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Logical Frameworks

• Formal systems based on a typed λ-calculus

• Connected (somewhat unexpectedly) with proof systems via
the Curry-Howard Correspondence, interpreting
formulas-as-types and proofs-as-programs.

• Serve as bases for various interactive theorem provers
• Coq, Lego, Twelf

• Harper-Honsell-Plotkin’s Edinburgh Logical Framework - LF
• Featuring dependent types - types depending on terms

• Coquand’s Calculus of Constructions
• Featuring type polymorphism, dependent types, and

higher-order types.
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What would we like to do?

• Difficult and cumbersome encodings of side conditions - we
would like to make that a little easier and a lot more natural.

• Somehow separate derivation and computation - maybe have
conditions verified externally.

• Allow the interaction and co-operation of various formal
provers. Maybe even leave room for some “informal”
mechanisms.



Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Pseudo-syntax of LFP

• Five syntactic categories: signatures (for type and term
constants), contexts (for variables), kinds, types, and terms.

Σ ∈ S Σ ::= ∅ | Σ, a:K | Σ, c :σ Signatures

Γ ∈ C Γ ::= ∅ | Γ, x :σ Contexts

K ∈ K K ::= Type | Πx :σ.K Kinds

σ, τ, ρ ∈ F σ ::= a | Πx :σ.τ | σN | LPN,σ[ρ] Families (Types)

M,N ∈ O M ::= c | x | λx :σ.M | M N |
| LPN,σ[M] | UPN,σ[M] Objects (Terms)
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Judgements in LFP

The type system for LFP proves the following five judgements:

Σ sig Σ is a valid signature
`Σ Γ Γ is a valid context in Σ

Γ `Σ K K is a kind in Γ and Σ
Γ `Σ σ : K σ has kind K in Γ and Σ
Γ `Σ M : σ M has type σ in Γ and Σ
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Type System for LFP - Signatures

Signatures serve to keep track of constant types and terms.

• An empty signature is a valid signature.

∅ sig

• A valid signature Σ can be extended with a fresh family a,
whose kind K is a kind in the empty context and signature Σ.

Σ sig `Σ K a 6∈ Dom(Σ)

Σ, a:K sig

• A valid signature Σ can be extended with a fresh object c ,
whose type σ has kind Type in the empty context and
signature Σ.

Σ sig `Σ σ:Type c 6∈ Dom(Σ)

Σ, c :σ sig
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Type System for LFP - Contexts

Contexts keep track of variables.

• An empty context is a valid context in any valid signature Σ.

Σ sig

`Σ ∅

• A valid context Γ in the signature Σ can be extended with a
fresh variable x , whose type is of kind Type in Γ and Σ.

`Σ Γ Γ `Σ σ:Type x 6∈ Dom(Γ)

`Σ Γ, x :σ
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Type System for LFP - Kinds

• If Γ is a valid context in the signature Σ, then Type is a kind
in Γ and Σ.

`Σ Γ
Γ `Σ Type

• If K is a kind in the context Γ, x :σ and signature Σ, then the
dependent product Πx :σ.K is a kind in Γ and Σ.

Γ, x :σ `Σ K

Γ `Σ Πx :σ.K
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Type System for LFP - Types

• If Γ is a valid context in the signature Σ, then any family a of
kind K belonging to Σ also has kind K in Γ and Σ.

`Σ Γ a:K ∈ Σ
Γ `Σ a : K

• If τ has kind Type in the context Γ, x :σ and signature Σ, then
the dependent product Πx :σ.τ has kind Type in Γ and Σ.

Γ, x :σ `Σ τ : Type

Γ `Σ Πx :σ.τ : Type

• If σ has kind Πx :τ.K in the context Γ and signature Σ, and N
has type τ in Γ and Σ, then the application of N to σ has
kind K , in which all occurrences of x have been substituted
for N, in Γ and Σ.

Γ `Σ σ : Πx :τ.K Γ `Σ N : τ

σN : K [N/x ]
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Type System for LFP - More Types

• If ρ has kind K in the context Γ and signature Σ, and N has
type σ in Γ and Σ, then the type locking ρ with a predicate P
on Γ `Σ N : σ has kind Type in Γ and Σ.

Γ `Σ ρ : Type Γ `Σ N : σ

Γ `Σ LPN,σ[ρ] : Type

• If σ has kind K in the context Γ and signature Σ, and K is
definitionally equal to K ′, which is a kind in Γ and Σ, then σ
also has kind K ′ in Γ and Σ.

