
Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

LFP – A Logical Framework
with External Predicates

Petar Maksimović
in collaboration with

Furio Honsell, Marina Lenisa, Ivan Scagnetto, and Luigi Liquori

Mathematical Institute of the Serbian Academy of Sciences and Arts, Serbia
Faculty of Technical Sciences, University of Novi Sad, Serbia

INRIA Sophia Antipolis Méditerranée, France
Universitá di Udine, Italy

Logic and Applications 2013, September 16-20, 2013,
Dubrovnik, Croatia

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Table of Contents

• Introduction

• The Syntax of LFP

• Properties of LFP

• Encodings in LFP

• Conclusions

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Logical Frameworks

• Formal systems based on a typed λ-calculus

• Connected (somewhat unexpectedly) with proof systems via
the Curry-Howard Correspondence, interpreting
formulas-as-types and proofs-as-programs.

• Serve as bases for various interactive theorem provers
• Coq, Lego, Twelf

• Harper-Honsell-Plotkin’s Edinburgh Logical Framework - LF
• Featuring dependent types - types depending on terms

• Coquand’s Calculus of Constructions
• Featuring type polymorphism, dependent types, and

higher-order types.

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

What would we like to do?

• Difficult and cumbersome encodings of side conditions - we
would like to make that a little easier and a lot more natural.

• Somehow separate derivation and computation - maybe have
conditions verified externally.

• Allow the interaction and co-operation of various formal
provers. Maybe even leave room for some “informal”
mechanisms.

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Pseudo-syntax of LFP

• Five syntactic categories: signatures (for type and term
constants), contexts (for variables), kinds, types, and terms.

Σ ∈ S Σ ::= ∅ | Σ, a:K | Σ, c :σ Signatures

Γ ∈ C Γ ::= ∅ | Γ, x :σ Contexts

K ∈ K K ::= Type | Πx :σ.K Kinds

σ, τ, ρ ∈ F σ ::= a | Πx :σ.τ | σN | LPN,σ[ρ] Families (Types)

M,N ∈ O M ::= c | x | λx :σ.M | M N |
| LPN,σ[M] | UPN,σ[M] Objects (Terms)

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Judgements in LFP

The type system for LFP proves the following five judgements:

Σ sig Σ is a valid signature
`Σ Γ Γ is a valid context in Σ

Γ `Σ K K is a kind in Γ and Σ
Γ `Σ σ : K σ has kind K in Γ and Σ
Γ `Σ M : σ M has type σ in Γ and Σ

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Type System for LFP - Signatures

Signatures serve to keep track of constant types and terms.

• An empty signature is a valid signature.

∅ sig

• A valid signature Σ can be extended with a fresh family a,
whose kind K is a kind in the empty context and signature Σ.

Σ sig `Σ K a 6∈ Dom(Σ)

Σ, a:K sig

• A valid signature Σ can be extended with a fresh object c ,
whose type σ has kind Type in the empty context and
signature Σ.

Σ sig `Σ σ:Type c 6∈ Dom(Σ)

Σ, c :σ sig

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Type System for LFP - Contexts

Contexts keep track of variables.

• An empty context is a valid context in any valid signature Σ.

Σ sig

`Σ ∅

• A valid context Γ in the signature Σ can be extended with a
fresh variable x , whose type is of kind Type in Γ and Σ.

`Σ Γ Γ `Σ σ:Type x 6∈ Dom(Γ)

`Σ Γ, x :σ

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Type System for LFP - Kinds

• If Γ is a valid context in the signature Σ, then Type is a kind
in Γ and Σ.

`Σ Γ
Γ `Σ Type

• If K is a kind in the context Γ, x :σ and signature Σ, then the
dependent product Πx :σ.K is a kind in Γ and Σ.

Γ, x :σ `Σ K

Γ `Σ Πx :σ.K

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Type System for LFP - Types

• If Γ is a valid context in the signature Σ, then any family a of
kind K belonging to Σ also has kind K in Γ and Σ.

`Σ Γ a:K ∈ Σ
Γ `Σ a : K

• If τ has kind Type in the context Γ, x :σ and signature Σ, then
the dependent product Πx :σ.τ has kind Type in Γ and Σ.

Γ, x :σ `Σ τ : Type

Γ `Σ Πx :σ.τ : Type

• If σ has kind Πx :τ.K in the context Γ and signature Σ, and N
has type τ in Γ and Σ, then the application of N to σ has
kind K , in which all occurrences of x have been substituted
for N, in Γ and Σ.

