Hierarchies of probability logics

Zoran Ognjanović

Matematički institut SANU zorano@mi.sanu.ac.rs

Logic and applications Dubrovnik, Sept. 16-20, 2013.

Coauthors

Nebojša Ikodinović, Aleksandar Perović, Miodrag Rašković

Outline

- Probabilistic logics, overview
- Hierarchies of PLs
- Conclusion

What are PLs?

Logic:

- syntax (language, well formed formulas)
- axiomatic system (axioms, rules)
- proof
- semantics (models, satisfiability)
- consequence relation

How to obtain PLs?

keep syntax and extend semantics

extend syntax (new symbols in the language)

How to obtain PLs?

- keep syntax and extend semantics
 - $v : For \mapsto [0, 1]$
- extend syntax (new symbols in the language)

How to obtain PLs?

- keep syntax and extend semantics
 - $v : For \mapsto [0, 1]$
- extend syntax (new symbols in the language)
 - add/replace quantifiers
 - add new operators

History (1)

- Leibnitz (1646 1716)
- Bernoullies, Bayes, Lambert, Bolzano, De Morgan, MacColl, Peirce, Poretskiy, . . .
- Laplace (1749 1827)
- George Boole (1815 1864), An Investigation into the Laws of Thought, on which are founded the Mathematical Theories of Logic and Probabilities (1854):

History (1)

- Leibnitz (1646 1716)
- Bernoullies, Bayes, Lambert, Bolzano, De Morgan, MacColl, Peirce, Poretskiy, . . .
- Laplace (1749 1827)
- George Boole (1815 1864), An Investigation into the Laws of Thought, on which are founded the Mathematical Theories of Logic and Probabilities (1854):

```
logical functions: f_1(x_1, \ldots, x_m), ..., f_k(x_1, \ldots, x_m), F(x_1, \ldots, x_m) probabilities: p_1 = P(f_1(x_1, \ldots, x_m)), ..., p_k = P(f_k(x_1, \ldots, x_m)), solve: P(F(x_1, \ldots, x_m)) using p_1, \ldots, p_k corrected by T. Hailperin ('80.)
```

History (3)

XX century:

- progress of theories concerning derivations of truth in Math. logic
- measure theory, formal calculus of probability, Kolmogorov
- Keynes, Reichenbach, De Finetti, Carnap, Cox, ...

History (3)

XX century:

- progress of theories concerning derivations of truth in Math. logic
- measure theory, formal calculus of probability, Kolmogorov
- Keynes, Reichenbach, De Finetti, Carnap, Cox, ...
- '60, '70: Keisler, Geifmann, Scott, Adams
- '80: applications in Al

Degrees of beliefs

• The probability that a particular bird A flies is at least 0.75.

Degrees of beliefs

• The probability that a particular bird A flies is at least 0.75.

$$P_{\geq 0.75}$$
 Fly (A)

Early papers

- N. Nilsson, Probabilistic logic, *Artificial intelligence* 28, 71 87, 1986.
- H. Gaifman. A Theory of Higher Order Probabilities. In: Proceedings of the Theoretical Aspects of Reasoning about Knowledge (edts. J.Y. Halpern), Morgan-Kaufmann, San Mateo, California, 275–292. 1986.
- M. Fattorosi-Barnaba and G. Amati. Modal operators with probabilistic interpretations I. Studia Logica 46(4), 383–393. 1989.
- R. Fagin, J. Halpern and N. Megiddo. A logic for reasoning about probabilities. *Information and Computation* 87(1-2):78 – 128. 1990.
- M. Rašković. Classical logic with some probability operators.
 Publications de l'Institut Mathématique, n.s. 53(67), 1 3. 1993.
- R. Fagin and J. Halpern. Reasoning about knowledge and probability. *Journal of the ACM*, 41(2):340–367, 1994.
- A. Frish and P. Haddawy. Anytime deduction for probabilistic logic. *Artificial Intelligence* 69, 93 122. 1994.

