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About probabilistic logics

The probabilistic logics allow strict reasoning about
probabilities using well-defined syntax and semantics.

Formulas in these logics remain either true or false.

Formulas do not have probabilistic (numerical) truth values.
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About probabilistic logics

Probabilistic quantifiers and operators

Quantifiers – statistical probability:

Model theory (Keisler, mid 70’s)

generalization of ∀, ∃
Px>rα(x)

semantics: µ({a | M |= α(a)}) ≥ r

Operators – subjective probability:

Theoretical computer science (Fagin, Halpern, Megiddo, 1990)

generalization of �, ♦

P>rα (P(α) > r)

semantics: modal semantics – measure of all worlds in which
α holds is at least r
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About probabilistic logics

Examples of probability formulas

P(α) 6 1
3 ∧ P(β) = 1

5 → P(α ∨ β) < 8
15

2P(α)− 3P(β) + 1
2 >

1
3P(γ) (LWF)

P(α ∧ β) > 1
2P(β)

P(α) + 2P(β)P(γ) > 2
3 (PWF)
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r ∈ Q ∪ [0, 1]; probability operator P>rα (P>1 ≈ �)

Language:

propositional letters {p, q, r , . . .}
Boolean connectives ¬, ∧
a list of probability operators P≥r

The set of formulas is the smallest set containing
propositional letters and closed under ¬, ∧ and P≥r



Probabilistic logics PST logics Future work

Syntax and semantics

Syntax

r ∈ Q ∪ [0, 1]; probability operator P>rα (P>1 ≈ �)

Language:

propositional letters {p, q, r , . . .}
Boolean connectives ¬, ∧
a list of probability operators P≥r

The set of formulas is the smallest set containing
propositional letters and closed under ¬, ∧ and P≥r



Probabilistic logics PST logics Future work

Syntax and semantics

Syntax

r ∈ Q ∪ [0, 1]; probability operator P>rα (P>1 ≈ �)

Language:

propositional letters {p, q, r , . . .}
Boolean connectives ¬, ∧
a list of probability operators P≥r

The set of formulas is the smallest set containing
propositional letters and closed under ¬, ∧ and P≥r



Probabilistic logics PST logics Future work

Syntax and semantics

Syntax

r ∈ Q ∪ [0, 1]; probability operator P>rα (P>1 ≈ �)

Language:

propositional letters {p, q, r , . . .}
Boolean connectives ¬, ∧
a list of probability operators P≥r

The set of formulas is the smallest set containing
propositional letters and closed under ¬, ∧ and P≥r



Probabilistic logics PST logics Future work

Syntax and semantics

Semantics

〈W ,Prob, v〉
W 6= ∅ – worlds
v : W × P −→ {>,⊥} – valuations
Prob assigns to every w ∈W a probability space
Prob(w) = 〈W (w),H(w), µ(w)〉:

W (w) – a non empty subset of W ,
H(w) – an algebra of subsets of W (w)
µ(w) : H(w) → [0, 1] – a finitely additive probability measure
on H(w).
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Satisfiability relation

M,w |= α iff v(w)(p) = >,

M,w |= ¬α iff M,w 6|= α,

M,w |= α ∧ β iff M,w |= α and M,w |= β, and

M,w |= P≥sα iff µ(w)([α]M,w ) ≥ s

[α]M,w = {u ∈W (w) : M, u |= α}



Probabilistic logics PST logics Future work

Syntax and semantics

Satisfiability relation

M,w |= α iff v(w)(p) = >,

M,w |= ¬α iff M,w 6|= α,

M,w |= α ∧ β iff M,w |= α and M,w |= β, and

M,w |= P≥sα iff µ(w)([α]M,w ) ≥ s

[α]M,w = {u ∈W (w) : M, u |= α}



Probabilistic logics PST logics Future work

Syntax and semantics

Satisfiability relation

M,w |= α iff v(w)(p) = >,

M,w |= ¬α iff M,w 6|= α,

M,w |= α ∧ β iff M,w |= α and M,w |= β, and

M,w |= P≥sα iff µ(w)([α]M,w ) ≥ s

[α]M,w = {u ∈W (w) : M, u |= α}



Probabilistic logics PST logics Future work

Non-compactness as an axiomatization issue

Outline

1 Probabilistic logics
About probabilistic logics
Syntax and semantics
Non-compactness as an axiomatization issue
Variants

