Logics for probabilistic spatio-temporal reasoning

Dragan Doder¹, John Grant² Zoran Ognjanović³

University of Luxembourg
 University of Maryland
 Mathematical Institute of Serbian Academy of Sciences and Arts

Logic and Applications 2014 Dubrovnik, September 23th 2014

Outline

Probabilistic logics

- About probabilistic logics
- Syntax and semantics
- Non-compactness as an axiomatization issue
- Variants
- 2 PST logics
 - The PST framework for probabilistic spatiotemporal databases
 - $L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics
 - $L^{\mathbb{Q}}_{ST+PST}$: a complete axiomatization

3 Future work

adding temporal operators

About probabilistic logics

Outline

Probabilistic logics

• About probabilistic logics

- Syntax and semantics
- Non-compactness as an axiomatization issue
- Variants
- 2 PST logics
 - The PST framework for probabilistic spatiotemporal databases
 - $L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics
 - $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

3 Future work

• adding temporal operators

About probabilistic logics

What are PLs?

PST logics

Future work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Logic:

• syntax (language, well formed formulas)

About probabilistic logics

What are PLs?

PST logics

Future work

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Logic:

- syntax (language, well formed formulas)
- semantics (models, satisfiability)
- consequence relation

What are PLs?

PST logics

Future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Logic:

- syntax (language, well formed formulas)
- semantics (models, satisfiability)
- consequence relation
- axiomatic system (axioms, rules)
- proof

About probabilistic logics

- The probabilistic logics allow strict reasoning *about* probabilities using well-defined syntax and semantics.
- Formulas in these logics remain either true or false.
- Formulas do not have probabilistic (numerical) truth values.

PST logics

Future work 000

About probabilistic logics

Probabilistic quantifiers and operators

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

PST logics

Future work 000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

About probabilistic logics

Probabilistic quantifiers and operators

Quantifiers – statistical probability:

Future work 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

About probabilistic logics

Probabilistic quantifiers and operators

Quantifiers – statistical probability:

• Model theory (Keisler, mid 70's)

Future work 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

About probabilistic logics

Probabilistic quantifiers and operators

Quantifiers – statistical probability:

- Model theory (Keisler, mid 70's)
- \bullet generalization of $\forall,\ \exists$

Future work 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

About probabilistic logics

Probabilistic quantifiers and operators

Quantifiers – statistical probability:

- Model theory (Keisler, mid 70's)
- \bullet generalization of \forall , \exists
- $P_{x \ge r} \alpha(x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

About probabilistic logics

Probabilistic quantifiers and operators

Quantifiers - statistical probability:

- Model theory (Keisler, mid 70's)
- \bullet generalization of \forall , \exists
- $P_{x \ge r} \alpha(x)$
- semantics: $\mu(\{a \mid \mathcal{M} \models \alpha(a)\}) \ge r$

About probabilistic logics

Probabilistic quantifiers and operators

Quantifiers – statistical probability:

- Model theory (Keisler, mid 70's)
- generalization of $\forall \text{, }\exists$
- $P_{x \ge r} \alpha(x)$
- semantics: $\mu(\{a \mid \mathcal{M} \models \alpha(a)\}) \ge r$

About probabilistic logics

Probabilistic quantifiers and operators

Quantifiers – statistical probability:

- Model theory (Keisler, mid 70's)
- \bullet generalization of \forall , \exists
- $P_{x \ge r} \alpha(x)$
- semantics: $\mu(\{a \mid \mathcal{M} \models \alpha(a)\}) \ge r$

Operators - subjective probability:

• Theoretical computer science (Fagin, Halpern, Megiddo, 1990)

About probabilistic logics

Probabilistic quantifiers and operators

Quantifiers – statistical probability:

- Model theory (Keisler, mid 70's)
- \bullet generalization of \forall , \exists
- $P_{x \ge r} \alpha(x)$
- semantics: $\mu(\{a \mid \mathcal{M} \models \alpha(a)\}) \ge r$

- Theoretical computer science (Fagin, Halpern, Megiddo, 1990)
- generalization of \Box , \Diamond

About probabilistic logics

Probabilistic quantifiers and operators

Quantifiers – statistical probability:

