
1

Bounded Memory Protocols and Progressing
Collaborative Systems

Max Kanovich1, Tajana Ban Kirigin2, Vivek Nigam3, and Andre Scedrov4

1 Queen Mary, University of London

2 University of Rijeka

3 Federal University of Paraíba

4 University of Pennsylvania

2

Collaborative Systems

To Share or not to Share

Examples: Administrative tasks, protocols

● Agents collaborate to achieve some common goal.

● No intruder can enter the system.

● However, an agent does not completely trust any other agent.

● Therefore, while collaborating, an agent might not want some
confidential information to be leaked.

3

Agenda

 Local State Transition Systems

 Fresh Values

 Progressing Collaborative Systems

 Bounded Memory Adversary

 Timed Collaborative Systems

4

Collaborative Systems [Kanovich, Rowe, and Scedrov]

 Model (LSTS)

● FOL signature

● Configurations are multisets of facts:

● Actions are rewrite rules:

● Goals are multisets of facts:

● Critical configurations are configurations that have to be avoided

fNurse(Tom, id1, blood), Nurse(Sam, id2, blood)g

Nurse(X, Y, blood) ! Nurse(blank, Y, blood)

Lab(id, blood) ! Lab(id, testResults)

fDoctor(testResults, Tom)g

fLab(testResults, Tom)g fNurse(Tom, id1, blood), Nurse(Sam, id1, blood)g

5

Previous results [Kanovich, Rowe, and Scedrov, CSF'07, CSF'09, Rowe PhD Dissertation UPENN'09]

6

The planning problem

Plan compliance: Is there a plan from an initial configuration to a configuration
containing a goal such that no critical configuration is reached along the plan?

Medical scenario: the test results of a patient should not be publicly leaked with
the patient's name.

Previous results [Kanovich, Rowe, and Scedrov, CSF'07, CSF'09, Rowe PhD Dissertation UPENN'09]

7

The planning problem

Plan compliance: Is there a plan from an initial configuration to a configuration
containing a goal such that no critical configuration is reached along the plan?

Medical scenario: the test results of a patient should not be publicly leaked with
the patient's name.

Previous results [Kanovich, Rowe, and Scedrov, CSF'07, CSF'09, Rowe PhD Dissertation UPENN'09]

Assumption

Balanced actions, that is, actions
that have the same number of facts
in their pre and post conditions.

Along a plan, states have the same
number of facts (intuitively, agents
have collectively a bounded
memory): different from the
Dolev-Yao intruder.

(Closed Room)

8

Not necessarily balanced actions:

Undecidable

Balanced actions:

PSPACE-complete

 Complexity ResultsAssumption

Balanced actions, that is, actions
that have the same number of facts
in their pre and post conditions.

Along a plan, states have the same
number of facts (intuitively, agents
have collectively a bounded
memory): different from the
Dolev-Yao intruder.

(Closed Room)

The planning problem

Plan compliance: Is there a plan from an initial configuration to a configuration
containing a goal such that no critical configuration is reached along the plan?

Medical scenario: the test results of a patient should not be publicly leaked with
the patient's name.

Previous results [Kanovich, Rowe, and Scedrov, CSF'07, CSF'09, Rowe PhD Dissertation UPENN'09]

9

Systems with balanced actions

Problem

● Although checking for the existence of plan is in PSPACE, it turns
out that to write down the entire plan may require exponential
space because the plan might be exponentially long.

10

Systems with balanced actions

Problem

● Although checking for the existence of plan is in PSPACE, it turns
out that to write down the entire plan may require exponential
space because the plan might be exponentially long.

● The solution given in CSF'07 was by scheduling a plan in
PSPACE.

11

Systems with balanced actions

Problem

● Although checking for the existence of plan is in PSPACE, it turns
out that to write down the entire plan may require exponential
space because the plan might be exponentially long.

● The solution given in CSF'07 was by scheduling a plan in
PSPACE.

 Example: Towers of Hanoi

Clear(x) On(x; y) Clear(z) S(x; z) ! Clear(x) Clear(y) On(x; z) S(x; z)

Given n disks plans must be of exponential length 2n – 1, at least.

12

PSPACE Upper Bound

● Must check both goal reachability and policy compliance.

● Rely on a non-deterministic algorithm which can be determinized
by Savitch's Theorem.

● Also use the fact that PSPACE = COPSPACE.

13

PSPACE Upper Bound

Some Assumptions

● All actions are balanced.

● There are three functions, C, G, and T, which run in polynomial
space and:

● C(Z) = 1 if Z is a critical configuration, and C(Z) = 0, otherwise;
● G(Z) = 1 if Z is a goal configuration, and G(Z) = 0, otherwise;
● T(α) = 1 if α is a valid transition, and T(α) = 0, otherwise.

● Let W be the initial configuration.

14

PSPACE Upper Bound

Algorithm

● Use non-determinism to “guess” a compliant plan leading to a
goal configuration
● Each intermediate configuration Zi must check if C(Zi) = 1 and
if G(Zi) = 1;
● Recording one step at a time, this is done in polynomial
space;
● Goal reachability and plan compliance are check
simultaneously in this algorithm

15

PSPACE Upper Bound

Algorithm

● Initialize Z
0
 = W and i = 0;

● If C(Zi) = 1, output no;

● If G(Zi) = 1, output yes;
● Otherwise use non-determinism to “guess” a compliant plan
leading to a goal configuration. By using T, guess an action α
applicable to Zi resulting in the configuration Z';

● Set Zi+1 = Z' and i := i+1;
● Repeat.

Record one step at a time, this can be done in polynomial space.

16

Agenda

 Local State Transition Systems

 Fresh Values

 Progressing Collaborative Systems

 Bounded Memory Adversary

 Timed Collaborative Systems

17

Motivation

New feature: fresh values [Kanovich, Ban Kirigin, Nigam, and Scedrov, FAST'10]

18

Each sample should
have a different

number assigned.

Motivation

nurse(Tom, blank, blood) ! 9 testNo.nurse(Tom, testNo, blood)

Agents might need to create fresh values or nonces:

New feature: fresh values [Kanovich, Ban Kirigin, Nigam, and Scedrov, FAST'10]

19

Agents might need to create fresh values or nonces:

Each sample should
have a different

number assigned.
Other examples:

● opening a new bank account;

● changing a customer's password;

● creating a transaction number or a case number.

Motivation

nurse(Tom, blank, blood) ! 9 testNo.nurse(Tom, testNo, blood)

New feature: fresh values [Kanovich, Ban Kirigin, Nigam, and Scedrov, FAST'10]

20

Actions that create fresh values

nurse(Tom, blank, blood) ! 9 testNo.nurse(Tom, testNo, blood)

The fresh value uses the memory slot used previously by the
updated value.

21

Actions that create fresh values

nurse(Tom, blank, blood) ! 9 testNo.nurse(Tom, testNo, blood)

The fresh value uses the memory slot used previously by the
updated value.

Agents have a bounded memory even when they
can create fresh values.

22

Actions that create fresh values

nurse(Tom, blank, blood) ! 9 testNo.nurse(Tom, testNo, blood)

Agents have a bounded memory even when they
can create fresh values.

! 9n:A(n)
For example, whenever such an unbalanced rule is used, it
requires an extra memory slot to store the nonce created. That is,
agents possess an unbounded memory.

The fresh value uses the memory slot used previously by the
updated value.