2 PST logics
The PST framework for probabilistic spatiotemporal
databases
LQST+PST : syntax and semantics

LQST+PST : a complete axiomatization

3 Future work
adding temporal operators



Probabilistic logics PST logics Future work

Non-compactness as an axiomatization issue

Example

Inherent non-compactness:

T = {¬P=0p} ∪ {P<1/np : n is a positive integer}

Tk = {¬P=0p,P<1/1p,P<1/2p, . . . ,P<1/kp}
c: 0 < c < 1

k , µ[p] = c

M satisfies every Tk , but does not satisfy T

finitary (recursive) axiomatization + strong completeness ⇒
compactness

finitary axiomatization for real valued probabilistic logics:
there are consistent sets that are not satisfiable
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Infinitary inference rule

Infinitary formula:

“if a-probability of α is infinitely close to the rational number
r ∈ [0, 1], then it must be equal to r”

Intuitive form of the rule:

{P>r− 1
n
α | n ∈ ω}

P≥rα

+ implicative form of the rule (for proving Deduction theorem)
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The PST framework for probabilistic spatiotemporal databases

PST atom

GPS systems – possibility of tracking moving objects
(vehicles, cell phones...)

AI – representing such information

involve space and time
probability (uncertainty about the identity of an object, its
exact location or time value)

ST (SpatioTemporal) atom: loc(id , r , t)

a particular object id is in a particular region r at a particular
time t

PST (Probabilistic SpatioTemporal) atom: loc(id , r , t)[`, u]
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PST database is any set of PST atoms

Semantics:

(possible) world – mapping of objects (for every time instance)
in space (+ reachability constraints)
interpretation – probability distribution over worlds
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The PST framework for probabilistic spatiotemporal databases

Limitations of PST formalism

”Dragan is in Luxembourg”, ”Dragan is in Dubrovnik”

but not ”Dragan is in Luxembourg or Dubrovnik”

loc(Bus1,Q, 5) and loc(Bus2,R, 6)[.4, 1]

but not loc(Bus1,Q, 5) or loc(Bus2,R, 6)[.4, 1]
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LQ
ST+PST

: syntax and semantics

ST formula

Definition (ID,S ,T )

ID is a finite set of objects.

S is a finite set of points in space.

T = {1, . . . ,N} is a finite set of time instances.

Definition (ST formula)

An ST atom: a formula of the form loc(id , r , t), where
id ∈ ID, t ∈ T , and r ⊆ S

ST formula: a Boolean combination of ST atoms;
connectives: ∼ (negation), & (conjunction), | (disjunction), ⊃
(implication), and ≡ (equivalence).

Notation: A – the set of ST formulas; α, β – ST formulas.
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PST formula

Definition (PST formula)

Basic PST atom: a formula of the form α[0, u], where α ∈ A.

PST formula: a Boolean combination of basic PST atoms;
connectives: ¬, ∧, ∨, →, and ↔
Notation: P – the set of all PST formulas; ρ and σ – PST
formulas

Abreviations:

α(`, 1] is ¬ α[0, `].

α[`, 1] is∼α[0, 1− `].
α[0, u) is ¬α[u, 1].

if 0 ≤ ` ≤ u ≤ 1, then α[`, u] is α[0, u] ∧ α[`, 1].

if 0 ≤ ` < u ≤ 1, we define α[`, u), α(`, u] and α(`, u)
similarly as above.
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Formula

Example of ST formula:
loc(id2, {p2, p4}, 2)&loc(id2, {p2, p4}, 3)

Example of PST formula:
loc(id1, {p2, p3}, 1)[0, .5] ∨
(loc(id2, {p2, p4}, 2)&loc(id2, {p2, p4}, 3))[.5, 1]

Definition (Formula)

F = A ∪ P
Notation: φ and ψ -formulas; set of arbitrary formulas is
indicated by Φ
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World

Reachability definition RD ⊆ S × S
(p, p′) ∈ RD – an id can reach p′ from p in one unit of time.