- Model theory (Keisler, mid 70's)
- generalization of $\forall \text{, }\exists$
- $P_{x \ge r} \alpha(x)$
- semantics: $\mu(\{a \mid \mathcal{M} \models \alpha(a)\}) \ge r$

- Theoretical computer science (Fagin, Halpern, Megiddo, 1990)
- generalization of \Box , \Diamond
- $P_{\geq r}\alpha$ $(P(\alpha) \geq r)$

About probabilistic logics

Probabilistic quantifiers and operators

Quantifiers – statistical probability:

- Model theory (Keisler, mid 70's)
- \bullet generalization of \forall , \exists
- $P_{x \ge r} \alpha(x)$
- semantics: $\mu(\{a \mid \mathcal{M} \models \alpha(a)\}) \ge r$

- Theoretical computer science (Fagin, Halpern, Megiddo, 1990)
- generalization of \Box , \Diamond
- $P_{\geq r}\alpha$ ($P(\alpha) \geq r$)
- \bullet semantics: modal semantics measure of all worlds in which α holds is at least r

PST logics

Future work

About probabilistic logics

Examples of probability formulas

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

PST logics

Future work 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

About probabilistic logics

•
$$P(\alpha) \leq \frac{1}{3} \wedge P(\beta) = \frac{1}{5} \rightarrow P(\alpha \vee \beta) < \frac{8}{15}$$

PST logics

Future work 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

About probabilistic logics

•
$$P(\alpha) \leq \frac{1}{3} \land P(\beta) = \frac{1}{5} \rightarrow P(\alpha \lor \beta) < \frac{8}{15}$$

• $2P(\alpha) - 3P(\beta) + \frac{1}{2} \geq \frac{1}{3}P(\gamma)$ (LWF)

PST logics

Future work

About probabilistic logics

- $P(\alpha) \leq \frac{1}{3} \land P(\beta) = \frac{1}{5} \rightarrow P(\alpha \lor \beta) < \frac{8}{15}$
- $2P(\alpha) 3P(\beta) + \frac{1}{2} \ge \frac{1}{3}P(\gamma)$ (LWF)
- $P(\alpha \wedge \beta) \ge \frac{1}{2}P(\beta)$

PST logics

Future work

About probabilistic logics

- $P(\alpha) \leq \frac{1}{3} \wedge P(\beta) = \frac{1}{5} \rightarrow P(\alpha \lor \beta) < \frac{8}{15}$
- $2P(\alpha) 3P(\beta) + \frac{1}{2} \ge \frac{1}{3}P(\gamma)$ (LWF)
- $P(\alpha \wedge \beta) \ge \frac{1}{2}P(\beta)$
- $P(\alpha) + 2P(\beta)P(\gamma) \ge \frac{2}{3}$ (PWF)

Syntax and semantics

Outline

Probabilistic logics

• About probabilistic logics

Syntax and semantics

- Non-compactness as an axiomatization issue
- Variants
- 2 PST logics
 - The PST framework for probabilistic spatiotemporal databases
 - $L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics
 - $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

3 Future work

• adding temporal operators

Syntax and semantics

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$r \in \mathbb{Q} \cup [0,1]$; probability operator $P_{\geqslant r} lpha$ $(P_{\geqslant 1} pprox \Box)$

Future work 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Syntax and semantics

$r \in \mathbb{Q} \cup [0,1]$; probability operator $P_{\geqslant r} \alpha$ ($P_{\geqslant 1} \approx \Box$)

• Language:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Syntax and semantics

 $r \in \mathbb{Q} \cup [0,1]$; probability operator $P_{\geqslant r} \alpha$ $(P_{\geqslant 1} \approx \Box)$

- Language:
 - propositional letters {p, q, r, ...}
 - Boolean connectives \neg , \wedge
 - a list of probability operators $P_{\geq r}$

Syntax and semantics

- $r \in \mathbb{Q} \cup [0,1]$; probability operator $P_{\geqslant r} \alpha$ $(P_{\geqslant 1} \approx \Box)$
 - Language:
 - propositional letters $\{p, q, r, \ldots\}$
 - Boolean connectives \neg , \wedge
 - a list of probability operators $P_{\geq r}$
 - The set of formulas is the smallest set containing propositional letters and closed under ¬, ∧ and P>r