Motivating example (1)

Example

Knowledge base:

```
if A_1 then B_1
```

if A_2 then B_2

if A_3 then B_3

. . .

Motivating example (1)

Example

Knowledge base:

```
if A_1 then B_1 (cf c_1)
if A_2 then B_2 (cf c_2)
if A_3 then B_3 (cf c_3)
```

. . .

Uncertain knowledge: from statistics, our experiences and beliefs, etc.

Motivating example (1)

Example

Knowledge base:

. . .

```
if A_1 then B_1 (cf c_1)
if A_2 then B_2 (cf c_2)
if A_3 then B_3 (cf c_3)
```

Uncertain knowledge: from statistics, our experiences and beliefs, etc.

- To check consistency of (finite) sets of sentences.
- To deduce probabilities of conclusions from uncertain premisses.

- The probabilistic logics allow strict reasoning about probabilities using well-defined syntax and semantics.
- Formulas in these logics remain either true or false.
- Formulas do not have probabilistic (numerical) truth values.

• $Var = \{p, q, r, \ldots\}$, connectives \neg and \land and

$$P_{\geq s}, \quad s \in Q \cap [0,1]$$

• For_C - the set of classical propositional formulas

• $Var = \{p, q, r, \ldots\}$, connectives \neg and \land and

$$P_{\geq s}, \quad s \in Q \cap [0,1]$$

- For_C the set of classical propositional formulas
- Basic probabilistic formula:

$$P_{\geq s}\alpha$$

for
$$\alpha \in For_C$$
, $s \in Q \cap [0,1]$

- Forp Boolean combinations of basic probabilistic formulas
- $P_{\leq s}\alpha$ means $\neg P_{\geq s}\alpha$, ...

• $Var = \{p, q, r, \ldots\}$, connectives \neg and \land and

$$P_{\geq s}, \quad s \in Q \cap [0,1]$$

- For_C the set of classical propositional formulas
- Basic probabilistic formula:

$$P_{\geq s}\alpha$$

for
$$\alpha \in For_C$$
, $s \in Q \cap [0,1]$

- Forp Boolean combinations of basic probabilistic formulas
- $P_{<s}\alpha$ means $\neg P_{>s}\alpha$, ...
- $(P_{\geq s}\alpha \wedge P_{\leq t}(\alpha \rightarrow \beta)) \rightarrow P_{=r}\beta$

• $Var = \{p, q, r, \ldots\}$, connectives \neg and \land and

$$P_{\geq s}, \quad s \in Q \cap [0,1]$$

- For_C the set of classical propositional formulas
- Basic probabilistic formula:

$$P_{\geq s}\alpha$$

for
$$\alpha \in For_C$$
, $s \in Q \cap [0,1]$

- Forp Boolean combinations of basic probabilistic formulas
- $P_{\leq s}\alpha$ means $\neg P_{\geq s}\alpha$, ...
- $(P_{\geq s}\alpha \wedge P_{\leq t}(\alpha \rightarrow \beta)) \rightarrow P_{=r}\beta$
- $P_{>s}P_{>t}\alpha$, $\beta \vee P_{>s}\alpha \notin For$

Semantics (1)

- A probabilistic model $M = \langle W, H, \mu, \nu \rangle$:
 - W is a nonempty set of elements called worlds,
 - H is an algebra of subsets of W,
 - ullet $\mu:H o [0,1]$ is a finitely additive probability measure, and
 - $v: W \times \mathrm{Var} \to \{\top, \bot\}$ is a valuation

Semantics (1)

- A probabilistic model $M = \langle W, H, \mu, \nu \rangle$:
 - W is a nonempty set of elements called worlds,
 - H is an algebra of subsets of W,
 - $\mu: H \to [0,1]$ is a finitely additive probability measure, and
 - $v: W \times \mathrm{Var} \to \{\top, \bot\}$ is a valuation
- Measurable models
 - $\alpha \in For_C$
 - $[\alpha] = \{ w \in W : w \models \alpha \}$
 - $[\alpha] \in H$