23

Systems with balanced actions

Problem

● Although checking for the existence of plan is in PSPACE, it turns
out that to write down the entire plan may require exponential
space and exponentially many mutually distinct nonces.

 Example: Towers of Hanoi, suitably modified to have balanced
actions that always creates fresh values.

● To cope with this problem we use the fact that the number of
constants in a configuration is bounded. In particular, we will show
how to reuse obsolete constants instead of updating with fresh
constants.

24

Systems with balanced actions

Theorem: Given a local state transition system (LSTS) with
balanced actions that may create fresh values, any plan leading
from an initial configuration W to a partial goal Z can be
transformed into another plan also leading from W to Z that uses
only a polynomial number of nonces with respect to the number of
facts in the initial configuration and the upper bound on the size of
facts.

25

Proof outline

26

● The number of facts, m, of any configuration in a plan
 does not change.

Proof outline

27

● The number of facts, m, of any configuration in a plan
 does not change.

● We assume that the size of facts, k, is bounded, where
 the size of facts is the number of symbols it contains.

jP (x; y)j = 3 jP (h(x; y); z)j = 5

Proof outline

28

● The number of facts, m, of any configuration in a plan
 does not change.

● We assume that the size of facts, k, is bounded, where
 the size of facts is the number of symbols it contains.

jP (x; y)j = 3 jP (h(x; y); z)j = 5

In any configuration there are at most mk
occurrences of constants.

Proof outline

29

Proof outline

Alpha-equivalence among configurations
inspired by a similar notion from logic

fA(t1; n1); B(n2; n1); C(n3; t2)g

fA(t1; n4); B(n5; n4); C(n6; t2)g

30

Proof outline

Alpha-equivalence among configurations
inspired by a similar notion from logic

fA(t1; n1); B(n2; n1); C(n3; t2)g

fA(t1; n4); B(n5; n4); C(n6; t2)g

These configurations only differ in the names of the nonces
used. Intuitively, they represent the same information.

31

Proof outline

Observational equivalence among plans

32

Proof outline

Observational equivalence among plans

C1 C2
r(~n)

33

Proof outline

Observational equivalence among plans

C1 C2

C1'

Alpha-equivalent

r(~n)

34

Proof outline

Observational equivalence among plans

C1 C2

C1' C2'

Where all nonces in C1' and C2' including the nonces
are taken from a pre-defined set of 2mk nonces.

Alpha-equivalent

r(~n)

r(~n0)

~n0

35

Systems with balanced actions

Theorem: Given an LSTS system with balanced actions
that can create fresh values, the plan compliance problem
is PSPACE-complete.

36

Agenda

 Local State Transition Systems

 Fresh Values

 Progressing Collaborative Systems

 Bounded Memory Adversary

 Timed Collaborative Systems

37

Progressing Collaborative Systems [Kanovich, Ban Kirigin, Nigam, and Scedrov,
FCS-PrivMod'10]

Progressing is inspired by the nature of security protocols,
as well as many administrative and business processes:
once one step of a protocol session is taken, the same
step is not repeated.

A plan is progressing if an instance of an action appears at most
once.

Progressing Plans

Note that this implies that the length of progressing traces are of
polynomial due to the assumption of size of facts.

38

Progressing Collaborative Systems [Kanovich, Ban Kirigin, Nigam, and Scedrov,
FCS-PrivMod'10]

This notion of progressing reflects the requirement that
progressing processes are efficient, as one needs to
consider only traces of polynomial length to check whether
a process can be completed or not.

For instance, it is not possible to solve the Towers of Hanoi
problem with a progressing plan.

Assuming that one can check in poly-time whether a state is an
initial or goal state, then the reachability problem for progressing
plans is NP-complete when actions cannot create fresh values.

Complexity [FCS-Privmod'10]

39

Progressing Collaborative Systems [Kanovich, Ban Kirigin, Nigam, and Scedrov,
new]

However, extending this notion of progressing to systems that
can create fresh values has turned out to be quite challenging.

One of the reasons is that with the current definition of
progressing, progressing plans do not have necessarily
polynomial length when one allows fresh values.

One can transform any problem into another problem whose
solution is progressing, even problems that require exponential
plans.

For instance, we can adapt the encoding of the Towers of
Hanoi, so that each move creates a new nonce.

40

In order to extend the notion of progressing to the case
where actions may create nonces, we shouldn't allow
unbounded nonce generation. Instead we need to
somehow limit the use of nonces, but how many nonces is
enough?

For balanced systems, we know that it is enough to fix a
polynomial number of nonce names with respect to the upper
bound on the size of facts and the number of facts in the initial

configuration.

Progressing Collaborative Systems [Kanovich, Ban Kirigin, Nigam, and Scedrov,
new]

41

We extend the notion of alpha-equivalence to instances of actions.

Two instances, r1 and r2, of the same action are equivalent if there is a
bijection σ that maps the set of all nonce names appearing in one
instance to the set of all nonce names appearing in the other instance,
such that (r1 σ) = r2.

X1(t1)X2(t2; t3; n4)X3(n4; n5) ! X4(t1)X2(t2; x; n6)X5(n4; n6)

X1(t1)X2(t2; t3; n1)X3(n1; n2) ! X4(t1)X2(t2; x; n3)X5(n1; n3)

Progressing Collaborative Systems [Kanovich, Ban Kirigin, Nigam, and Scedrov,
new]

42

We extend the definition of Progressing to plans containing nonces.

Given a balanced multiset rewrite system R whose actions may create
fresh values, an initial configuration W and a polynomial f(m,k), we say
that a sequence of actions is progressing if it contains at most f(m,k)
equivalent instances of any action, where m is the number of facts in
the configuration W and k is the upper bound on size of facts.

With this new definition, it is not possible to solve the modified Towers
of Hanoi problem using a progressing plan.

Progressing Collaborative Systems [Kanovich, Ban Kirigin, Nigam, and Scedrov,
new]

43

Progressing Collaborative Systems

Assuming that one can check in polynomial-time whether a state
is an initial or goal state, then the reachability problem for

progressing plans is NP-complete when actions are balanced
and can create fresh values up to a polynomial number of times.

Complexity [new]

44

Summary of Results

Plan Compliance Problem

Balanced
Actions

Nonces are
not allowed

Progressing
NP-complete

[Kanovich et al. FCS-Privmod'10]

Not necessarily
Progressing

PSPACE-complete
[Kanovich et al. CSF'07]

 Nonces are
allowed

Progressing NP-Complete
[new]

Not Necessarily
Progressing

PSPACE-complete
[Kanovich et al., FAST'10]

Actions not necessarily balanced Undecidable
[Kanovich et al., CSF'09]

45

Agenda

 Local State Transition Systems

 Fresh Values

 Progressing Collaborative Systems

 Bounded Memory Adversary

 Timed Collaborative Systems

46

 Access control
 OS security
 Network security
 Cryptography
 …

Crypto

Security

Goal: protection of
computer systems and
digital information

Computer Security

47

 Cryptographic Protocol
● Program distributed over network
● Use cryptography to achieve goal

 Attacker
● Read, intercept, replace messages, and remember their contents

 Correctness
● Attacker cannot learn protected secret or cause incorrect protocol

completion

Protocol Security

48

Run of Protocol

A

B

CD

Initiate Respond

Attacker

Correct if no security violation in any run.