Syntax and semantics

Semantics

Future work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Probabilistic logics	PST logics 000000000000000000000000000000000000	Future work 000
Syntax and semantics		
Semantics		

• $\langle W, Prob, v \rangle$

Probabilistic logics	PST logics
000000000000000000000000000000000000000	
Syntax and semantics	

• $\langle W, Prob, v \rangle$

Semantics

• $W \neq \emptyset$ – worlds

PST logics

Future work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Syntax and semantics

Semantics

- $\langle W, Prob, v \rangle$
 - $W \neq \emptyset$ worlds
 - $v: W \times \mathcal{P} \longrightarrow \{\top, \bot\}$ valuations

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Syntax and semantics

Semantics

- $\langle W, Prob, v \rangle$
 - $W \neq \emptyset$ worlds
 - $v: W \times \mathcal{P} \longrightarrow \{\top, \bot\}$ valuations
 - Prob assigns to every $w \in W$ a probability space $Prob(w) = \langle W(w), H(w), \mu(w) \rangle$:

Syntax and semantics

Semantics

- $\langle W, Prob, v \rangle$
 - $W \neq \emptyset$ worlds
 - $v: W \times \mathcal{P} \longrightarrow \{\top, \bot\}$ valuations
 - Prob assigns to every w ∈ W a probability space Prob(w) = ⟨W(w), H(w), μ(w)⟩:
 - W(w) a non empty subset of W,
 - H(w) an algebra of subsets of W(w)
 - μ(w) : H(w) → [0, 1] a finitely additive probability measure on H(w).

Future work 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Syntax and semantics

Satisfiability relation

• $\mathbf{M}, w \models \alpha$ iff $v(w)(p) = \top$,

PST logics

Future work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Syntax and semantics

Satisfiability relation

- $\mathbf{M}, w \models \alpha$ iff $v(w)(p) = \top$,
- $\mathbf{M}, w \models \neg \alpha \text{ iff } \mathbf{M}, w \not\models \alpha$,
- $\mathbf{M}, w \models \alpha \land \beta$ iff $\mathbf{M}, w \models \alpha$ and $\mathbf{M}, w \models \beta$, and

PST logics

Future work 000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Syntax and semantics

Satisfiability relation

•
$$\mathbf{M}, w \models \alpha$$
 iff $v(w)(p) = \top$,

•
$$\mathbf{M}, w \models \neg \alpha$$
 iff $\mathbf{M}, w \not\models \alpha$,

•
$$\mathbf{M}, w \models \alpha \land \beta$$
 iff $\mathbf{M}, w \models \alpha$ and $\mathbf{M}, w \models \beta$, and

•
$$\mathbf{M}, w \models P_{\geq s} \alpha \text{ iff } \mu(w)([\alpha]_{\mathbf{M},w}) \geq s$$

 $[\alpha]_{\mathsf{M},w} = \{ u \in W(w) : \mathsf{M}, u \models \alpha \}$

Non-compactness as an axiomatization issue

Outline

Probabilistic logics

- About probabilistic logics
- Syntax and semantics
- Non-compactness as an axiomatization issue
- Variants
- 2 PST logics
 - The PST framework for probabilistic spatiotemporal databases
 - $L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics
 - $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

3 Future work

• adding temporal operators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Non-compactness as an axiomatization issue

• Inherent non-compactness:

$$T = \{\neg P_{=0}p\} \cup \{P_{<1/n}p : n \text{ is a positive integer}\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Non-compactness as an axiomatization issue