Γ `Σ σ : Πx :τ.K Γ `Σ N : τ

σN : K [N/x]

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Type System for LFP - More Types

• If ρ has kind K in the context Γ and signature Σ, and N has
type σ in Γ and Σ, then the type locking ρ with a predicate P
on Γ `Σ N : σ has kind Type in Γ and Σ.

Γ `Σ ρ : Type Γ `Σ N : σ

Γ `Σ LPN,σ[ρ] : Type

• If σ has kind K in the context Γ and signature Σ, and K is
definitionally equal to K ′, which is a kind in Γ and Σ, then σ
also has kind K ′ in Γ and Σ.

Γ `Σ σ : K Γ `Σ K ′ K=βLK
′

Γ `Σ σ : K ′

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Type System for LFP - Terms

• If Γ is a valid context in the signature Σ, then any object c of
type σ belonging to Σ also has type σ in Γ and Σ.

`Σ Γ c :σ ∈ Σ
Γ `Σ c : σ

• If Γ is a valid context in the signature Σ, then any variable x
of type σ belonging to Γ also has type σ in Γ and Σ.

`Σ Γ x :σ ∈ Γ
Γ `Σ x : σ

• If M has type τ in the context Γ, x :σ and signature Σ, then
the abstraction λx :σ.M has type Πx :σ.τ in Γ and Σ.

Γ, x :σ `Σ M : τ

Γ `Σ λx :σ.M : Πx :σ.τ

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Type System for LFP - More Terms

• If M has type Πx :σ.τ in the context Γ and signature Σ, and N
has type σ in Γ and Σ, then the application of N to M has
type τ , in which all occurrences of x have been substituted for
N, in Γ and Σ.

Γ `Σ M : Πx :σ.τ Γ `Σ N : τ

M N : τ [N/x]

• If M has type ρ in the context Γ and signature Σ, and N has
type σ in Γ and Σ, then M, locked with the predicate P on
Γ `Σ N : σ has type ρ, locked with the predicate P on
Γ `Σ N : σ, in Γ and Σ.

Γ `Σ M : ρ Γ `Σ N : σ

Γ `Σ LPN,σ[M] : LPN,σ[ρ]

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Type System for LFP - Even More Terms

• If M has type ρ, locked with the predicate P on Γ `Σ N:σ in
the context Γ and signature Σ, N has type σ in Γ and Σ, and
P(Γ `Σ N:σ) holds, then M, unlocked with P on Γ `Σ N:σ
has type ρ in Γ and Σ.

P(Γ `Σ N : σ)
Γ `Σ M : LPN,σ[ρ]

Γ `Σ N : σ

Γ `Σ UPN,σ[M] : ρ

• If M has type σ in the context Γ and signature Σ, and σ is
definitionally equal to σ′, which has kind Type in Γ and Σ,
then M also has type σ′ in Γ and Σ.

Γ `Σ M : σ Γ `Σ σ′ : Type σ=βLσ
′

Γ `Σ M : σ′

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Definitional Equality in LFP

In LFP , there are two types of reduction:

• Standard β-reduction on the level of kinds, types, and terms:

(λx :σ.M)N →βL M[N/x].

• A new form of reduction, L-reduction, on the level of terms,
where a lock dissolves in the presence of an unlock:

UPN,σ[LPN,σ[M]]→βL M.

Notice that predicate validity check is required for the unlock
constructor to be applied, and not during reduction. Also, there is
no need for L-reduction at the level of types.

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Strong Normalization

• We will rely on the Strong Normalization of LF.

• Let us begin by defining the function −UL : LFP → LF:

1. Type−UL = Type, a−UL = a, c−UL = c , x−UL = x ,
2. (Πx :σ.T)−UL = Πx :σ−UL.T−UL,
3. (λx :σ.T)−UL = λx :σ−UL.T−UL,
4. (T M)−UL = T−ULM−UL,
5. (LPN,σ[T])−UL = (λxf :σ−UL.T−UL)N−UL,

6. (UPN,σ[T])−UL = (λxf :σ−UL.T−UL)N−UL,

which maps derivable judgements of LFP into derivable
judgements of LF, stripping away the L and U .

• Note the free variable xf , which preserves N and σ from the
lock and unlock operators.

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Strong Normalization

• L-reductions cannot create new β-redexes in T , but can only
“unlock” them, and these unlocked redexes remain in T−UL:

UPN,σ[LPN,σ[λx :τ.M]]M ′ →L λx :τ.MM ′

• Therefore, at least as many β-reductions can be performed in
T−UL as can be performed in T :

maxβ(T) ≤ maxβ(T−UL) <∞.

• There is no LFP term T with an infinite β-reduction sequence.