49

 Program or System Correctness
● Program satisfies specification

 For reasonable input, get reasonable output
 Program or System Security

● Program resists attack
 For unreasonable input, output not completely

disastrous
 Main differences

● Active interference from environment
● Refinement techniques may fail

Correctness vs Security

50

Result: A and B share two private numbers
not known to any observer without Ka

-1, Kb
-1

A B

Needham-Schroeder Key Exchange

fA;NonceagKb

fNoncea;NoncebgKa

fNoncebgKb

51

A E

B

Evil agent E tricks
honest A into revealing
private key Nb from B.

Evil E can then fool B.

Anomaly in Needham-Schroeder [Lowe]

fA;NagKe

fA;NagKbfNa;NbgKa

fNa;NbgKa

fNbgKe

52

Dolev-Yao intruder, e.g., as formalized in MSR [CSFW'99]

53

Dolev-Yao intruder, e.g., as formalized in MSR [CSFW'99]

Intercept/send messages: Decompose messages:

Compose messages: Create nonces:

! 9z:M(z)

Some of these rules are not balanced. In particular, the intruder has an
unbounded memory, i.e., he can remember as many facts as he needs.

The secrecy/planning problem is undecidable.

M(hx; yi) ! M(x);M(y)

M(x);M(y) ! M(hx; yi)

Among other rules, e.g., rules involving encryption/decryption.

NS(x) ! M(x)

M(x) ! NR(x)

54

Memory Bounded Dolev-Yao intruder

How much adversarial behavior can be done by some
insiders in a collaborative system?

Since insiders have a bounded memory, we need to
consider a memory bounded Dolev-Yao intruder.

55

Memory Bounded Dolev-Yao intruder, sample rules

We use private facts of the form R(*) to denote a free memory slot
available only to the intruder and public facts of the form P(*) to
denote a memory slot available to all agents.

56

Memory Bounded Dolev-Yao intruder, sample rules

We use private facts of the form R(*) to denote a free memory slot
available only to the intruder and public facts of the form P(*) to
denote a memory slot available to all agents.

Intercept/send messages: Decompose messages:

Compose messages: Create nonces:

R(¤) ! 9z:M(z)M(x);M(y) ! M(hx; yi); R(¤)

R(¤);M(hx; yi) ! M(x);M(y)

Intruder might need to forget information:

M(x) ! R(¤)

R(¤); NS(x) ! M(x); P (¤)
P (¤);M(x) ! NR(x); R(¤)

57

Memory Bounded Dolev-Yao intruder

Memory management

58

Memory Bounded Dolev-Yao intruder

Memory management

Protocol roles may be created/deleted while other protocols are running.

Well-founded theories [Cervesato et al., CSFW'99] prohibit this. They only
allow protocol roles to be created before any protocol runs take place.
Hence they only allow for a bounded number of roles if actions are
balanced.

Ak ! P (¤)
Q1(~x1) ¢ ¢ ¢Qn(~xn)P (¤) ! Q1(~x1) ¢ ¢ ¢Qn(~xn)A0(~x)

59

PSPACE lower-bound using protocol theories

We encode a deterministic Turing machine, TM, that accepts in space n2.

Assume w.l.o.g. that the machine has only one accepting configuration.

We encode TM by using two participants A and B. A initiates the protocol, while
B encodes the actions of the Turing machine M and also checks whether the
current state is the accepting configuration of TM.

We rely upon the fact that NPSPACE = PSPACE.

Theorem: Let P(I,TM) be a protocol theory encoding TM with initial
configuration I. Let M be a balanced intruder theory. A run of theory
P(I,TM) + M can lead to a state containing M(secret) if and only if the
machine TM can reach the accepting configuration

starting from I.

60

PSPACE lower-bound using protocol theories

Encoding TM's configurations as messages

h$ »1»2 : : : »i : : : »n2 #; q; ii or h¿; q; ii

 and mark the beginning and the end of the tape.

 contains the symbol at the jth position in the tape.

 is the state of TM.

 is the position in the tape that TM is scanning.

»j

$ #

q

i

We assume that no instruction leads TM to scan a position to the
left of $ or to the right of #.

61

PSPACE lower-bound using protocol theories

Normal Run

In the first two actions, B executes the unique TM's instructions that changes the
state from q to q', changing the contents of the tape, and i' = i + 1 if the instruction
moves TM's head to the right, or i' = i - 1 if the instruction moves TM's head to the
left, otherwise i' = i .

In the last two actions, B checks whether q' is the accepting state is reached. If it
is then result is the secret, otherwise result is no.

A ¡! B : hupdate; fh¿; q; iigki
B ¡! A : hdone; fh¿ 0; q0; i0igki
A ¡! B : hcheck; fh¿ 0; q0; i0igki
B ¡! A : result

62

First Session of the Anomaly

Later Sessions of the Anomaly

Intruder is the man in
the middle. He learns

the initial state.

Intruder impersonates A.
After each session, the
message exchanged
encodes the next state
of the Turing machine.

Anomaly

A ¡! M ¡! B : hupdate; fh¿; q; iigki
B ¡! M ¡! A : hdone; fh¿ 0; q0; i0igki
A ¡! M ¡! B : hcheck; fh¿ 0; q0; i0igki
B ¡! M ¡! A : result

M(A) ¡! B : hupdate; fh¿; q; iigki
B ¡! M(A) : hdone; fh¿ 0; q0; i0igki
M(A) ¡! B : hcheck; fh¿ 0; q0; i0igki
B ¡! M(A) : result

63

Formally in our system:

Protocol Theory for A
ROLA: Guy(G; k)Init(I)P (¤) !A Guy(G; k)Init(I)A0(I; k)
UPDA: A0(X; k)P (¤) !A A1(X; k)NS(hupdate; enc(k;X)i)
CHKA: A1(X; k)NR(hdone; enc(k; Y)i) !A A2(Y; k)NS(hcheck; enc(k; Y)i)
RESA: A2(X; k)NR(Res) !A A3(X;Res; k)P (¤)
ERASEA: A3(X;Res; k) !A P (¤)

64

Formally in our system:

Protocol Theory for B

ROLB: Guy(G; k)Secret(s)P (¤) ! Guy(G; k)Secret(s)B0(k; s)
UPDB: B0(k; s)NR(hupdate; enc(k; hx0; : : : ; xi¡1; »; xi+1; : : : ; xn2+1; q; ii)i)

! B1(hx0; : : : ; xi¡1; ´; xi+1; : : : ; xn2+1; q0; i0i; k; s)
NS(hdone; enc(k; hx0; : : : ; xi¡1; ´; xi+1; : : : ; xn2+1; q0; i0i)i)

CHKB: B1(X; k; s)NR(hcheck; enc(k;X)i) ! B2(X; k; s)NS(result)
ERASEB: B2(X; k; s) ! P (¤)

q»!q0´D

For each instruction in TM of the form:

there are n2 UPDB rules where 0 < i < n2+1 is the position TM's head
and the action above denotes that “if in state q and looking at then
replace it by , move in the direction D and go to the state q'.”

»
´

65

Memory Bounded Dolev-Yao intruder

Since all actions are balanced, the secrecy problem is PSPACE-complete.

This is one theoretical explanation of the successful use of
model-checkers in the verification of security protocols. Our PSPACE
upper bound can have some impact on practical aspects of protocol
verification.

