
The unessential in classical logic and computation∗

Dragǐsa Žunić
Faculty of Economics and Engineering Management - Fimek

Cvećarska 2, 21000 Novi Sad, Serbia

Pierre Lescanne
Ecole Normale Supérieure de Lyon

46 allée d’Italie, 69364 Lyon, France

September 13, 2013

Abstract

We present a congruence relation on classical proofs, which identi-
fies proofs up to trivial rule permutation. The study is performed in the
framework of ∗X calculus, designed to provide a Curry-Howard correspon-
dence for classical logic, therefore the terms can be seen as proofs. Each
congruence class has a single diagrammatic representation.

1 Introduction

We first present a higher order rewrite system, the ∗X calculus, which represents
a computational interpretation of standard Gentzen’s formulation for classical
logic (the sequent system G1 [1]). This system is characterized by the presence
of structural rules, namely weakening and contraction. In this calculus, which
encompasses all the details of classical computation, we define which syntacti-
cally different terms are in essence the same.

The history of computational interpretations of classical logic is recent. The
first one relying on sequents was presented by Herbelin [2], while a more direct
correspondence with a standard sequent formulation of classical logic was pre-
sented in [3]. This research first lead to the X calculus [4] which served as a
base to implement explicit erasure and duplication, yielding the ∗X calculus [5].

2 ∗X calculus, the syntax

Intuitively when we speak about ∗X -terms we speak about classical proofs in
sequent system with explicit structural rules. Terms are built from names.

∗This work is partially supported by the Serbian Ministry of Science and Technology -
project ON174026.

1



This concept differs from that applied in λ-calculus, where variable is the basic
notion. The difference lies in the fact that a variable can be substituted by
an arbitrary term, while a name can be only renamed (that is, substituted by
another name). The presences of hats over certain names denotes the binding
of a name.

Definition 1 (∗X -syntax) The syntax of ∗X -calculus is presented in Figure 1,
where x, y, z... range over an infinite set of in-names and α, β, γ... range over
an infinite set of out-names.

P,Q ::= 〈x.α〉 capsule (axiom rule)

| x̂ P β̂ . α exporter (right arrow-introduction)

| P α̂ [x] ŷ Q importer (left arrow-introduction)

| Pα̂ † x̂Q cut (cut)

| x� P left-eraser (left weakening)

| P � α right-eraser (right weakening)

| z< x̂ŷ〈P ] left-duplicator (left contraction)

| [P 〉α̂β̂ >γ right-duplicator (right contraction)

Figure 1: The syntax of ∗X

3 Assigning types to terms

The type system presents the way constructors are linked with logic, i.e., with
proofs. Expressions of the form P ··· Γ ` ∆ represent the type assignment 1.

Definition 2 (Typable terms) We say that a term P is typable if there exist
contexts Γ and ∆ such that P ··· Γ ` ∆ holds in the system of inference rules
given by Figure 2.

Reduction rules are numerous and capture the richness and complexity of
classical cut elimination, but we will not be dealing with the dynamic of the
system here (see [4, 5] for details).

4 The congruence relation

We introduce the congruence relation on terms, denoted ≡, represented by a
list of equations (the list is very partial due to limited space). For the complete

1Technically we assign contexts, which are sets of pairs (name, formula), to terms. If we
forget about labels and consider only types, we are going back to Gentzen’s classical system
G1 (see Figure 2), where contexts are multisets of formulas.

2



(ax)
〈x.α〉 ··· x :A ` α :A

P ··· Γ ` α :A,∆ Q ··· Γ′, y :B ` ∆′

(→L)
P α̂ [x] ŷ Q ··· Γ,Γ′, x :A→ B ` ∆,∆′

P ··· Γ, x :A ` α :B,∆
(→R)

x̂ P α̂ . β ··· Γ ` β :A→ B,∆

P ··· Γ ` α :A,∆ Q ··· Γ′, x :A ` ∆′

(cut)
Pα̂ † x̂Q ··· Γ,Γ′ ` ∆,∆′

P ··· Γ ` ∆
(weak-L)

x� P ··· Γ, x :A ` ∆

P ··· Γ ` ∆
(weak-R)

P � α ··· Γ ` α :A,∆

P ··· Γ, x :A, y :A ` ∆
(cont-L)

z< x̂
ŷ
〈P ] ··· Γ, z :A ` ∆

P ··· Γ ` α :A, β : A,∆
(cont-R)