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Strong Normalization

Theorem (Strong normalization of LFP)

1. If Γ `Σ K, then K is βL-strongly normalizing.

2. if Γ `Σ σ : K, then σ is βL-strongly normalizing.

3. if Γ `Σ M : σ, then M is βL-strongly normalizing.

Proof for all three cases.
Let us suppose that maxβL(T) =∞. Then, it must be that

maxL(T) =∞. But, we initially only have finitely many L-redexes, and

this can increase only by a finite number at a time (through β-reduction).

Therefore, it must be that maxβ(T) =∞, which is not possible.

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Confluence

• First, we prove the following lemma:

Lemma (Local confluence of LFP)

βL-reduction is locally confluent, i.e.

• If T →βL T ′ and T →βL T ′′, then there exists a T ′′′, such
that T ′→→βL K ′′′ and T ′′→→βL T ′′.

• Then, using Newman’s lemma (local confluence + strong
normalization → confluence), we obtain:

Theorem (Confluence of LFP)

βL-reduction is confluent, i.e.

• If T →→βL T ′ and T →→βL T ′′, then there exists a T ′′′, such
that T ′→→βL K ′′′ and T ′′→→βL T ′′.

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Subject Reduction

This time, we need additional conditions on the predicates:

Definition (Well-behaved predicates)
A predicate P is well-behaved if it satisfies the following conditions:

Closure under signature and context weakening and permutation:

• Σ,Ω sig,Σ ⊆ Ω,P(Γ `Σ α)→ P(Γ `Ω α).

• `Σ Γ,`Σ ∆, Γ ⊆ ∆,P(Γ `Σ α)→ P(∆ `Σ α).

Closure under substitution:

• P(Γ, x :σ′, Γ′ `Σ N : σ), Γ `Σ N ′ : σ′ →
P(Γ, Γ′[N ′/x] `Σ N[N ′/x] : σ[N ′/x]).

Closure under reduction:

• P(Γ `Σ N : σ),N →βL N ′ → P(Γ `Σ N ′ : σ).

• P(Γ `Σ N : σ), σ →βL σ′ → P(Γ `Σ N : σ′).

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Subject Reduction

With the well-behavedness conditions imposed on predicates, and
several more standard auxiliary lemmas, including:

• subderivation,

• weakening and permutation,

• transitivity,

• unicity of types and kinds,

we can prove subject reduction of LFP :

Theorem (Subject reduction of LFP)

If predicates are well-behaved, then:

1. If Γ `Σ K, and K →βL K ′, then Γ `Σ K ′.

2. If Γ `Σ σ : K, and σ →βL σ′, then Γ `Σ σ′ : K.

3. If Γ `Σ M : σ, and M →βL M ′, then Γ `Σ M ′ : σ.

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Other Properties of LFP

• LFP is decidable, if the predicates are decidable.

• If a predicate is definable in LF, i.e. if it can be encoded via
the inhabitability of a suitable LF dependent type, then it is
well-behaved.

• All well-behaved recursively enumerable predicates are
LF-definable by Church’s thesis. But not that easily. Consider
e.g. the well-behaved predicate “M,N are two different closed
normal forms”, which can be immediately expressed in LFP .

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

η-long Normal Forms in LFP

Definition (Fully applied and unlocked occurrences)

An occurrence ξ of a constant or a variable in a term of an LFP
judgement is fully applied and unlocked with respect to its type or
kind Π #»x 1: #»σ 1.

#»L1[. . .Π #»x n: #»σ n.
#»Ln[α] . . .], where

#»L1, . . . ,
#»Ln are

vectors of locks, if ξ appears in contexts of the form
#»U n[(. . . (

#»U 1[ξ
#»

M1]) . . .)
#»

Mn], where
#»

M1, . . . ,
#»

Mn,
#»U 1, . . . ,

#»U n have
the same arities of the corresponding vectors of Π’s and locks.

Definition (Judgements in η-long normal form)

• A term T in a judgement is in η-lnf if T is in normal form and
every constant and variable occurrence in T is fully applied
and unlocked w.r.t. its classifier in the judgement.

• A judgement is in η-lnf if all terms appearing in it are in η-lnf.

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Untyped λ-calculus

• The syntax:

M,N, . . . ::= x | M N | λx .M.

• The strategy:
• Higher-Order-Abstract-Syntax (HOAS)
• Delegating α-conversion and capture-avoiding substitution to

the metalanguage.
• Modeling free and bound variables so that the

well-behavedness conditions for the predicates are met.