Definition (World)

An RD-compliant world is a function w : ID × T −→ S , satisfying
the condition:

if w(id , t) = p1 and w(id , t + 1) = p2 then (p1, p2) ∈ RD.

Definition (Valuation)

Given W , the valuation vW : A×W −→ {0, 1} is defined as
follows:

vW (loc(id , r , t),w) = 1 iff w(id , t) ∈ r ,

vW (α&β,w) = 1 iff vW (α,w) = 1 and vW (β,w) = 1,

vW (∼α,w) = 1 iff vW (α,w) = 0.
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Model

Definition (Interpretation)

An interpretation I : W −→ [0, 1] ∩Q is a probability distribution
over W , i.e., a nonnegative function such that∑

w∈W
I (w) = 1.

Definition (PST Structure)

A PST structure is a pair 〈W , I 〉 where W is a (nonempty) set of
worlds and I is an interpretation.



Probabilistic logics PST logics Future work

LQ
ST+PST

: syntax and semantics

Model

Definition (Interpretation)

An interpretation I : W −→ [0, 1] ∩Q is a probability distribution
over W , i.e., a nonnegative function such that∑

w∈W
I (w) = 1.

Definition (PST Structure)

A PST structure is a pair 〈W , I 〉 where W is a (nonempty) set of
worlds and I is an interpretation.



Probabilistic logics PST logics Future work

LQ
ST+PST

: syntax and semantics

Satisfiability

Definition (Satisfiability)

Let M = 〈W , I 〉 be a PST structure. We define the satisfiability
relation |= recursively as follows:

M |= α iff vW (α,w) = 1 for all w ∈W .

M |= α[0, u] iff
∑

vW (α,w)=1 I (w) ≤ u.

M |= ¬ρ iff M 6|= ρ.

M |= ρ ∧ σ iff M |= ρ and M |= σ.

Definition (Entailment)

M is a model of Φ, M |= Φ, iff M |= φ for every φ ∈ Φ

Φ |= φ, Φ entails φ, iff all models of Φ are models of φ.

φ is valid, that is, it is satisfied in every PST structure.
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The PST framework for probabilistic spatiotemporal
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LQST+PST : a complete axiomatization

3 Future work
adding temporal operators
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LQ
ST+PST

: a complete axiomatization

Axioms

Propositional reasoning

All instances of classical propositional tautologies for both ST
and PST formulas.

Spatio-temporal axioms

loc(id ,S , t).

loc(id , r , t) ≡ ‖p∈r loc(id , {p}, t).

loc(id , {p}, t) ⊃∼ loc(id , {p′}, t), p 6= p′.

∼ (loc(id , {p}, t)&loc(id , {p′}, t + 1)), (p, p′) 6∈ RD, t < N.
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Axioms

Probabilistic axioms

α[0, 1].

α[`, u)→ α[`, u].

α[`, u]→ α[`, u′), u < u′.

(α[`, u] ∧ β[`′, u′] ∧∼(α&β)[1, 1])→ α|β[`′′, u′′],
`′′ = min{`+ `′, 1}, u′′ = min{u + u′, 1}.
α[0, u] ∧ β[0, u′)→ α|β[0, u′′), u′′ = u + u′, u + u′ ≤ 1.
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: a complete axiomatization

Inference rules

(a) From α and α ⊃ β infer β
(b) From ρ and ρ→ σ infer σ.

From α infer α[1, 1].