Example

• Inherent non-compactness:

$$T = \{\neg P_{=0}p\} \cup \{P_{<1/n}p : n \text{ is a positive integer}\}$$

•
$$T_k = \{\neg P_{=0}p, P_{<1/1}p, P_{<1/2}p, \dots, P_{<1/k}p\}$$

• c:
$$0 < c < \frac{1}{k}, \quad \mu[p] = c$$

• M satisfies every T_k , but does not satisfy T

Non-compactness as an axiomatization issue

Example

• Inherent non-compactness:

$$T = \{\neg P_{=0}p\} \cup \{P_{<1/n}p : n \text{ is a positive integer}\}$$

•
$$T_k = \{\neg P_{=0}p, P_{<1/1}p, P_{<1/2}p, \dots, P_{<1/k}p\}$$

•
$$c: 0 < c < \frac{1}{k}, \quad \mu[p] = c$$

- M satisfies every T_k , but does not satisfy T
- finitary (recursive) axiomatization + strong completeness \Rightarrow compactness
- finitary axiomatization for real valued probabilistic logics: there are consistent sets that are not satisfiable

PST logics

Future work

Non-compactness as an axiomatization issue

Approaches

• weak completeness

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 ■ - のへで

PST logics

Future work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Non-compactness as an axiomatization issue

Approaches

- weak completeness
- Restrictions on ranges of probabilities: $\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$

PST logics

Future work

Non-compactness as an axiomatization issue

Approaches

- weak completeness
- Restrictions on ranges of probabilities: $\{0, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, 1\}$
- infinitary axiomatization

PST logics

Future work 000

Non-compactness as an axiomatization issue

Infinitary inference rule

Infinitary formula:

"if *a*-probability of α is infinitely close to the rational number $r \in [0, 1]$, then it must be equal to r"

Non-compactness as an axiomatization issue

Infinitary inference rule

Infinitary formula:

"if *a*-probability of α is infinitely close to the rational number $r \in [0, 1]$, then it must be equal to r"

Intuitive form of the rule:

Non-compactness as an axiomatization issue

Infinitary formula:

"if *a*-probability of α is infinitely close to the rational number $r \in [0, 1]$, then it must be equal to r"

Intuitive form of the rule:

$$\frac{\{P_{>r-\frac{1}{n}}\alpha \mid n \in \omega\}}{P_{\geq r}\alpha}$$

Non-compactness as an axiomatization issue

Infinitary formula:

"if *a*-probability of α is infinitely close to the rational number $r \in [0, 1]$, then it must be equal to r"

Intuitive form of the rule:

$$\frac{\{P_{>r-\frac{1}{n}}\alpha \mid n \in \omega\}}{P_{\geq r}\alpha}$$

+ implicative form of the rule (for proving Deduction theorem)

Variants

Outline

Probabilistic logics

- About probabilistic logics
- Syntax and semantics
- Non-compactness as an axiomatization issue

Variants

2 PST logics

- The PST framework for probabilistic spatiotemporal databases
- $L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics
- $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

3 Future work

• adding temporal operators

Probabilistic logics
000000000000000000000000000000000000000

PST logics

Future work 000

(ロ)、(型)、(E)、(E)、 E) の(の)

Variants

Basic variants

• without iteration of probabilities $P_{>s}P_{>t}\alpha, \quad \beta \lor P_{>s}\alpha \notin For$

Probabilistic logics
000000000000000000000000000000000000000

PST logics

Future work 000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Variants

Basic variants

- without iteration of probabilities $P_{\geq s}P_{\geq t}\alpha$, $\beta \lor P_{\geq s}\alpha \notin For$
- first order logic

Variants

Basic variants

• without iteration of probabilities

 $P_{\geq s}P_{\geq t}\alpha$, $\beta \lor P_{\geq s}\alpha \notin For$

- first order logic
- values of probability functions in non-Archimedean structures

Variants

Basic variants

- without iteration of probabilities
 - $P_{\geq s}P_{\geq t}\alpha$, $\beta \lor P_{\geq s}\alpha \notin For$
- first order logic
- values of probability functions in non-Archimedean structures
- change underlying logic

Variants

PST logics

Future work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(Probabilistic) extension of syntax

conditional probabilities

Variants

PST logics

Future work 000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

(Probabilistic) extension of syntax

- conditional probabilities
- \leq qualitative probability operator

If $\alpha, \beta \in For_{C}$, $\mathbf{M} \models \alpha \preceq \beta$ iff $\mu([\alpha]) \leqslant \mu([\beta])$,