66

Analysis of the intruder's memory for known anomalies

Protocol
Needham-
Schroeder Yahalom Otway-Rees

Woo-La
m Kerberos 5 PKINIT

No
intruder

Facts: 9 Facts: 8 Facts: 8 Facts: 7 Facts: 15 Facts: 18

With
Anomaly

Facts: 19
R(*): 7

Facts: 15
R(*): 9

Facts: 11/17
R(*): 5/9

Facts: 8
R(*): 2

Facts: 22/20
R(*): 9/4

Facts: 31
R(*): 10

Size of
Facts

6 16 26 6 16 28

67

No Upper Bound for the Dolev-Yao's Memory

Some known anomalies can be carried out by the Bounded Memory
Dolev-Yao intruder if one gives him enough memory.

In particular, we considered all protocols to be bounded. That is, the
agents participating cannot remember an unbounded number of facts.
This is different from the setting in [Cervesato et al., CSFW'99]. In
particular, for bounded protocols there in only a bounded number
concurrent sessions.

68

No Upper Bound for the Dolev-Yao's Memory

This leads to the following question:

Is it possible to infer an upper-bound on the memory required by the
Standard Dolev-Yao adversary to carry out an anomaly from the

memory bound of the bounded protocol?

We answer this question negatively, confirming the hardness of protocol
verification.

69

Encoding Turing Machines

In particular, we provide a sound and faithful encoding of Turing Machines
using bounded memory protocols and the Standard Dolev-Yao adversary.

• Only one tape, which is one-way unbounded to the right. The
leftmost cell (numbered by 0) contains the marker $ unerased;

• The initial 3-cell configuration is of the following form, where B
stands for the blank symbol:

$ hq1; Bi B

• We assume that all instructions are “move”' instructions. The head
of the machine cannot move to the leftmost cell marked with $.

• Only one accepting state q0

Assumptions (w.l.o.g.) about the machine M

70

Encoding of the Tape

We use assume to principal, Alice and Bob, which share a symmetric
key K;

• An unscanned cell that contains symbol is encoded by a
term encrypted with the key K;

»0

EK(ht0; »0; e0; t1i)
where and are nonces, and , if the cell is the last cell

in a configuration.
t0 t1 e0 = 1

• The cell that contains symbol and is scanned by the machine
M in state is also encoded by a term encrypted with the key K:q

»

EK(ht1; hq; »i; 0; t2i)

Encoding Turing Machines

71

Initial Configuration

The nonces and are used as “timestamps” and to specify the
adjacency of cells.

t0 t1

hEK(ht0; $; 0; t1i); EK(ht1; hq1; Bi; 0; t2i); EK(ht2; B; 1; t3i)i

Encoding Turing Machines

72

Encoding Machine's Actions

Encoding Turing Machines

Alice's Role – Alice is the initiator and her initial state is:

hEK(ht0; $; 0; t1i); EK(ht1; hq; Bi; 0; t2i); EK(ht2; B; 1; t3i); EK(ht4; B; 1; t5i)i

Alice updates all nonces to , and sends the following updated
message to Bob:

ti t0i

hEK(ht00; $; 0; t01i); EK(ht01; hq; Bi; 0; t02i); EK(ht02; B; 1; t03i); EK(ht04; B; 1; t05i)i

Alice waits a response from Bob of the form:

hEK(ht0; ®0; 0; t1i); EK(het1; ®1; 0;et2i); EK(ht2; ®2; e2; t3i); EK(ht4; B; 1; t5i)i

Alice checks whether and .

Moreover, if is of the form then, she releases the secret.

et2 = t2t1 = et1
®i hq0; »i

73

Encoding Machine's Actions

Encoding Turing Machines

Bob's Role – Bob transforms a message received with the help of an
instruction from the given Turing machine. He expects a message of the form:

hEK(ht0; »0; 0; t1i); EK(het1; hq; »i; 0;et2i); EK(ht2; »2; e2; t3i); EK(ht4; B; 1; t5i)i

If and , then he performs one of the following three actions:et2 = t2t1 = et1

1) Extends the tape – if Bob updates nonces to , and sends
the following updated message to Alice, which provides the chain of four cells
with an updated last cell:

e2 = 1 ti t0i

hEK(ht0; »0; 0; t01i); EK(ht01; hq; »i; 0; t02i); EK(ht02; »2; 0; t03i); EK(ht03; B; 1; t04i)i

74

Encoding Machine's Actions

Encoding Turing Machines

2) Moving the Head of the Machine to the Right – if , for an
instruction of the form

q»!q0´R

Denoting “if in state looking at symbol , replace it by , move the tape
head one cell to the right, and go into state ”

q
q
» ´

Bob updates some nonces to , and sends the following updated message
to Alice:

ti t0i

hEK(ht0; »0; 0; t01i); EK(ht01; ´; 0; t02i); EK(ht02; hq0; »2i; 0; t3i); EK(ht4; B; 1; t5i)i

hEK(ht0; »0; 0; t1i); EK(het1; hq; »i; 0;et2i); EK(ht2; »2; e2; t3i); EK(ht4; B; 1; t5i)i

Message received by Bob:

e2 = 0

75

Encoding Machine's Actions

Encoding Turing Machines

3) Moving the Head of the Machine to the Left – if , for an
instruction of the form

Denoting “if in state looking at symbol , replace it by , move the tape
head one cell to the left, and go into state ”

q
q
» ´

Bob updates some nonces to , and sends the following updated message
to Alice:

ti t0i

hEK(ht0; »0; 0; t1i); EK(het1; hq; »i; 0;et2i); EK(ht2; »2; e2; t3i); EK(ht4; B; 1; t5i)i

Message received by Bob:

q»!q0´L

hEK(ht0; hq0; »0i; 0; t01i); EK(ht01; ´; 0; t02i); EK(ht02; »2; 0; t3i); EK(ht4; B; 1; t5i)i

e2 = 0

76

Man-in-the-Middle-Attack by the Intruder (Mallory)

EK(ht1; ®1; e1; t2i)
Notice that by eavesdropping, Mallory can collect messages of the form:

Attack

● For the first run, Mallory intercepts the initial message from Alice, stores it,
and resends it to Bob. While Bob responds, Mallory intercepts the message
from Bob, stores it, and resends it to Alice.

● For each of the next runs, Mallory intercepts the initial message from Alice.
Taking non-deterministically messages stored in his memory and composing
the following message below, Mallory sends it to Bob:

hEK(ht0; ®0; 0; t1i); EK(het1; ®1; 0;et2i); EK(ht2; ®2; e2; t3i); EK(ht4; B; 1; t5i)

● If Bob accepts this message and responds with a transformed one as
described in the protocol, then Mallory intercepts this new message from Bob,
stores it, and resends it to Alice.

77

Man-in-the-Middle-Attack by the Intruder (Mallory)

Lemma: Suppose that a term of the form below appears in the intruder
memory by active eavesdropping.

EK(ht; hq; »i; 0; t0i)
Then there is a unique sequence of nonces and a chain of
terms from the adversary's memory:

t0, t1,. . . , tn+2

EK(ht0; $; 0; t1i); EK(ht1; x1; 0; t2i); : : : : EK(htj¡1; xj¡1; 0; tji);
EK(htj ; hq; xji; 0; tj+1i); EK(htj+1; xj+1; 0; tj+2i); : : : ; EK(htn; xn; 0; tn+1i);
EK(htn+1; B; 1; tn+2i)

such that
tj = t, xj = », and tj+1 = t0

and M leads from the empty initial configuration to the configuration where the
string is written in cells 1,…,n on the tape, where the j-th
cell is scanned by M in state q.

x1x2 : : : xj : : : xn

Theorem: There is a Dolev-Yao attack on the above protocol if and only if
 the machine M terminates on the empty input.

