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Roadmap

Hilbert system for common knowledge

Infinitary system based on an ω-rule

Syntactic cut-elimination

Infinite branches

The situation for the µ-calculus

Justification logic and common
knowledge
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Common knowledge

Informally, common knowledge of a proposition A is defined as the
infinitary conjunction

everybody knows A and

everybody knows that everybody knows A and

everybody knows that everybody knows that everybody knows A and

...

This is equivalent to:
Common knowledge of A is the greatest fixed point of

λX.everybody knows A and everybody knows X.
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The Language

A ::= p | p̄ | (A ∨A) | (A ∧A) | 3iA | 2iA | ∗3A | ∗2A

Abbreviations:
2A = 21A ∧ . . . ∧2hA

3A = 31A ∨ . . . ∨3hA

2nA = 2 . . .2︸ ︷︷ ︸
n−times

A

Negation and implication are defined as usual
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The Hilbert System HR

(TAUT) all instances of propositional tautologies

(MP)
A A→ B

B

(K) 2iA ∧2i(A→ B)→ 2iB (NEC)
A

2iA

(CCL) ∗2A→ (2A ∧2 ∗2A)

(I-R)
B → (2A ∧2B)

B → ∗2A

Theorem

HR is a sound and complete deductive system for common
knowledge.
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The ω-rule: System GC

Γ, p, p̄ ∧ Γ, A Γ, B

Γ, A ∧B ∨ Γ, A,B

Γ, A ∨B

2i
Γ, ∗3∆, A

3iΓ, ∗3∆,2iA,Σ

∗2
Γ,2kA for all k ≥ 1

Γ, ∗2A
∗3

Γ, ∗3A,3A
Γ, ∗3A

Theorem

GC is a sound and complete deductive system for common
knowledge.
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The problem of cut-elimination

π1

A,Γ, ∗3B̄
2i

2iA,3iΓ,Σ, ∗3B̄

...

π2k

2kB,∆
...

∗2 1≤k<ω
∗2B,∆

cut
2iA,3iΓ,Σ,∆

Typical cut-elimination procedure yields:

π1

A,Γ, ∗3B̄

...

π2k

2kB,∆
...

∗2 1≤k<ω
∗2B,∆

cut
A,Γ,∆

2i
2iA,3iΓ,Σ,3i∆
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System DC

Nested sequents:

make 2i a structural rule

allow deep application of rules

Ex: A,B, [C, [D]i]j corresponds to A ∨B ∨2j(C ∨2iD)

Γ{p, p̄} ∧ Γ{A} Γ{B}
Γ{A ∧B} ∨ Γ{A,B}

Γ{A ∨B}

2i
Γ{[A]i}
Γ{2iA}

3i
Γ{3iA, [∆, A]i}

Γ{3iA, [∆]i}

∗2
Γ{2kA} for all k ≥ 1

Γ{ ∗2A}
∗3

Γ{ ∗3A,3kA}
Γ{ ∗3A}
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Properties of DC

Lemma (Structural rules and invertibility)

(i) The rules necessitation, weakening and contraction are
admissible for system DC.
(ii) All rules in DC are invertible for DC.

Theorem (Cut-elimination for the deep system)

If DC
α

ω·n Γ, then DC
ϕn
1 (α)

0 Γ.

Theorem (Cut-elimination for the shallow system)

If GC
α

ω·n Γ, then GC
ω·(ϕn

1 (ω·α)+1)

0 Γ

Theorem (Upper bounds)

If A is a valid formula, then DC
<ϕ20

0 A and GC
<ϕ20

0 A.
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Cut-elimination on one slide

GC + cut

��

GC

HR
// DC + cut // DC

OO
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Infinite branches

The infinitary system S:

Γ, p, p̄ ∧ Γ, A Γ, B

Γ, A ∧B ∨ Γ, A,B

Γ, A ∨B

2i
Γ, A

3iΓ,2iA,Σ

∗2
Γ,2A ∧2 ∗2A

Γ, ∗2A
∗3

Γ,3A ∨3 ∗3A
Γ, ∗3A

Global condition: every infinite branch contains a ∗2-thread,
i.e. there is a ∗2A unfolded infinitely often.
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An S-proof for the induction axiom

(ax’)

¬A,A
(2)

3¬A, ∗3(A ∧3¬A),2A

(ax’)

¬A,A, ∗3(A ∧3¬A), ∗2A

... ( ∗2)
¬A,3¬A, ∗3(A ∧3¬A), ∗2A

(∧)
¬A,A ∧3¬A, ∗3(A ∧3¬A), ∗2A

(2)
3¬A,3(A ∧3¬A),3 ∗3(A ∧3¬A),2 ∗2A

(∨)
3¬A,3(A ∧3¬A) ∨3 ∗3(A ∧3¬A),2 ∗2A

( ∗3)
3¬A, ∗3(A ∧3¬A),2 ∗2A

(∧)
3¬A, ∗3(A ∧3¬A),2A ∧2 ∗2A

( ∗2)
3¬A, ∗3(A ∧3¬A), ∗2A
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Completeness for S

Let T be a proof search tree for Γ. Define an infinite game on it
where player I tries to show that Γ is provable.