Variants

PST logics

Future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

(Probabilistic) extension of syntax

- conditional probabilities
- \leq qualitative probability operator

If $\alpha, \beta \in For_{C}$, $\mathbf{M} \models \alpha \preceq \beta$ iff $\mu([\alpha]) \leqslant \mu([\beta])$,

- independency operator (todo)
- probability of a formula belongs to a countable set

The PST framework for probabilistic spatiotemporal databases

Outline

Probabilistic logics

- About probabilistic logics
- Syntax and semantics
- Non-compactness as an axiomatization issue
- Variants
- 2 PST logics
 - The PST framework for probabilistic spatiotemporal databases
 - $L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics
 - $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

3 Future work

adding temporal operators

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

The PST framework for probabilistic spatiotemporal databases

PST atom

- GPS systems possibility of tracking moving objects (vehicles, cell phones...)
- AI representing such information
 - involve space and time
 - probability (uncertainty about the identity of an object, its exact location or time value)

The PST framework for probabilistic spatiotemporal databases

PST atom

- GPS systems possibility of tracking moving objects (vehicles, cell phones...)
- AI representing such information
 - involve space and time
 - probability (uncertainty about the identity of an object, its exact location or time value)
- ST (SpatioTemporal) atom: loc(id, r, t)
- a particular object *id* is in a particular region *r* at a particular time *t*

The PST framework for probabilistic spatiotemporal databases

PST atom

- GPS systems possibility of tracking moving objects (vehicles, cell phones...)
- AI representing such information
 - involve space and time
 - probability (uncertainty about the identity of an object, its exact location or time value)
- ST (SpatioTemporal) atom: *loc(id, r, t)*
- a particular object *id* is in a particular region *r* at a particular time *t*
- PST (Probabilistic SpatioTemporal) atom: $loc(id, r, t)[\ell, u]$

Probabilistic logics 00000000000000	PST logics 000000000000000000000000000000000000	Future work		
The PST framework for probabilistic spatiotemporal databases				
PST database				

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• PST database is any set of PST atoms

PST logics

Future work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The PST framework for probabilistic spatiotemporal databases

PST database

- PST database is any set of PST atoms
- Semantics:
 - (possible) world mapping of objects (for every time instance) in space (+ reachability constraints)
 - interpretation probability distribution over worlds

PST logics

Future work

The PST framework for probabilistic spatiotemporal databases

Limitations of PST formalism

- "Dragan is in Luxembourg", "Dragan is in Dubrovnik"
- but not "Dragan is in Luxembourg or Dubrovnik"

PST logics

Future work

The PST framework for probabilistic spatiotemporal databases

Limitations of PST formalism

- "Dragan is in Luxembourg", "Dragan is in Dubrovnik"
- but not "Dragan is in Luxembourg or Dubrovnik"
- *loc*(*Bus*1, *Q*, 5) and *loc*(*Bus*2, *R*, 6)[.4, 1]
- but not loc(Bus1, Q, 5) or loc(Bus2, R, 6)[.4, 1]

 $L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics

Outline

Probabilistic logics

- About probabilistic logics
- Syntax and semantics
- Non-compactness as an axiomatization issue
- Variants

2 PST logics

- The PST framework for probabilistic spatiotemporal databases
- $L^{\mathbb{Q}}_{ST+PST}$: syntax and semantics
- $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

B Future work

adding temporal operators

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics

ST formula

Definition (ID, S, T)

- *ID* is a finite set of objects.
- S is a finite set of points in space.
- $T = \{1, \dots, N\}$ is a finite set of time instances.

 L_{ST+PST}^{U} : syntax and semantics

ST formula

Definition (ID, S, T)

- ID is a finite set of objects.
- S is a finite set of points in space.
- $T = \{1, \dots, N\}$ is a finite set of time instances.

