proof Culture?”.

References
[1] R. Harper and D. Licata. Mechanizing metatheory in a logical framework.

Journal of Functional Programming, 17:613–673, 2007.

[2] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, 40:143–184, January 1993.

[3] F. Honsell, M. Lenisa, L. Liquori, P. Maksimovic, and I. Scagnetto. LFP – a
logical framework with external predicates. In Proceedings of LFMTP 2012,
pages 13–22. ACM Digital Library, 2013.

[4] Furio Honsell, Marina Lenisa, Luigi Liquori, Petar Maksimović, and Ivan
Scagnetto. An open logical framework. Journal of Logic and Computation,
2013. DOI:10.1093/logcom/ext028.

[5] H. Poincaré. La Science et l’Hypothèse. Flammarion, Paris, 1902.

[6] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A Concurrent Logical
Framework I: Judgments and Properties. Tech. Rep. CMU-CS-02-101, 2002.

3