1 at any (2′) node, player I chooses one of the children,

2 at any (∧) node, player II chooses one of the children,

Such a game results in a path in T . Finite path: player I wins if
the path ends in an axiom. Infinite path: player I wins if the path
contains a ∗2-thread.

Theorem

1 There is a winning strategy for player I if and only if there is
an S-proof for Γ contained in T .

2 There is a winning strategy for player II if and only if there is
an SDis-disproof for Γ contained in T .

3 The game is determined, i.e. one of the players has a winning
strategy.
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Completeness for S

Theorem

S is a complete deductive system for common knowledge.

Proof. Let A be a formula that is not provable in S.
The proof search tree for A does not contain a proof for A.
There is no winning strategy for player I.
There must be a winning strategy for player II.
The proof search tree for A contains a SDis-disproof for A.
That disproof induces a counter model for A.
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The situation for µ

Hµ is a Hilbert system for the modal µ-calculus

Theorem

Hµ is a sound and complete deductive system for the µ-calculus.

Proof: very involved

Gµ is a Gentzen system (with an ω-rule) for the modal µ-calculus

Theorem

Gµ is a sound and complete deductive system for the µ-calculus.

Proof of soundness: uses finite model property
Proof of completeness: canonical model construction
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The situation for µ (2)

Dµ is a nested sequent system (with an ω-rule) for the modal
µ-calculus

Theorem

1 Dµ is a sound and complete deductive system for the
ν2-fragment (aka continuous fragement).

2 Dµ enjoys syntactic cut-elimination.

3 Dµ is not complete for the modal µ-calculus.

Proofs:

1 Syntactic embedding of the ν2-fragment of Gµ
2 Standard

3 Counter example: accessible part may be larger than ω,
i.e. the valid formula 2(µX.2X)→ µX.2X is not derivable.
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The situation for µ (3)

Sµ is a system with infinite proof branches for the modal µ-calculus

Theorem

Sµ is a sound and complete deductive system for the µ-calculus.

Proof: using determinacy
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Finitary Systems

Lemma (Small model property)

There is a function f such that if a formula A is satisfiable, then
there exists a model of size at most f(A).

Definition (The system GC
<ω)

The system GC
<ω is defined by replacing the ω-rule in the system

GC by the rule

Γ,2kA for all 1 ≤ k ≤ f(
∨

Γ ∨ ∗2A)

Γ, ∗2A,Σ

Other possibilities

Use induction rule instead of ω-rule (AlberucciJäger05)

Reformulate focus games as sequent calculi (BrünnlerLange08)

Tableau systems (AbateGoréWidman07,GorankoShkatov08)
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Why is it so difficult?

Theorem

The logic of common knowledge lacks Craig interpolation.

New ideas are needed to design a nice finitary cut-free system.
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Modal Logic (without justifications)

2A ∧ 2(A→ B) → 2B
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Justification Logic

r :A ∧ s : (A→ B) → s · r :B
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Internalization

Lemma

If
F1, . . . , Fm ` A,

then there exists a justification term t(x1, . . . , xm) for fresh
variables x1, . . . , xm such that

x1 :F1, . . . , xm :Fm ` t(x1, . . . , xm) :A .

Proof idea: for every rule there is a corresponding operation on
terms that reflects that rule, i.e. to internalize

(MP)
A A→ B

B

we have
r :A ∧ s : (A→ B)→ s · r :B .
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Internalizing common knowledge

How can we internalize the induction rule rule

(I-R)
B → (2A ∧2B)

B → ∗2A
?

We don’t know. Better use the induction axiom

2A ∧ ∗2(A→ 2A)→ ∗2A .

This gives

rE :A ∧ sC : (A→ tE :A)→ ind(r, s)C :A .
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Forgetful projection

Definition (Forgetful projection)

If A is a formula of justification logic, then the modal formula A◦

is the result of replacing every term in A with the corresponding
modal operator.

Theorem

If A is a theorem of justified common knowledge, then A◦ is a
theorem of modal common knowledge.
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The problem of realization

A realization is a mapping from modal formulae to justified
formulae that replaces modal operators with justification terms.

Is there a realiation r such that Ar is a theorem of justified
common knowledge for any theorem A of modal common
knowledge?

Usually, realization is proved using a nice cut-free sequent calculus
for modal logic. However, GC does not work since we cannot
merge infintely many premises.

Thus, we need a nice finitary cut-free system.
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Thank you!
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