Definition (ST formula)

- An ST atom: a formula of the form loc(id, r, t), where id ∈ ID, t ∈ T, and r ⊆ S
- ST formula: a Boolean combination of ST atoms; connectives: ~ (negation), & (conjunction), | (disjunction), ⊃ (implication), and ≡ (equivalence).
- Notation: A the set of ST formulas; α , β ST formulas.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics

PST formula

Definition (PST formula)

- Basic PST atom: a formula of the form $\alpha[0, u]$, where $\alpha \in A$.
- PST formula: a Boolean combination of basic PST atoms; connectives: ¬, ∧, ∨, →, and ↔
- Notation: $\mathcal P$ the set of all PST formulas; ρ and σ PST formulas

$L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics

PST formula

Definition (PST formula)

- Basic PST atom: a formula of the form $\alpha[0, u]$, where $\alpha \in A$.
- PST formula: a Boolean combination of basic PST atoms; connectives: ¬, ∧, ∨, →, and ↔
- Notation: $\mathcal P$ the set of all PST formulas; ρ and σ PST formulas

Abreviations:

- $\alpha(\ell, 1]$ is $\neg \alpha[0, \ell]$.
- $\alpha[\ell, 1]$ is $\sim \alpha[0, 1-\ell]$.
- $\alpha[0, u)$ is $\neg \alpha[u, 1]$.
- if $0 \le \ell \le u \le 1$, then $\alpha[\ell, u]$ is $\alpha[0, u] \land \alpha[\ell, 1]$.
- if 0 ≤ ℓ < u ≤ 1, we define α[ℓ, u), α(ℓ, u] and α(ℓ, u) similarly as above.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example of ST formula: $loc(id_2, \{p_2, p_4\}, 2) \& loc(id_2, \{p_2, p_4\}, 3)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

```
Example of ST formula:
loc(id_2, \{p_2, p_4\}, 2) \& loc(id_2, \{p_2, p_4\}, 3)
```

```
Example of PST formula:

loc(id_1, \{p_2, p_3\}, 1)[0, .5] \lor

(loc(id_2, \{p_2, p_4\}, 2)\&loc(id_2, \{p_2, p_4\}, 3))[.5, 1]
```



```
Example of ST formula:
loc(id_2, \{p_2, p_4\}, 2) \& loc(id_2, \{p_2, p_4\}, 3)
```

```
Example of PST formula:

loc(id_1, \{p_2, p_3\}, 1)[0, .5] \lor

(loc(id_2, \{p_2, p_4\}, 2)\&loc(id_2, \{p_2, p_4\}, 3))[.5, 1]
```

Definition (Formula)

• $\mathcal{F} = \mathcal{A} \cup \mathcal{P}$

• Notation: ϕ and ψ -formulas; set of arbitrary formulas is indicated by Φ

Probabilistic logics 00000000000000	PST logics ०००० ००००●०० ००००००००	Future work 000
$L^{\mathbb{Q}}_{ST+PST}$: syntax and semantics		
World		

- Reachability definition $RD \subseteq S \times S$
- $(p, p') \in RD$ an *id* can reach p' from p in one unit of time.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Probabilistic logics 00000000000000	PST logics	Future work 000
$L^{\mathbb{Q}}_{ST+PST}$: syntax and semantics		
World		

- Reachability definition $RD \subseteq S \times S$
- $(p, p') \in RD$ an *id* can reach p' from p in one unit of time.

Definition (World)

An RD-compliant *world* is a function $w : ID \times T \longrightarrow S$, satisfying the condition:

 $\text{if }w(\textit{id},t)=p_1 \text{ and }w(\textit{id},t+1)=p_2 \text{ then }(p_1,p_2)\in \textit{RD}.$

Probabilistic logics 000000000000000	PST logics ○○○○○○○○○○○○○○○○○○○	Future work 000
$L^{\mathbb{Q}}_{ST+PST}$: syntax and semantics		
World		

- Reachability definition $RD \subseteq S \times S$
- $(p, p') \in RD$ an *id* can reach p' from p in one unit of time.

Definition (World)

An RD-compliant *world* is a function $w : ID \times T \longrightarrow S$, satisfying the condition:

$$\text{if }w(\textit{id},t)=p_1 \text{ and }w(\textit{id},t+1)=p_2 \text{ then }(p_1,p_2)\in \textit{RD}. \\$$

Definition (Valuation)

Given W, the valuation $v_W : \mathcal{A} \times W \longrightarrow \{0,1\}$ is defined as follows:

- $v_W(loc(id, r, t), w) = 1$ iff $w(id, t) \in r$,
- $v_W(\alpha \& \beta, w) = 1$ iff $v_W(\alpha, w) = 1$ and $v_W(\beta, w) = 1$,
- $v_W(\sim \alpha, w) = 1$ iff $v_W(\alpha, w) = 0$.