Γ `Σ σ : K Γ `Σ K ′ K=βLK
′

Γ `Σ σ : K ′
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Type System for LFP - Terms

• If Γ is a valid context in the signature Σ, then any object c of
type σ belonging to Σ also has type σ in Γ and Σ.

`Σ Γ c :σ ∈ Σ
Γ `Σ c : σ

• If Γ is a valid context in the signature Σ, then any variable x
of type σ belonging to Γ also has type σ in Γ and Σ.

`Σ Γ x :σ ∈ Γ
Γ `Σ x : σ

• If M has type τ in the context Γ, x :σ and signature Σ, then
the abstraction λx :σ.M has type Πx :σ.τ in Γ and Σ.

Γ, x :σ `Σ M : τ

Γ `Σ λx :σ.M : Πx :σ.τ
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Type System for LFP - More Terms

• If M has type Πx :σ.τ in the context Γ and signature Σ, and N
has type σ in Γ and Σ, then the application of N to M has
type τ , in which all occurrences of x have been substituted for
N, in Γ and Σ.

Γ `Σ M : Πx :σ.τ Γ `Σ N : τ

M N : τ [N/x ]

• If M has type ρ in the context Γ and signature Σ, and N has
type σ in Γ and Σ, then M, locked with the predicate P on
Γ `Σ N : σ has type ρ, locked with the predicate P on
Γ `Σ N : σ, in Γ and Σ.

Γ `Σ M : ρ Γ `Σ N : σ

Γ `Σ LPN,σ[M] : LPN,σ[ρ]
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Type System for LFP - Even More Terms

• If M has type ρ, locked with the predicate P on Γ `Σ N:σ in
the context Γ and signature Σ, N has type σ in Γ and Σ, and
P(Γ `Σ N:σ) holds, then M, unlocked with P on Γ `Σ N:σ
has type ρ in Γ and Σ.

P(Γ `Σ N : σ)
Γ `Σ M : LPN,σ[ρ]

Γ `Σ N : σ

Γ `Σ UPN,σ[M] : ρ

• If M has type σ in the context Γ and signature Σ, and σ is
definitionally equal to σ′, which has kind Type in Γ and Σ,
then M also has type σ′ in Γ and Σ.

Γ `Σ M : σ Γ `Σ σ′ : Type σ=βLσ
′

Γ `Σ M : σ′
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Definitional Equality in LFP

In LFP , there are two types of reduction:

• Standard β-reduction on the level of kinds, types, and terms:

(λx :σ.M)N →βL M[N/x ].

• A new form of reduction, L-reduction, on the level of terms,
where a lock dissolves in the presence of an unlock:

UPN,σ[LPN,σ[M]]→βL M.

Notice that predicate validity check is required for the unlock
constructor to be applied, and not during reduction. Also, there is
no need for L-reduction at the level of types.
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Strong Normalization

• We will rely on the Strong Normalization of LF.

• Let us begin by defining the function −UL : LFP → LF:

1. Type−UL = Type, a−UL = a, c−UL = c , x−UL = x ,
2. (Πx :σ.T )−UL = Πx :σ−UL.T−UL,
3. (λx :σ.T )−UL = λx :σ−UL.T−UL,
4. (T M)−UL = T−ULM−UL,
5. (LPN,σ[T ])−UL = (λxf :σ−UL.T−UL)N−UL,

6. (UPN,σ[T ])−UL = (λxf :σ−UL.T−UL)N−UL,

which maps derivable judgements of LFP into derivable
judgements of LF, stripping away the L and U .

• Note the free variable xf , which preserves N and σ from the
lock and unlock operators.
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Strong Normalization

• L-reductions cannot create new β-redexes in T , but can only
“unlock” them, and these unlocked redexes remain in T−UL:

UPN,σ[LPN,σ[λx :τ.M]]M ′ →L λx :τ.MM ′

• Therefore, at least as many β-reductions can be performed in
T−UL as can be performed in T :

maxβ(T ) ≤ maxβ(T−UL) <∞.

• There is no LFP term T with an infinite β-reduction sequence.
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Strong Normalization

Theorem (Strong normalization of LFP)

1. If Γ `Σ K, then K is βL-strongly normalizing.

2. if Γ `Σ σ : K, then σ is βL-strongly normalizing.

3. if Γ `Σ M : σ, then M is βL-strongly normalizing.