78

Bounded Memory Adversaries cannot approximate the Standard
Dolev-Yao

Theorem: Whatever a total recursive function h we take, we can
construct a recursive sequence of bounded memory protocols Q

n
 so

that

• For any n, there is a Dolev-Yao attack on the bounded memory
protocol Q

n
;

• However, for any n starting from some n
0
, any Dolev-Yao adversary

the size of whose memory is bounded by h(n) is not capable of
detecting an attack on the bounded memory protocol Q

n
.

79

Comparison with Related Work

Bound
on the
size of
facts

Bound on
the number
of protocol
sessions

Bound on
the number
of nonces

Bound on
the number
of parallel
protocol
sessions

Bounded
Memory
Intruder

Protocol
Theories

Only

PSPACE-comple
te [Kanovich et

al]
Yes No No Yes Yes No

DEXPTIME-com
plete [Durgin et

al]
Yes No Yes No No Yes

NP-complete
[Amadio and

Lugiez]
No Yes Yes Yes No Yes

NP-complete
for Progressing

[new]
Yes Yes Yes Yes Yes No

80

Conclusions

● Balanced systems provide an intuitive restriction to the memory capabilities of agents:
each agent can store at any moment a bounded number of facts of bounded size;

● We provide a formalization for notion of freshness for balanced systems with balanced
actions that can create fresh values: a nonce uses the space previously used by the
updated value;

● We prove that in such systems the planning problem is PSPACE-complete;

● Returning to protocol security, we show that known protocol anomalies can also occur
when the intruder has bounded memory and that the secrecy becomes
PSPACE-complete;

● We showed that it is not possible to infer a computable upper bound on the Dolev-Yao's
memory from the memory bound of protocols, confirming thus the hardness of protocol
verification. This was done by a novel undecidability proof for the secrecy problem;

● We proposed a novel definition of Progressing Collaborative Systems for systems that
may create fresh values;

●

● We showed that the reachability problem for balanced Progressing Collaborative
Systems that can create fresh values is NP-complete.

81

Future work

● How to include Real Time into our model, and in particular find decidable fragments for
the reachability problem. Many distance bounding protocols mention real time and
are of great interest to protocol security community.

● Can our complexity results help the design of protocol verification tools? We
are currently using Maude.

● Enrich our intruder model to include new parameters, such as the number of
active concurrent protocol sessions, to provide richer quantitative measures of
security of a protocol;

● Investigate ways to lift the assumption that the size of facts is bounded;

82

Agenda

 Local State Transition Systems

 Fresh Values

 Bounded Memory Adversary

 Timed Collaborative Systems

83

Timed Collaborative Systems

Max Kanovich1, Tajana Ban Kirigin2, Vivek Nigam3, Andre Scedrov4,

Carolyn Talcott5, and Ranko Perovic6

1 Queen Mary, University of London, UK

3 Ludwig-Maximilians-Universitaet, Germany

2 University of Rijeka, HR

4 University of Pennsylvania, USA
5 SRI International, USA

6 Senior Clinical Trials Specialist

84

Motivational Application: Clinical Investigations

85

Motivational Application: Clinical Investigations

• Before drugs can be made available to the general public, their
effectiveness has to be experimentally validated

• Normally, at the final stages, clinical investigations, that involve human
subjects, are carried out. These tests are called Clinical Investigations.

86

Motivational Application: Clinical Investigations

• Before drugs can be made available to the general public, their
effectiveness has to be experimentally validated

• Normally, at the final stages, clinical investigations, that involve human
subjects, are carried out. These tests are called Clinical Investigations.

Safety of Subjects
 One should avoid at all costs that the health of subjects is
compromised during the tests.

Conclusive Data Collection
 CI's should be carried in order to obtain the most
conclusive results/data without compromising the health of subjects.

Key Concerns

87

Pharmaceutical companies (Sponsor), clinical research organizations (CRO),
health institutions (HI) and government regulatory agencies collaborate in
order to carry out CIs

Motivational Application: Clinical Investigations

88

"Any adverse experience associated with the use of the drug that is
both serious and unexpected; […]
Each notification shall be made as soon as possible and in no
event later than 15 calendar days after the sponsor's initial receipt of
the information."

Motivational Application: Clinical Investigations

Pharmaceutical companies (Sponsor), clinical research organizations (CRO),
health institutions (HI) and government regulatory agencies collaborate in
order to carry out CIs

Regulations

89

Procedures
Procedures are elaborated by specialists explaining how one should carry
out CIs, so that the most conclusive data is collected and the health of
subjects is not compromised.

Motivational Application: Clinical Investigations

"Any adverse experience associated with the use of the drug that is
both serious and unexpected; […]
Each notification shall be made as soon as possible and in no
event later than 15 calendar days after the sponsor's initial receipt of
the information."

Pharmaceutical companies (Sponsor), clinical research organizations (CRO),
health institutions (HI) and government regulatory agencies collaborate in
order to carry out CIs

Regulations

90

Procedures

Both procedures and regulations mention time explicitly and they
mention actions with different outcomes.

Motivational Application: Clinical Investigations

"Any adverse experience associated with the use of the drug that is
both serious and unexpected; […]
Each notification shall be made as soon as possible and in no
event later than 15 calendar days after the sponsor's initial receipt of
the information."

Procedures are elaborated by specialists explaining how one should carry
out CIs, so that the most conclusive data is collected and the health of
subjects is not compromised.

Regulations

Pharmaceutical companies (Sponsor), clinical research organizations (CRO),
health institutions (HI) and government regulatory agencies collaborate in
order to carry out CIs

91

● Deviations from procedures and violations of regulations should be
avoided as they may compromise both the collected data and more
importantly the health of subjects

● CIs are rigorously monitored by government inspectors

● Violations may also imply heavy penalties, both financial as well as of
bad Public Relations

● Health Institutions with record of deviations may be punished by the
market and not being hired for carrying out future CIs.

Motivational Application: Clinical Investigations

92

New feature: timestamps and time constraints [IHI'12]

Motivation

Time@T , Visit(I, ID, yes)@TTime@T , Visit(I, ID, no)@T1 j fT1 ¡ 5 · T · T1 + 5g ¡!

93

Motivation

Global Time

Time@T , Visit(I, ID, yes)@TTime@T , Visit(I, ID, no)@T1 j fT1 ¡ 5 · T · T1 + 5g ¡!

New feature: timestamps and time constraints [IHI'12]

94

Motivation

A scheduled visit has a
tolerance of 5 days.

Time@T , Visit(I, ID, yes)@TTime@T , Visit(I, ID, no)@T1 j fT1 ¡ 5 · T · T1 + 5g ¡!

Global Time

New feature: timestamps and time constraints [IHI'12]

95

Motivation

Other examples:
● Time constraints often appear in legislation:

● E.g, medical, financial.

● Timestamps are also used in protocols.

A scheduled visit has a
tolerance of 5 days.

Time@T , Visit(I, ID, yes)@TTime@T , Visit(I, ID, no)@T1 j fT1 ¡ 5 · T · T1 + 5g ¡!

Global Time

New feature: timestamps and time constraints [IHI'12]

96

New feature: branching plans [IHI'12]

Motivation

97

Motivation

There are three
possible outcomes for a
Urine test: ok, high, or

bad.