Semantics (2)

Satisfiability (1)

- if $\alpha \in For_C$, $M \models \alpha$ if $(\forall w \in W)v(w)(\alpha) = \top$
- $M \models P_{\geq s}\alpha$ if $\mu([\alpha]_M) \geq s$,
- if $A \in For_P$, $M \models \neg A$ if $M \not\models A$,
- if $A, B \in For_P$, $M \models A \land B$ if $M \models A$ and $M \models B$.

A set of formulas $F = \{A_1, A_2, ...\}$ is satisfiable if there is a model M, $M \models A_i$, i = 1, 2, ...

Satisfiability (2)

Logical issues (1)

- Providing a sound and complete axiomatic system
 - simple completeness (every consistent formula is satisfiable, $\models A$ iff $\vdash A$)
 - extended completeness (every consistent set of formulas is satisfiable)
- Decidability (there is a procedure which decides if an arbitrary formula formula is valid)

Logical issues (1)

- Providing a sound and complete axiomatic system
 - simple completeness (every consistent formula is satisfiable, $\models A$ iff $\vdash A$)
 - extended completeness (every consistent set of formulas is satisfiable)
- Decidability (there is a procedure which decides if an arbitrary formula formula is valid)
- Compactness (a set of formulas is satisfiable iff every finite subset is satisfiable).

Logical issues (2)

Inherent non-compactness:

$$F = \{\neg P_{=0}p\} \cup \{P_{<1/n}p : n \text{ is a positive integer}\}$$

Logical issues (2)

Inherent non-compactness:

$$F = \{\neg P_{=0}p\} \cup \{P_{<1/n}p : n \text{ is a positive integer}\}$$

- $F_k = \{ \neg P_{=0}p, P_{<1/1}p, P_{<1/2}p, \dots, P_{<1/k}p \}$
- $c: 0 < c < \frac{1}{k}, \quad \mu[p] = c$
- M satisfies every F_k , but does not satisfy F

Logical issues (2)

Inherent non-compactness:

$$F = \{\neg P_{=0}p\} \cup \{P_{<1/n}p : n \text{ is a positive integer}\}$$

- $F_k = \{ \neg P_{=0}p, P_{<1/1}p, P_{<1/2}p, \dots, P_{<1/k}p \}$
- $c: 0 < c < \frac{1}{k}, \quad \mu[p] = c$
- M satisfies every F_k , but does not satisfy F
- finitary (recursive) axiomatization + extended completeness ⇒ compactness
- finitary axiomatization for real valued probabilistic logics: there are consistent sets that are not satisfiable

Logical issues (3)

- Restrictions on ranges of probabilities: $\{0,\frac{1}{n},\frac{2}{n},\dots,\frac{n-1}{n},1\}$
- infinitary axiomatization

$$LPP_2^{\operatorname{Fr}(n)}$$

• $LPP_2^{\mathrm{Fr}(n)}$, $\mu:H \to \{0,\frac{1}{n},\frac{2}{n},\dots,\frac{n-1}{n},1\}$

$$LPP_2^{\operatorname{Fr}(n)}$$

• $LPP_2^{\mathrm{Fr}(n)}$, $\mu: H \to \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$

$$\models_{LPP_2^{\operatorname{Fr}(n)}} P_{>\frac{k}{n}} p \to P_{\geq \frac{k+1}{n}} p$$

$LPP_2^{\operatorname{Fr}(n)}$

• $LPP_2^{Fr(n)}$, $\mu: H \to \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$

$$\models_{LPP_2^{\operatorname{Fr}(n)}} P_{>\frac{k}{n}} p \to P_{\geq \frac{k+1}{n}} p$$