Proof for all three cases.
Let us suppose that maxβL(T ) =∞. Then, it must be that

maxL(T ) =∞. But, we initially only have finitely many L-redexes, and

this can increase only by a finite number at a time (through β-reduction).

Therefore, it must be that maxβ(T ) =∞, which is not possible.
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Confluence

• First, we prove the following lemma:

Lemma (Local confluence of LFP)

βL-reduction is locally confluent, i.e.

• If T →βL T ′ and T →βL T ′′, then there exists a T ′′′, such
that T ′→→βL K ′′′ and T ′′→→βL T ′′.

• Then, using Newman’s lemma (local confluence + strong
normalization → confluence), we obtain:

Theorem (Confluence of LFP)

βL-reduction is confluent, i.e.

• If T →→βL T ′ and T →→βL T ′′, then there exists a T ′′′, such
that T ′→→βL K ′′′ and T ′′→→βL T ′′.
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Subject Reduction

This time, we need additional conditions on the predicates:

Definition (Well-behaved predicates)
A predicate P is well-behaved if it satisfies the following conditions:

Closure under signature and context weakening and permutation:

• Σ,Ω sig,Σ ⊆ Ω,P(Γ `Σ α)→ P(Γ `Ω α).

• `Σ Γ,`Σ ∆, Γ ⊆ ∆,P(Γ `Σ α)→ P(∆ `Σ α).

Closure under substitution:

• P(Γ, x :σ′, Γ′ `Σ N : σ), Γ `Σ N ′ : σ′ →
P(Γ, Γ′[N ′/x ] `Σ N[N ′/x ] : σ[N ′/x ]).

Closure under reduction:

• P(Γ `Σ N : σ),N →βL N ′ → P(Γ `Σ N ′ : σ).

• P(Γ `Σ N : σ), σ →βL σ′ → P(Γ `Σ N : σ′).
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Subject Reduction

With the well-behavedness conditions imposed on predicates, and
several more standard auxiliary lemmas, including:

• subderivation,

• weakening and permutation,

• transitivity,

• unicity of types and kinds,

we can prove subject reduction of LFP :

Theorem (Subject reduction of LFP)

If predicates are well-behaved, then:

1. If Γ `Σ K, and K →βL K ′, then Γ `Σ K ′.

2. If Γ `Σ σ : K, and σ →βL σ′, then Γ `Σ σ′ : K.

3. If Γ `Σ M : σ, and M →βL M ′, then Γ `Σ M ′ : σ.
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Other Properties of LFP

• LFP is decidable, if the predicates are decidable.

• If a predicate is definable in LF, i.e. if it can be encoded via
the inhabitability of a suitable LF dependent type, then it is
well-behaved.

• All well-behaved recursively enumerable predicates are
LF-definable by Church’s thesis. But not that easily. Consider
e.g. the well-behaved predicate “M,N are two different closed
normal forms”, which can be immediately expressed in LFP .
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η-long Normal Forms in LFP

Definition (Fully applied and unlocked occurrences)

An occurrence ξ of a constant or a variable in a term of an LFP
judgement is fully applied and unlocked with respect to its type or
kind Π #»x 1: #»σ 1.

#»L1[. . .Π #»x n: #»σ n.
#»Ln[α] . . .], where

#»L1, . . . ,
#»Ln are

vectors of locks, if ξ appears in contexts of the form
#»U n[(. . . (

#»U 1[ξ
#»

M1]) . . .)
#»

Mn], where
#»

M1, . . . ,
#»

Mn,
#»U 1, . . . ,

#»U n have
the same arities of the corresponding vectors of Π’s and locks.

Definition (Judgements in η-long normal form)

• A term T in a judgement is in η-lnf if T is in normal form and
every constant and variable occurrence in T is fully applied
and unlocked w.r.t. its classifier in the judgement.

• A judgement is in η-lnf if all terms appearing in it are in η-lnf.
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Untyped λ-calculus

• The syntax:

M,N, . . . ::= x | M N | λx .M.

• The strategy:
• Higher-Order-Abstract-Syntax (HOAS)
• Delegating α-conversion and capture-avoiding substitution to

the metalanguage.
• Modeling free and bound variables so that the

well-behavedness conditions for the predicates are met.