[Time@T;Urine(I, Id, none, none)@T1] ! [Time@T;Urine(I, Id, ok, none)@T]©
[Time@T;Urine(I, Id, high, none)@T]©
[Time@T;Urine(I, Id, bad, none)@T]

New feature: branching plans [IHI'12]

98

Motivation

There are three
possible outcomes for a
Urine test: ok, high, or

bad.

Other examples:

● Often one needs to take different actions according to
the outcome of an event:

● E.g., in clinical trials: If the test result is bad, then
repeat the Urine test.

[Time@T;Urine(I, Id, none, none)@T1] ! [Time@T;Urine(I, Id, ok, none)@T]©
[Time@T;Urine(I, Id, high, none)@T]©
[Time@T;Urine(I, Id, bad, none)@T]

New feature: branching plans [IHI'12]

99

Branching Actions vs Non-Branching Actions

vs
[9 ~xn:Wn]

W j ¨ ¡!A [9 ~x1:W1]
© ¢ ¢ ¢©

W j ¨ ¡!A 9 ~x1:W1

W j ¨ ¡!A 9 ~xn:Wn

¢ ¢ ¢

100

Branching Actions vs Non-Branching Actions

vs
[9 ~xn:Wn]

W j ¨ ¡!A [9 ~x1:W1]
© ¢ ¢ ¢©

W j ¨ ¡!A 9 ~x1:W1

W j ¨ ¡!A 9 ~xn:Wn

¢ ¢ ¢

It is not yet clear whether one should use a system with internal or external
non-determinism. While branching plans provide more information, they take
longer to compute. On the other hand, non-branching plans are faster to
compute, but one might need to often re-compute a new plan according to the
actual outcome of an action.

In our Clinical Investigations scenario, it seems more suitable to use an hybrid
approach. We compute branching plans in a lazy fashion. We compute plans for
all branches that are equally probable, e.g., for Urine test, and compute plans for
events that are not that probable on demand, e.g., serious and unexpected
problems.

101

New feature: timestamps and time constraints [IHI'12]

Timed Goal Configurations

102

Timed Goal Configurations

Configuration

Time
constraints

Data of the subjects have to be collected at the correct times:

fTime@T;Data(Id; 1)@T1; : : : ;Data(Id; 25)@T25g

Ti + 23 · Ti+1 · Ti + 33

and that T > Ti, for 1 · i · 25

New feature: timestamps and time constraints [IHI'12]

103

Timed Goal Configurations

Configuration

Time
constraints

Data of the subjects have to be collected at the correct times:

Timed Critical Configurations

regulatory agency is not informed within 15 days an unexpected event is detected:

Configuration

Time
constraints

fTime@T;Data(Id; 1)@T1; : : : ;Data(Id; 25)@T25g

Ti + 23 · Ti+1 · Ti + 33

and that T > Ti, for 1 · i · 25

fDetect(Id)@T1;Report(Id)@T2g
fT2 > T1 + 15g

New feature: timestamps and time constraints [IHI'12]

104

New feature: timestamps and time constraints [IHI'12]

Some assumptions:

● Discrete time, e.g., natural numbers (TLSTSes with dense domains is an on going research).

● Time constraints are arithmetic comparisons of the form:

where D is a natural number and T
1
 and T

2
 are time variables.

That is, time constraints are relative – that is they are invariant with
respect to time translation t -> t+t

0
.

● Actions are balanced.
● The timestamps of created facts in an action at a moment T are of
the form:
 T + D, where D is non-negative integer.

T1 ± T2 +D, where ± 2 f<;·;=;¸; >g

105

Summary of Results for Timed Collaborative Systems

Plan Compliance Problem

Balanced
Actions

Non-Branching PSPACE-complete (new)

 Possibly Branching EXPTIME-complete (new)

Actions not necessarily balanced Undecidable

We also show that the progressing plan compliance problem is
NP-complete when actions are balanced and non-branching and
when there is a bound on the number of nonces and on time.

The results above marked with new are novel and do not appear in [IHI'12].

106

Handling the unboundedness of time

Challenge

● Overcome the fact that the domain of timestamps is unbounded.

 Example: A plan where the global time advances eagerly.

Time@0;W ¡!clock Time@1;W ¡!clock Time@2;W ¡!clock ¢ ¢ ¢

107

Handling the unboundedness of time

Solution

● Propose an equivalence relation on configurations based on the
time differences of facts:

108

Handling the unboundedness of time

Solution

● Propose an equivalence relation on configurations based on the
time differences of facts:

±P;Q =

½
T2 ¡ T1; provided T2 ¡ T1 · Dmax

1; otherwise

Truncated time di®erence of two facts P@T1 and Q@T2:

where Dmax is an upper bound on the numbers appearing in the TLSTS.

109

Handling the unboundedness of time

Solution

● Propose an equivalence relation on configurations based on the
time differences of facts:

±P;Q =

½
T2 ¡ T1; provided T2 ¡ T1 · Dmax

1; otherwise

Truncated time di®erence of two facts P@T1 and Q@T2:

Informally: Two configurations are equivalent if they have the
same facts and the same truncated time differences.

where Dmax is an upper bound on the numbers appearing in the TLSTS.

110

Example

Assume D
max

= 3, then the following configurations are equivalent:

111

Example

Assume D
max

= 3, then the following configurations are equivalent:

Truncated Time
Differences:

R@3

P@4

Time@11

Q@12

S@14

R@0

P@1

Time@6

Q@7

S@9

Time
Differences:

Time
Differences:

112

Example

Assume D
max

= 3, then the following configurations are equivalent:

1

1

2

1

1

7 5

Truncated Time
Differences:

R@3

P@4

Time@11

Q@12

S@14

R@0

P@1

Time@6

Q@7

S@9

Time
Differences:

Time
Differences:

1

2

113

Example

Assume D
max

= 3, then the following configurations are equivalent:

1

1

2

1

1

7 5

Truncated Time
Differences:

R@3

P@4

Time@11

Q@12

S@14

R@0

P@1

Time@6

Q@7

S@9

Time
Differences:

Time
Differences:

1 1

1

1

2 2

114

Example

Assume D
max

= 3, then the following configurations are equivalent:

hR; 1; P;1;Time; 1; Q; 2; Si
Canonical form called δ-representation:

1

1

2

1

1

7 5

Truncated Time
Differences:

R@3

P@4

Time@11

Q@12

S@14

R@0

P@1

Time@6

Q@7

S@9

Time
Differences:

Time
Differences:

1 1

1

1

2 2

115

Equivalent Configurations and Relative Time Constraints

Lemma: Let S and S' be two equivalent configurations and let C be a
relative time constraint. S satisfies C if and only if S' satisfies C.

Hence if an action is applicable on the configuration S it will also be
applicable on the configuration S'. Moreover if S is a goal
(respectively, critical) configuration, then S' is also a goal
(respectively, critical) configuration.

116

Future bounded configurations

 Time advances may cause problems for the bisimulation that we intend to
provide with our equivalence. We manage this problem by showing that
the actual configurations developed from the initial one are future bounded
– that is the time difference between each of the future facts and the current
global time is bounded by D

max
.

Handling Time Advances

117

Future bounded configurations

 Time advances may cause problems for the bisimulation that we intend to
provide with our equivalence. We manage this problem by showing that
the actual configurations developed from the initial one are future bounded
– that is the time difference between each of the future facts and the current
global time is bounded by D

max
.