• n = 2, $LPP_2^{Fr(2)}$, $\mu : H \to \{0, \frac{1}{2}, 1\}$

$$\models_{LPP_2^{\operatorname{Fr}(n)}} P_{>\frac{1}{2}} p \to P_{\geq \frac{1+1}{2}} p$$

$LPP_2^{\operatorname{Fr}(n)}$

• $LPP_2^{Fr(n)}$, $\mu: H \to \{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$

$$\models_{LPP_2^{\operatorname{Fr}(n)}} P_{>\frac{k}{n}} p \to P_{\geq \frac{k+1}{n}} p$$

• n = 2, $LPP_2^{Fr(2)}$, $\mu : H \to \{0, \frac{1}{2}, 1\}$

$$\models_{LPP_2^{\operatorname{Fr}(n)}} P_{>\frac{1}{2}} p \to P_{\geq \frac{1+1}{2}} p$$

• n = 3, $LPP_2^{Fr(3)}$, $\mu : H \to \{0, \frac{1}{3}, \frac{2}{3}, 1\}$, $\mu(p) = \frac{2}{3}$

$$\not\models_{LPP_3^{\mathrm{Fr}(n)}} P_{>\frac{1}{2}} p \to P_{\geq \frac{1+1}{2}} p$$

LPP_2 (1)

Axioms

- all instances of classical propositional tautologies
- axioms for probabilistic reasoning
 - P≥0α
 - $P_{\leq r}\alpha \rightarrow P_{< s}\alpha$, s > r
 - $P_{\leq s}\alpha \to P_{\leq s}\alpha$
 - $(P_{\geq r}\alpha \wedge P_{\geq s}\beta \wedge P_{\geq 1}(\neg(\alpha \wedge \beta))) \rightarrow P_{\geq \min(1,r+s)}(\alpha \vee \beta)$
 - $(P_{\leq r}\alpha \wedge P_{\leq s}\beta) \rightarrow P_{\leq r+s}(\alpha \vee \beta), r+s \leq 1$

LPP_2 (2)

Rules

- From Φ and $\Phi \to \Psi$ infer Ψ .
- From α infer $P_{>1}\alpha$.
- From

$$\{A \to P_{\geq s - \frac{1}{k}}\alpha, \text{ for } k \geq \frac{1}{s}\}$$

infer

$$A \to P_{\geq s} \alpha$$
.

LPP_2 (3)

- Proof from the set of formulas $(F \vdash \varphi)$:
 - at most denumerable sequence of formulas $\varphi_0, \varphi_1, \ldots, \varphi_n$
 - φ_i is an axiom or a formula from the set F,
 - \bullet or φ_i is derived from the preceding formulas by an inference rule
- A formula φ is a *theorem* ($\vdash \varphi$) if it is deducible from the empty set.

LPP_2 (3)

- Proof from the set of formulas $(F \vdash \varphi)$:
 - at most denumerable sequence of formulas $\varphi_0, \varphi_1, \ldots, \varphi_n$
 - φ_i is an axiom or a formula from the set F,
 - ullet or $arphi_i$ is derived from the preceding formulas by an inference rule
- A formula φ is a *theorem* ($\vdash \varphi$) if it is deducible from the empty set.
- A set F of formulas is consistent if there are at least a classical formula and at least a probabilistic formula that are not deducible from F.

LPP_2 (4)

$LPP_2^{\operatorname{Fr}(n)}$ vs LPP_2

• $LPP_2^{Fr(n)}$ -Axiom

$$\bigvee_{k=0}^{n} P_{=\frac{k}{n}} \alpha$$

i.e.,
$$\mu([\alpha]) \in \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}$$

• instead of LPP₂-Rule:

From

$$\{A \to P_{\geq s - \frac{1}{k}} \alpha, \text{ for } k \geq \frac{1}{s}\}$$

infer

$$A \rightarrow P_{\geq s} \alpha$$

$$P_{\geq s}\alpha \wedge P_{\leq r}\alpha$$
 ... $\mu([\alpha]) \in [s, r]$
$$\vee_{k=0}^{n} P_{=\frac{k}{n}}\alpha$$
 ... $\mu([\alpha]) \in \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}$

$$P_{\geq s}\alpha \wedge P_{\leq r}\alpha \qquad \dots \qquad \mu([\alpha]) \in [s, r]$$

$$\vee_{k=0}^{n} P_{=\frac{k}{n}}\alpha \qquad \dots \qquad \mu([\alpha]) \in \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}$$

$$\mu([\alpha]) \in \{s_0, s_1, \dots, s_n, \dots\}$$

$$P_{\geq s}\alpha \wedge P_{\leq r}\alpha \qquad \dots \qquad \mu([\alpha]) \in [s, r]$$

$$\vee_{k=0}^{n} P_{=\frac{k}{n}}\alpha \qquad \dots \qquad \mu([\alpha]) \in \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}$$

$$\mu([\alpha]) \in \{s_0, s_1, \dots, s_n, \dots\}$$

$$\vee_{k=0}^{\infty}P_{=s_k}\alpha$$

$$P_{\geq s}\alpha \wedge P_{\leq r}\alpha \qquad \dots \qquad \mu([\alpha]) \in [s, r]$$

$$\vee_{k=0}^{n} P_{=\frac{k}{n}}\alpha \qquad \dots \qquad \mu([\alpha]) \in \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}$$

$$\mathbf{Q}_{\{\mathbf{s}_{0}, \mathbf{s}_{1}, \dots, \mathbf{s}_{n}, \dots\}}\alpha \qquad \dots \qquad \mu([\alpha]) \in \{s_{0}, s_{1}, \dots, s_{n}, \dots\}$$

$$\Leftrightarrow$$

$$\vee_{k=0}^{\infty} P_{=s_{k}}\alpha$$

$LPP_{2,P,Q,O}$

Extension of LPP_2 :

- ullet O recursive family of recursive subsets of $[0,1]_{\mathbb Q}$
- Q_F , $F \in O$
- $M \models Q_F p \text{ iff } \mu([p]) \in F$

$LPP_{2,P,Q,O}$

Extension of LPP₂:

- ullet O recursive family of recursive subsets of $[0,1]_{\mathbb Q}$
- Q_F , $F \in O$
- $M \models Q_F p \text{ iff } \mu([p]) \in F$
- Q_F 's and $P_{>s}$'s are mutually undefinable

$$LPP_2^{Fr(n)}, \ \mu: H \to \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \ P_{\geq s}$$

$$LPP_2$$
, $\mu: H \rightarrow [0,1]$, $P_{\geq s}$

$$LPP_{2,P,Q,O},\ \mu: H o [0,1],\ P_{\geq s},\ Q_F$$

$$LPP_2^{\mathrm{Fr}(n)}, \ \mu: H \to \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \ P_{\geq s}$$

same language diff. models

$$\mathit{LPP}_2,\ \mu: H \to [0,1],\ P_{\geq s}$$

$$LPP_{2,P,Q,O}, \ \mu: H \rightarrow [0,1], \ P_{\geq s}, \ Q_F$$

$$LPP_2^{\mathrm{Fr}(n)}, \ \mu: H \to \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}, \ P_{\geq s}$$

same language diff. models

$$LPP_2$$
, $\mu: H \rightarrow [0,1]$, $P_{\geq s}$

same models different languages

$$LPP_{2,P,Q,O}, \ \mu: H \rightarrow [0,1], \ P_{\geq s}, \ Q_F$$

$$LPP_2^{\mathrm{Fr}(n)}$$
, $\mu: H \to \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}$, $P_{\geq s}$

same language diff. models

$$LPP_2$$
, $\mu: H \rightarrow [0,1]$, $P_{\geq s}$

same models different languages

$$LPP_{2,P,Q,O}, \mu: H \rightarrow [0,1], P_{\geq s}, Q_F$$

- (soundness) If $T \vdash \phi$, then $T \models \phi$;
- (deduction theorem) $T \vdash \phi \rightarrow \psi$ iff $T, \phi \vdash \psi$;
- (strong completeness) Every consistent theory is satisfiable;
- decidability: $LPP_2^{Fr(n)}$, LPP_2
- (un)decidability: LPP_{2,P,Q,O}-logic is (un)decidable.