From the set of premises

{ρ→ ¬α[q, q] | q ∈ Q ∩ [0, 1]}

infer ¬ρ.
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φ is deducible from Φ (Φ ` φ) if there is an at most countable
sequence of formulas φ0, φ1, . . . , φ, such that every φi is an
axiom or a formula from the set Φ, or is derived from the
preceding formulas by an inference rule.

φ is a theorem if ∅ ` φ

Φ is consistent if there is no PST formula ρ such that
Φ ` ρ ∧ ¬ρ
Φ is maximal consistent if it is consistent and for all
ψ ∈ F \ Φ, Φ ∪ {ψ} is inconsistent
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Some theorems of LQST+PST

Theorem (Deduction theorem)

Let Φ be a set of formulas.
(a) Φ ∪ {α} ` β iff Φ ` α ⊃ β.
(b) Φ ∪ {ρ} ` σ iff Φ ` ρ→ σ.

Lemma

(a) {α ≡ β} ` α[`, u]↔ β[`, u]

(b) ` ‖w∈W&id∈ID&
N
t=1loc(id , {w(id , t)}, t)

Lemma

For a maximal consistent set Φ and ST formula α there is a unique
µ(α) such that Φ ` α[µ(α), µ(α)].
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: a complete axiomatization

Completion

Φ – a theory
{αi | i ∈ ω} – an enumeration of all ST-formulas
{ρi | i ∈ ω} – an enumeration of all ST-formulas

1 Φ0 = Φ.

2 If ρi is consistent with Φ3i , then Φ3i+1 = Φ3i ∪ {ρi},
otherwise Φ3i+1 = Φ3i .

3 Φ3i+2 = Φ3i+1 ∪ {αi [q, q]}, where q ∈ Q ∩ [0, 1] is a number
such that Φ3i+2 is consistent.

4 If αi is consistent with Φ3i+2, then Φ3i+3 = Φ3i+2 ∪ {αi},
otherwise Φ3i+3 = Φ3i+2

5 Φ∗ =
⋃

n∈ω Φn.

Finite consistency 6= consistency!
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Canonical model

Φ ⊆ Φ∗

M∗ = 〈W , I 〉:

W = {w ∈W | ∀α ∈ Φ∗,Φ∗ ` αw ⊃ α}.
I (w) = µ(αw ), where Φ∗ ` α[µ(α), µ(α)]

Theorem

M∗ is a PST structure.
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Strong completeness theorem

M∗ |= ρ iff Φ∗ ` ρ It follows that:

Theorem

Every consistent set Φ of formulas has a model.

Corollary

If Φ |= φ then Φ ` φ.
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Real-valued logic LRST+PST

R3a. From the set of premises

{ρ → β[`− 1

n
, 1] | n ∈ ω \ {0}, `− 1

n
≥ 0}

infer ρ → β[`, 1].

The construction of Φ∗: F = {ψi |i = 0, 1, 2, . . .}
1 Φ0 = Φ.
2 If ψi is consistent with Φi , then Φi+1 = Φi ∪ {ψi}.
3 If ψi is not consistent with Φi , then there are two cases:

1 If ψi = ρ→ β[`, 1], then

Φi+1 = Φi ∪ {ρ→ β[0, `− 1

n
]},

where n is a positive integer such that Φi+1 is consistent.
2 Otherwise, Φi+1 = Φi .

I (w) = sup{` ∈ [0, 1] ∩Q | Φ∗ ` αw [`, 1]}
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Temporal operators

Temporal operators (CTL∗)

Basic:

© – next, U – until

©α: α has to hold at the next state
αUβ: α has to hold at least until β, which holds at the
current or a future moment

A – universal path operator (branching time)

Other:

Fα is >Uα – sometime

Gα is ¬F¬α – always

Eα is ¬A¬α – existential path operator
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adding temporal operators

Temporal base

Axiomatization issues

non-compactness
T = {¬Gα} ∪ {©nα | n ∈ ω}

probability of αUβ – beyond finite additivity (todo)

Semantical property: if T |= α, then AT |= Aα.

T ` α ⇒ AT ` Aα must be theorem
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