Handling Time Advances

fTime@0; P@5g fTime@0; P@4g

Assume D
max

= 3 and the following configurations that are not future bounded:

Equivalent:

fTime@1; P@5g fTime@1; P@4g

Time advance

Not Equivalent:

118

Future bounded configurations

Lemma: Actions preserve future boundedness of configurations.

Handling Time Advances

This is because of the following condition on actions:

● The timestamps of created facts in an action at a moment T are of
the form T + D, where D is non-negative integer.

119

Actions preserve equivalences

Theorem: For any given Timed Local State Transition System
(TLSTS) T, the equivalence relation among configurations defined
above is well-defined with respect to the actions of the system
(including time advances) and goal and critical configurations. Any
plan starting from a future bounded configuration can be
conceived as a plan over its δ-representations.

120

Proof Sketch

Simulation Argument

S1 S2

S01 S02

®

®0

Equivalent
and future
bounded

Same actions but
instantiated with the

corresponding timestamps.

Equivalent
and future
bounded

121

Balanced Actions

Corollary: For Timed Local State Transition Systems (TLSTS)
with balanced actions, we only need to consider the plan
compliance problem with a bounded number of δ-representations
with respect to the number of facts in the future bounded initial
configuration, the upper bound on the size of facts and the upper
bound, D

max
, of the numbers appearing in the theory.

122

Summary of Results for Timed Collaborative Systems

Plan Compliance Problem

Balanced
Actions

Non-Branching PSPACE-complete (new)

 Possibly Branching EXPTIME-complete (new)

Actions not necessarily balanced Undecidable

We also show that the progressing plan compliance problem is
NP-complete when actions are balanced and non-branching and
when there is a bound on the number of nonces and on time.

The results above marked with new are novel and do not appear in [IHI'12].

123

Still in the beginning and there are many challenges ahead.

Mathematical models
● Computational complexity for the plan generation problem

Tool Development
● Ways to translate protocols into our mathematical formalism
● Investigate adequate human computer interfaces

Data Management
● Formally show that privacy policies are not violated
● Facilitate the statistical analysis of data by building bridges to
existing tools

124

Related Work
● A. W. Roscoe. Proving security protocols with model checkers by data

independence techniques, 1998.
● Harrison, Ruzzo, Ullman. On protection in operating systems, 1975.
● Amadio, Lugiez. On the reachability problem in cryptographic protocols, 2000.
● Amadio, Lugiez, Vanackere. On the symbolic reduction of processes with

cryptographic functions, 2003.
● Rusinowitch, Turuani. Protocol insecurity with a finite number of sessions and

composed keys is NP-complete, 2003.
● Chevalier, Kusters, Rusinowitch,Turuani. An NP decision procedure for

protocol insecurity with xor, 2003.
● Comon-Lundh, Shmatikov. Intruder deductions, constraint solving and

insecurity decision in presence of exclusive or, 2003.
● Lam, Mitchell, Sundaram. A formalization of HIPAA for a medical messaging

system, 2009.
● Esparza, Nielsen. Decidability issues for Petri nets - a survey, 1994.
● N. A. Durgin, P. Lincoln, J. C. Mitchell, and A. Scedrov. Multiset rewriting and

the complexity of bounded security protocols. Journal of Computer Security,
12(2):247–311, 2004.

● I. Cervesato, N. A. Durgin, P. Lincoln, J. C. Mitchell and A. Scedrov. A
Meta-Notation for Protocol Analysis. In CSFW, 1999, p.55-69.

125

Two-phase intruder theory

Decomposition Rules:
DCMP : D(hx; yi)R(¤) ! D(x)D(y)
LRNEK : D(ke) ! Mek(ke)
LRNDK : D(kd) ! Mdk(kd)
LRNK : D(ke) ! Mk(k)
LRNN : D(n) ! Mn(n)
LRNG : D(G) ! Mg(G)
LRNT : D(t) ! Mt(t)
LRNL : D(l) ! Ml(L)
LRNP : D(x) ! Mp(x)
LRNM : D(m) ! Mm(m)
DEC : Mdk(kd)KP (ke; kd)D(enc(ke; x))R(¤) ! Mdk(kd)KP (ke; kd)D(x)Mc(enc(ke; x))
LRNA : D(enc(ke; x))R(¤) ! Mc(enc(ke; x))A(enc(ke; x))
DECA : Mdkn(kd)KP (ke; kd)A(enc(ke; x)) ! Mdk(kd)KP (ke; kd)D(x)
DECS : Mk(k) D(enc(k; x)) R(¤) ! Mk(k) Mc(enc(k; x)) D(x)
LRNAS : D(enc(k; x))R(¤) ! Mc(enc(k; x))A(enc(k; x))
DECAS : Mk(k)A(enc(k; x)) ! Mk(k)D(x)
DSIG : Mek(ke)KP (ke; kd)D(enc(kd; x))R(¤) !

Mek(ke)KP (ke; kd)D(x)Mc(enc(kd; x))

I/O Rules:
REC : NS(x)R(¤) ! D(x)P (¤)
SND : C(x)P (¤) ! NR(x)R(¤)

126

Two-phase intruder theory

Composition Rules:
COMP : C(x)C(y) ! C(hx; yi)R(¤)
USEEK : Mek(ke)R(¤) ! C(ke)Mek(ke)
USEDK : Mdk(kd)R(¤) ! C(kd)Mdk(kd)
USEK : Mk(k)R(¤) ! C(k)Mk(k)
USEN : Mn(n)R(¤) ! C(n)Mn(n)
USEC : Mc(c)R(¤) ! C(c)Mc(c)
USEG : Mg(c) R(¤) ! C(c) Mg(c)
USET : Mt(t)R(¤) ! Mt(t) C(t)
USEL : Ml(L)R(¤) ! Ml(L) C(L)
USEM : Mm(m)R(¤) ! Mm(m) C(m)
USEP : Mp(x)R(¤) ! Mp(x) C(x)
ENC : Mek(ke)C(x) ! C(enc(ke; x))Mek(ke)
ENCS : Mk(k) C(x) ! Mk(k) C(enc(k; x));
ENCM : C(x)C(y) ! Mk(x)C(enc(x; y))
SIG : Mdk(kd)C(x) ! Mdk(kd)C(enc(kd; x))
GEN : R(¤) ! 9n:Mn(n)
GENM : R(¤) ! 9m:Mm(m)

127

Memory Maintenance

Memory maintenance rules:

DELEK : Mek(x) ! R(¤)
DELDK : Mdk(x) ! R(¤)
DELK : Mk(x) ! R(¤)
DELN : Mn(x) ! R(¤)
DELC : Mc(x) ! R(¤)
DELG : Mg(G) ! R(¤)
DELT : Mt(t) ! R(¤)
DELL : Ml(l) ! R(¤)
DELP : Mp(x) ! R(¤)
DELM : Mm(m) ! R(¤)

128

Additional rules for the two-phase intruder

Decomposition Rules:
DM : D(x) ! Ms(x)

DELD : D(m) ! B(¤)
DELAB : A(m) ! B(¤)
DELMC : Mc(m) ! B(¤)
DCMPB : D(hx; yi) B(¤) ! D(x) D(y)
DECB : Mdk(kd) KP (ke; kd) D(enc(ke; x)) B(¤) !

Mdk(kd) KP (ke; kd) D(x) Mc(enc(ke; x))
DSIGB : Mek(ke)KP (ke; kd)D(enc(kd; x))B(¤) !