• Signature Σλ for the untyped λ-calculus in LFP :

nat : Type The type of natural numbers
0 : nat Zero is a natural number
S : nat -> nat The successor function

free : nat -> term Modeling free variables
app : term -> term -> term Application
lam : (term -> term) -> term Abstraction

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Untyped λ-calculus

• Natural numbers encoded in the standard way

• Variables of the untyped λ-calculus enumerated: {xi}i∈N\{0}
• The encoding function εX , mapping the terms of the untyped
λ-calculus into terms of LFP :

εX (xi) =

{
xi, if xi ∈ X
(free i), if xi 6∈ X

,

εX (MN) = (app εX (M) εX (N)),

εX (λxi .M) = (lam λxi:term.εX∪{xi}(M)).

• Therefore, ε∅(xn) = (free n), but
ε∅(λxn.xn) = (lam λxn:term.ε{xn}(xn)) = (lam λxn:term.xn).

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Untyped λ-calculus

• In this way, we ensure that we can abide by the “closure under
substitution” condition for the predicates, while still retaining
the ability to handle “open” terms explicitly.

• We have the following adequacy theorem:

Theorem (Adequacy of syntax)

Let {xi}i∈N\{0} be an enumeration of the variables in the λ-calculus.

Then, the encoding function εX is a bijection between the λ-calculus

terms with bindable variables in X and the terms M derivable in

judgements Γ `Σλ
M : term in η-lnf, where Γ = {x : term | x ∈ X}.

• However, here we don’t use the main features of LFP - locked
types and external predicates. So, let us try to add to this
encoding a call-by-value reduction strategy.

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Untyped λ-calculus with call-by-value reduction

• Reduction induces an equivalence relation on the set of terms:

eq : term -> term -> Type

• Symmetry:
`CBV N = M
`CBV M = N

symm : ΠM:term.ΠN:term.(eq N M) -> (eq M N)

• Conditional β-reduction:
v is a value

`CBV (λx .M)v = M[v/x]

betav : ΠM:(term -> term).ΠN:term.
LValN,term[eq (app (lam M) N) (M N)]

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Untyped λ-calculus with call-by-value reduction

• Conditional β-reduction:

betav : ΠM:(term -> term).ΠN:term.
LValN,term[eq (app (lam M) N) (M N)]

• The predicate Val(Γ `Σ N : term) holds iff either N is an
abstraction or a constant (a term of the shape (free i));

Val(Γ `Σ N : term) ⇒
let norm=NF(N) in

match norm with

| app M’ N’ => false

| => true

end

• The predicate Val is well-behaved.

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Untyped λ-calculus with call-by-value reduction

Theorem (Adequacy of CBV reduction)

Given an enumeration {xi}i∈N\{0} of the variables in the
λ-calculus, there is a bijection between derivations of the
judgement `CBV M = N on terms with no bindable variables in
the CBV λ-calculus and proof terms h, such that
`ΣCBV

h : (eq ε∅(M) ε∅(N)) is in η-lnf.

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Necessitation in Modal Logics

• Side-conditions on application of inference rules:

From φ infer 2φ, if φ is a theorem.

• We can encode this in LFP with relative ease:

NEC : Πφ:o.Πm:True(φ).LClosed
m,True(φ)[True(2φ)]

where o : Type is the type of propositions, and True : o ->

Type is the truth judgement.

• The predicate Closed(Γ `Σ m:True(φ)) holds iff “all of the
free variables that occur in m are of type o”.

• The predicate inspects the environment and has to be defined
on typed judgements.

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

Several further examples

• Capturing π-calculus. The reduction rule taking into
account structural congruences between processes, namely

P ≡ P ′ P ′ −→ Q ′ Q ′ ≡ Q
P −→ Q

can be easily encoded in LFP as:

LStruct〈P,P′,Q′,Q〉[(red P Q)]

where red encodes the reduction relation −→, and the
external predicate Struct holds iff P ≡ P ′ and Q ′ ≡ Q.

• Capturing Deduction Modulo. The rule:

C A→ B A ≡ C
B

can be encoded as:

⊇≡: ΠA,B,C :o.Πx :True(A→ B).Πy :True(C).L≡〈A,C〉[True(B)].

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

What did we get with LFP?

• A mechanism allowing the interconnection of different formal
(and informal) verification tools.

• Easy encodings of side-conditions on applications of rules.

• Subsumption of a number of well-known formal systems from
the literature.

• An elegant separation between derivation and computation.

• Cleaner and more readable proofs.

Introduction The Syntax of LFP Properties of LFP Encodings in LFP Conclusions

The end of the presentation

Thank you for your attention!
Any questions?

	Introduction
	Subsection

	The Syntax of LFP
	Subsection

	Properties of LFP
	Subsection

	Encodings in LFP
	Subsection

	Conclusions
	Subsection