[P 〉α̂
β̂
>γ ··· Γ ` γ :A,∆

Figure 2: The type assignent for implicative fragment

list see [5]. Congruence relation induced is reflexive, symmetric and transitive
relation closed under any context. The motivation for introducing it into the
system is to come closer to the essence of classical proofs, and abstract away
from unessential in classical proofs. Every rule is associated with one corre-
sponding diagram. A name is assigned to every congruence rule, and thus they
are presented in the form: name : P ≡ Q.

importer-importer

(1)

Q

R

P

I

t

β

I

α y

z
x

Q

(2)

P R
I I

β tα y

z
x

(3)

P

β

α

y

t RQ

I

I

z
x

ii1 : (P α̂ [x] ŷ Q) β̂ [z] t̂ R ≡ (P β̂ [z] t̂ R) α̂ [x] ŷ Q with α, β ∈ N(P )

ii2 : (P α̂ [x] ŷ Q) β̂ [z] t̂ R ≡ P α̂ [x] ŷ (Q β̂ [z] t̂ R) with y, β ∈ N(Q)

ii3 : (Q β̂ [z] t̂ R) ≡ Q β̂ [z] t̂ (P α̂ [x] ŷ R) with y, t ∈ N(R)

cut-importer

(1)

I

yα

β

z

x

P Q

R

(2)

β

I

y

x

α zQP R

3



ci1 : (P α̂ [x] ŷ Q)β̂ † ẑR ≡ (P β̂ † ẑR) α̂ [x] ŷ Q with α, β ∈ N(P )

ci2 : (P α̂ [x] ŷ Q)β̂ † ẑR ≡ P α̂ [x] ŷ (Qβ̂ † ẑR) with y, β ∈ N(Q)

(3)

R
I

zβxα

y

QP

(4)

x

α

β z

I

y

P

Q R

ci3 : Pα̂ † x̂(Q β̂ [y] ẑ R) ≡ (Pα̂ † x̂Q) β̂ [y] ẑ R with x, β ∈ N(Q)

ci4 : Pα̂ † x̂(Q β̂ [y] ẑ R) ≡ Q β̂ [y] ẑ (Pα̂ † x̂R) with x, z ∈ N(R)

The relation ≡ induces congruence classes on terms. It has been argued in
[6] that two sequent proofs induce the same proof net if and only if one can be
obtained from the other by a sequence of transpositions of independent rules.
At this static level we have proceeded further as we have explicitly shown by
congruence rules, how exactly this transposition is done.

Basic properties of ≡, and terms as diagrams The congruence relation
enjoys important properties. Since it describes the way to perform restructuring
of terms, it is important to have preservation of the set of free names. Then,
the property of type preservation ensures that term-restructuring defined by ≡
can be seen as proof-transformation.

The reader could already see the diagrams as intuitive illustration of con-
gruence rules. It is possible to define a translation (call it D) from terms to
diagrams, inductively on the structure of terms, but due to a lack of space we
don’t present it here. Based on that definition, ideally we hope to prove that
each congruence class (with many terms) has a single diagrammatic represen-
tation. Moreover, in the framework of future work and the dynamics of the
system, to show that a single reduction step corresponds to a diagrammatic
reduction step.

5 Conclusion

By explicitly stating which syntactically different terms should be considered
the same, we unveil the unessential part of sequent classical proofs, sometimes
referred to as the syntactic bureaucracy. This is done in the framework of ∗X .
It is illustrated that such computational model comes close to diagrammatic
computation, as the concept of reducing modulo corresponds to diagrammatic
reductions which focuses on the essence of classical proofs and drastically reduces
the number of reduction steps.

4



References

[1] A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory. New York, NY,
USA: Cambridge University Press, 1996.

[2] P.-L. Curien and H. Herbelin, “The duality of computation,” in Proc. 5 th
ACM SIGPLAN Int. Conf. on Functional Programming (ICFP’00), pp. 233–
243, ACM, 2000.

[3] C. Urban and G. M. Bierman, “Strong normalisation of cut-elimination in
classical logic,” Fundam. Inf., vol. 45, no. 1,2, pp. 123–155, 2001.

[4] S. van Bakel, S. Lengrand, and P. Lescanne, “The language X : circuits,
computations and classical logic,” in Proc.9th Italian Conf. on Theoretical
Computer Science (ICTCS’05), vol. 3701 of Lecture Notes in Computer Sci-
ence, pp. 81–96, 2005.

[5] D. Žunić, Computing With Sequent and Diagrams in Classical Logic - Calculi
∗X , c©X and dX . PhD thesis, Ecole Normale Supériéure de Lyon, France,
2007.

[6] E. Robinson, “Proof nets for classical logic,” Journal of Logic and Compu-
tation, vol. 13, no. 5, pp. 777–797, 2003.

5