Mek(ke)KP (ke; kd)D(x)Mc(enc(kd; x))
LRNAB : D(enc(ke; x)) B(¤) ! Mc(enc(ke; x)) A(enc(ke; x))

Composition Rules:
USES : Ms(¤) R(¤) ! Ms(m) C(m)

Memory maintenance rules:
FWD : NS(m) ! NR(m)
DELB : B(¤) ! R(¤)

DELMS : Ms(¤) ! R(¤)

129

Additional rules for the two-phase intruder

Decomposition Rules:
DM : D(x) ! Ms(x)

DELD : D(m) ! B(¤)
DELAB : A(m) ! B(¤)
DELMC : Mc(m) ! B(¤)
DCMPB : D(hx; yi) B(¤) ! D(x) D(y)
DECB : Mdk(kd) KP (ke; kd) D(enc(ke; x)) B(¤) !

Mdk(kd) KP (ke; kd) D(x) Mc(enc(ke; x))
DSIGB : Mek(ke)KP (ke; kd)D(enc(kd; x))B(¤) !

Mek(ke)KP (ke; kd)D(x)Mc(enc(kd; x))
LRNAB : D(enc(ke; x)) B(¤) ! Mc(enc(ke; x)) A(enc(ke; x))

Composition Rules:
USES : Ms(¤) R(¤) ! Ms(m) C(m)

Memory maintenance rules:
FWD : NS(m) ! NR(m)
DELB : B(¤) ! R(¤)

DELMS : Ms(¤) ! R(¤)

130

Example anomaly: Lowe anomaly

B0()A0()R(¤)R(¤)R(¤)R(¤)R(¤)R(¤)
Alice sends her nonce, na to Bob.

! A1(na)N1(na)B0()R(¤)R(¤)R(¤)R(¤)R(¤)
The intruder intercepts Alice's message.

! A1(na)B0()M(na)R(¤)R(¤)R(¤)R(¤)R(¤)
The intruder creates its own nonce, n, and sends it to Bob.

! A1(na)N1(n)B0()M(na)M(n)R(¤)R(¤)R(¤)
Bob creates a new nonce, nb and sends it together with the intruder's nonce.

! B1(n; nb)N2(n; nb)A1(na)M(na)M(n)R(¤)R(¤)R(¤)
The intruder intercepts Bob's message.

! A1(na)B1(n; nb)M(na)M(n)M(hn; nbi)R(¤)R(¤)R(¤)
The intruder decomposes Bob's message.

! A1(na)B1(n; nb)M(na)M(n)M(n)M(nb)R(¤)R(¤)
The intruder composes a new message with Alice's nonce.

! A1(na)B1(n; nb)M(na)M(n)M(n)M(nb)M(na)M(nb)
! A1(na)B1(n; nb)M(na)M(n)M(n)M(nb)M(hna; nbi)R(¤)
The intruder sends this message to Alice.

! A1(na)N2(na; nb)B1(n; nb)M(na)M(n)M(n)M(nb)R(¤)
Alice checks that the message contains indeed her nonce, na, and sends back nb.

! A2(na; nb)N3(nb)B1(n; nb)M(na)M(n)M(n)M(nb)R(¤)
End of anomaly, Bob receives Alice's message and the protocol is completed.

! B2(n; nb)A2(na; nb)M(na)M(n)M(n)M(nb)R(¤)R(¤)

131

Formalizing the notion of freshness

132

Formalizing the notion of freshness

Eigenvariables from logic

¡ ` ¢; F [c=x]

¡ ` ¢; 8x:F [8R]¡; F [c=x] ` ¢

¡;9x:F ` ¢
[9L]

With the proviso that c does not appear in ¡ and ¢

133

Formalizing the notion of freshness

Eigenvariables from logic

¡ ` ¢; F [c=x]

¡ ` ¢; 8x:F [8R]¡; F [c=x] ` ¢

¡;9x:F ` ¢
[9L]

With the proviso that c does not appear in ¡ and ¢

§; c; ¡; F [c=x] ` ¢

§;¡; 9x:F ` ¢
[9L]

§; c; ¡ ` ¢; F [c=x]

§;¡ ` ¢; 8x:F [8R]

More explicit treatment: add a new context to sequents

With the proviso that c =2 §

134

Formalizing the notion of freshness

§; c; ¡; F [c=x] ` ¢

§;¡; 9x:F ` ¢
[9L]

§; c; ¡ ` ¢; F [c=x]

§;¡ ` ¢; 8x:F [8R]

With the proviso that c =2 §

Theorem: 1-1 correspondence between the set of plans
using an LSTS with actions that can create nonces and the
set of focused linear logic (cut-free) proofs.

135

Formalizing the notion of freshness

§; c; ¡; F [c=x] ` ¢

§;¡; 9x:F ` ¢
[9L]

§; c; ¡ ` ¢; F [c=x]

§;¡ ` ¢; 8x:F [8R]

With the proviso that c =2 §

However, there is no a priori bound on the number of nonces created
in a proof/plan. Therefore there is no a priori bound on the size of the
signature and hence no bound on the size of a sequent/configuration.

Theorem: 1-1 correspondence between the set of plans
using an LSTS with actions that can create nonces and the
set of focused linear logic (cut-free) proofs.

136

Progressing Collaborative Systems

137

Progressing Collaborative Systems

Progressing: checking off an item on a to-do list

An instance of an action can be used at most once in a plan (progressing behavior)

138

Progressing Collaborative Systems

Progressing: checking off an item on a to-do list

An instance of an action can be used at most once in a plan (progressing behavior)

Examples of progressing systems:

● Medical test scenario: once a blood sample is taken
 one does not repeat this task again.

● Other administrative tasks: grant proposal, etc.

● Security protocols normally also have a progressing behavior.

139

Progressing Collaborative Systems

Progressing plan compliance: Is there a progressing plan from
an initial configuration to a configuration containing a goal
such that no critical configuration is reached along the plan?

140

Progressing Collaborative Systems

NP-complete, even if actions are allowed to
change at most one fact

Bounded number of
nonces allowed:

Progressing plan compliance: Is there a progressing plan from
an initial configuration to a configuration containing a goal
such that no critical configuration is reached along the plan?

141

Progressing Collaborative Systems

NP-complete, even if actions are allowed to
change at most one fact

Bounded number of
nonces allowed:

PSPACE-hard, even if actions are allowed to
change at most one fact

Balanced actions in
general:

Progressing plan compliance: Is there a progressing plan from
an initial configuration to a configuration containing a goal
such that no critical configuration is reached along the plan?

142

Discussion on Related Work

PSPACE-complete – We assume a bound on the size of facts and only
allow balanced actions. Intruder has bounded memory. Traces with a
unbounded number of protocol sessions and nonces can be

DEXPTIME-complete [Durgin etal 2004] – They allow un-balanced
actions and assume a bound on the number of nonces created in a run as
well as a bound on the size of facts. Intruder has unbounded memory.
Traces can have an unbounded number of protocol sessions, but a
bounded number of nonces.

NP-complete [Rusinowitch & Turuani 2003] – They allow un-balanced
actions and assume a bound on the number of protocol sessions in a
trace. No bound on the size of facts is assumed. Captures protocols
whose keys are not necessarily atomic. Intruder has unbounded memory.
However, traces can contain only a bounded number of protocol sessions
and a bounded number of nonces.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Computer Security
	Protocol Security
	Run of protocol
	Correctness vs Security
	Needham-Schroeder Key Exchange
	Anomaly in Needham-Schroeder
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142