• Signature Σλ for the untyped λ-calculus in LFP :

nat : Type The type of natural numbers
0 : nat Zero is a natural number
S : nat -> nat The successor function

free : nat -> term Modeling free variables
app : term -> term -> term Application
lam : (term -> term) -> term Abstraction



Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Untyped λ-calculus

• Natural numbers encoded in the standard way

• Variables of the untyped λ-calculus enumerated: {xi}i∈N\{0}
• The encoding function εX , mapping the terms of the untyped
λ-calculus into terms of LFP :

εX (xi ) =

{
xi, if xi ∈ X
(free i), if xi 6∈ X

,

εX (MN) = (app εX (M) εX (N)),

εX (λxi .M) = (lam λxi:term.εX∪{xi}(M)).

• Therefore, ε∅(xn) = (free n), but
ε∅(λxn.xn) = (lam λxn:term.ε{xn}(xn)) = (lam λxn:term.xn).
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Untyped λ-calculus

• In this way, we ensure that we can abide by the “closure under
substitution” condition for the predicates, while still retaining
the ability to handle “open” terms explicitly.

• We have the following adequacy theorem:

Theorem (Adequacy of syntax)

Let {xi}i∈N\{0} be an enumeration of the variables in the λ-calculus.

Then, the encoding function εX is a bijection between the λ-calculus

terms with bindable variables in X and the terms M derivable in

judgements Γ `Σλ
M : term in η-lnf, where Γ = {x : term | x ∈ X}.

• However, here we don’t use the main features of LFP - locked
types and external predicates. So, let us try to add to this
encoding a call-by-value reduction strategy.
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Untyped λ-calculus with call-by-value reduction

• Reduction induces an equivalence relation on the set of terms:

eq : term -> term -> Type

• Symmetry:
`CBV N = M
`CBV M = N

symm : ΠM:term.ΠN:term.(eq N M) -> (eq M N)

• Conditional β-reduction:
v is a value

`CBV (λx .M)v = M[v/x ]

betav : ΠM:(term -> term).ΠN:term.
LValN,term[eq (app (lam M) N) (M N)]
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Untyped λ-calculus with call-by-value reduction

• Conditional β-reduction:

betav : ΠM:(term -> term).ΠN:term.
LValN,term[eq (app (lam M) N) (M N)]

• The predicate Val(Γ `Σ N : term) holds iff either N is an
abstraction or a constant (a term of the shape (free i));

Val(Γ `Σ N : term) ⇒
let norm=NF(N) in

match norm with

| app M’ N’ => false

| => true

end

• The predicate Val is well-behaved.
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Untyped λ-calculus with call-by-value reduction

Theorem (Adequacy of CBV reduction)

Given an enumeration {xi}i∈N\{0} of the variables in the
λ-calculus, there is a bijection between derivations of the
judgement `CBV M = N on terms with no bindable variables in
the CBV λ-calculus and proof terms h, such that
`ΣCBV

h : (eq ε∅(M) ε∅(N)) is in η-lnf.
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Necessitation in Modal Logics

• Side-conditions on application of inference rules:

From φ infer 2φ, if φ is a theorem.

• We can encode this in LFP with relative ease:

NEC : Πφ:o.Πm:True(φ).LClosed
m,True(φ)[True(2φ)]

where o : Type is the type of propositions, and True : o ->

Type is the truth judgement.

• The predicate Closed(Γ `Σ m:True(φ)) holds iff “all of the
free variables that occur in m are of type o”.

• The predicate inspects the environment and has to be defined
on typed judgements.
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Several further examples

• Capturing π-calculus. The reduction rule taking into
account structural congruences between processes, namely

P ≡ P ′ P ′ −→ Q ′ Q ′ ≡ Q
P −→ Q

can be easily encoded in LFP as:

LStruct〈P,P′,Q′,Q〉[(red P Q)]

where red encodes the reduction relation −→, and the
external predicate Struct holds iff P ≡ P ′ and Q ′ ≡ Q.

• Capturing Deduction Modulo. The rule:

C A→ B A ≡ C
B

can be encoded as:

⊇≡: ΠA,B,C :o.Πx :True(A→ B).Πy :True(C ).L≡〈A,C〉[True(B)].
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What did we get with LFP?

• A mechanism allowing the interconnection of different formal
(and informal) verification tools.

• Easy encodings of side-conditions on applications of rules.

• Subsumption of a number of well-known formal systems from
the literature.

• An elegant separation between derivation and computation.

• Cleaner and more readable proofs.
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The end of the presentation

Thank you for your attention!
Any questions?
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