Hierarchies: LPP_2 and $LPP_{2,P,Q,O}$ (1)

- Measurable models: every $[\alpha] = \{ w \in W : w \models \alpha \} \in H$
- $\mathcal{M}(\phi)$ is the set of all $M \in \mathcal{M}$ such that $M \models \phi$.

Hierarchies: LPP_2 and $LPP_{2,P,Q,O}$ (2)

- $F_1 = \{\frac{1}{2^i} : i = k, k+1, \ldots\}, k > 0$
- $F_2 = \{\frac{1}{2^i} : i = 1, 2, \ldots\}$

Hierarchies: LPP_2 and $LPP_{2,P,Q,O}$ (2)

- $F_1 = \{\frac{1}{2^i} : i = k, k+1, \ldots\}, k > 0$
- $F_2 = \{\frac{1}{2^i} : i = 1, 2, \ldots\}$
- $F_1 = F_2 \cap [0, \frac{1}{2^k}]$
- $\mathcal{M}(Q_{F_1}\alpha) = \mathcal{M}(Q_{F_2}\alpha \wedge P_{\leq \frac{1}{2^k}}\alpha)$

Hierarchies: LPP_2 and $LPP_{2,P,Q,O}$ (3)

$$F\subseteq [0,1]_{\mathbb{Q}}$$
 quasi complement: $1-F=\{1-s:s\in F\}$

Definition

 O_1 is **representable** in O_2 if every $F_1 \in O_1$ can be expressed as:

a finite union of

finite intersections of sets, differences between sets and quasi complements of

sets from O_2 and [r,s], [r,s), (r,s] and (r,s), $r,s \in [0,1]_{\mathbb{Q}}$

Hierarchies: LPP_2 and $LPP_{2,P,Q,O}$ (4)

Definition

 L_2 is **more expressive than** L_1 if for every formula $\phi \in For(P,Q,O_1)$ there is a formula $\psi \in For(P,Q,O_2)$ such that

$$\mathcal{M}(\phi) = \mathcal{M}(\psi)$$

Theorem

 O_1 is representable in O_2 iff L_2 is more expressive than L_1

Hierarchies: LPP_2 and $LPP_{2,P,Q,O}$ (5)

Definition

Let O be a recursive family of recursive subsets of $[0,1]_{\mathbb{Q}}$. The family of all recursive subsets of $[0,1]_{\mathbb{Q}}$ that are representable in O is denoted by \overline{O} .

$$\mathcal{O}^* = \{ \overline{\mathcal{O}}_o : o \in \mathcal{O}_{/\sim} \}$$

Theorem

The structure $(\mathcal{O}^*, \subseteq)$ is a non-modular non-atomic lattice, with the smallest element which is σ -incomplete and without any maximal element.

Hierarchies: $LPP_2^{Fr(n)}$ (1)

- $LPP_2^{Fr(2)}$, $\mu: H \to \{0, \frac{1}{2}, 1\}$
- $LPP_2^{\mathrm{Fr}(4)}$, $\mu: H \to \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$

Hierarchies: $LPP_2^{Fr(n)}$ (1)

- $LPP_2^{Fr(2)}$, $\mu: H \to \{0, \frac{1}{2}, 1\}$
- $LPP_2^{Fr(4)}$, $\mu: H \to \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$
- $\bullet \models_{LPP_2^{\operatorname{Fr}(2)}} P_{>\frac{1}{2}} p \to P_{\geq 1} p$
- $\bullet \not\models_{LPP_{A}^{\operatorname{Fr}(2)}} P_{>\frac{1}{2}}p \to P_{\geq 1}p$

Hierarchies: $LPP_2^{Fr(n)}$ (1)

- $LPP_2^{Fr(2)}$, $\mu: H \to \{0, \frac{1}{2}, 1\}$
- $LPP_2^{\text{Fr}(4)}$, $\mu: H \to \{0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1\}$
- $\bullet \models_{LPP_2^{\operatorname{Fr}(2)}} P_{>\frac{1}{2}} p \to P_{\geq 1} p$
- $\bullet \not\models_{LPP_A^{\operatorname{Fr}(2)}} P_{>\frac{1}{2}} p \to P_{\geq 1} p$
- $\bullet \ \models_{\mathit{LPP}_2^{\mathrm{Fr}(2)}} \big(\mathsf{P}_{=0}\mathsf{p} \vee \mathsf{P}_{=\frac{1}{2}}\mathsf{p} \vee \mathsf{P}_{=1}\mathsf{p}\big) \to \ (\mathit{P}_{>\frac{1}{2}}\mathit{p} \to \mathit{P}_{\geq 1}\mathit{p}\big)$
- $\bullet \models_{\mathit{LPP}_4^{\mathrm{Fr}(2)}} \left(\mathsf{P}_{=0}\mathsf{p} \vee \mathsf{P}_{=\frac{1}{2}}\mathsf{p} \vee \mathsf{P}_{=1}\mathsf{p}\right) \to \ \left(\mathit{P}_{>\frac{1}{2}}\mathit{p} \to \mathit{P}_{\geq 1}\mathit{p}\right)$

Hierarchies:
$$LPP_2^{Fr(n)}$$
 (2)

Theorem

 L_2 is more expressive than L_1 iff $\operatorname{Fr}(n_1) \subseteq \operatorname{Fr}(n_2)$

Theorem

The hierarchy is atomic and non-modular lattice with minimum and without a maximal element.

Two hierarchies

$$\mathbf{Q}_{\{\mathbf{0}, \frac{1}{2}, 1\}} \mathbf{p}
ightarrow \left(P_{> \frac{1}{2}} p
ightarrow P_{\geq 1} p
ight)$$

Two hierarchies

$$\mathbf{Q}_{\{\mathbf{0},\frac{1}{2},\mathbf{1}\}}\mathbf{p} \rightarrow (P_{>\frac{1}{2}}p \rightarrow P_{\geq 1}p)$$

- What graded notion(s) are handled?
 - We use probabilities to quantitatively model uncertain beliefs.
- What kind of "weighted" logic are developed?
 - We develop probability logics with probability modalities.

- What graded notion(s) are handled?
 - We use probabilities to quantitatively model uncertain beliefs.
- What kind of "weighted" logic are developed?
 - We develop probability logics with probability modalities.

- values of probability functions in non-Archimedean structures
- intuitionistic logic, temporal logic, ...
- conditional probabilities, first order logic

3. For what purpose?

- checking consistency of finite sets of rules in expert systems
- deducing probabilities of conclusions from uncertain premisses
- modelling non-monotonic reasoning, spatial-temporal-uncertain reasoning
- modelling situations when classical reasoning is not adequate (intuitionistic logic)

List of related publications

http://www.mi.sanu.ac.rs/~zorano/papers.html

An example

- reasoning about discrete sample spaces
- experiment: tossing a fair coin an arbitrary, but finite number of times
- \bullet α : only heads (i.e. no tails) are observed in the experiment
- $Q_{\{\frac{1}{2},\frac{1}{2^2},\frac{1}{2^3},\ldots\}}\alpha$

Lattice

- Lattice: a partially ordered set with unique least upper bounds and greatest lower bounds
- \bullet σ -Complete lattice: every set has a supremum and infimum
- Atomic lattice: for each non-zero element x, there exists an atom a < x
- Modularity law: $a \le c$ implies $a \lor (b \land c) = (a \lor b) \land c$