PST logics

 $L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics

Model

Definition (Interpretation)

An interpretation $I: W \longrightarrow [0,1] \cap \mathbb{Q}$ is a probability distribution over W, i.e., a nonnegative function such that

$$\sum_{w \in W} I(w) = 1.$$

 $L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics

Model

Definition (Interpretation)

An interpretation $I: W \longrightarrow [0,1] \cap \mathbb{Q}$ is a probability distribution over W, i.e., a nonnegative function such that

$$\sum_{w\in W} I(w) = 1.$$

Definition (PST Structure)

A *PST structure* is a pair $\langle W, I \rangle$ where W is a (nonempty) set of worlds and I is an interpretation.

 $L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics

Satisfiability

Definition (Satisfiability)

Let $M = \langle W, I \rangle$ be a PST structure. We define the satisfiability relation \models recursively as follows:

•
$$M \models \alpha$$
 iff $v_W(\alpha, w) = 1$ for all $w \in W$.

•
$$M \models \alpha[0, u]$$
 iff $\sum_{v_W(\alpha, w)=1} I(w) \le u$.

•
$$M \models \neg \rho$$
 iff $M \not\models \rho$.

•
$$M \models \rho \land \sigma$$
 iff $M \models \rho$ and $M \models \sigma$.

 $L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics

Satisfiability

Definition (Satisfiability)

Let $M = \langle W, I \rangle$ be a PST structure. We define the satisfiability relation \models recursively as follows:

•
$$M \models \alpha$$
 iff $v_W(\alpha, w) = 1$ for all $w \in W$.

•
$$M \models \alpha[0, u]$$
 iff $\sum_{v_W(\alpha, w)=1} I(w) \le u$.

•
$$M \models \neg \rho$$
 iff $M \not\models \rho$.

•
$$M \models \rho \land \sigma$$
 iff $M \models \rho$ and $M \models \sigma$.

Definition (Entailment)

- *M* is a *model* of Φ , *M* $\models \Phi$, iff *M* $\models \phi$ for every $\phi \in \Phi$
- $\Phi \models \phi$, Φ *entails* ϕ , iff all models of Φ are models of ϕ .
- ϕ is *valid*, that is, it is satisfied in every PST structure.

$L_{ST \mid PST}^{\mathbb{Q}}$: a complete axiomatization

Outline

- About probabilistic logics
- Syntax and semantics
- Non-compactness as an axiomatization issue
- Variants

2 PST logics

- The PST framework for probabilistic spatiotemporal
- $L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics
- $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

adding temporal operators

Propositional reasoning

• All instances of classical propositional tautologies for both ST and PST formulas.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Propositional reasoning

• All instances of classical propositional tautologies for both ST and PST formulas.

Spatio-temporal axioms

- *loc*(*id*, *S*, *t*).
- $loc(id, r, t) \equiv ||_{p \in r} loc(id, \{p\}, t).$
- $loc(id, \{p\}, t) \supset \sim loc(id, \{p'\}, t), p \neq p'.$
- $\sim (loc(id, \{p\}, t)\&loc(id, \{p'\}, t+1)), (p, p') \notin RD, t < N.$

PST logics

 $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

Probabilistic axioms

- α[0, 1].
- $\alpha[\ell, u) \rightarrow \alpha[\ell, u].$
- $\alpha[\ell, u] \rightarrow \alpha[\ell, u'), u < u'.$
- $(\alpha[\ell, u] \land \beta[\ell', u'] \land \sim (\alpha\&\beta)[1, 1]) \rightarrow \alpha|\beta[\ell'', u''],$ $\ell'' = \min\{\ell + \ell', 1\}, u'' = \min\{u + u', 1\}.$
- $\alpha[0, u] \land \beta[0, u') \rightarrow \alpha | \beta[0, u''), u'' = u + u', u + u' \leq 1.$

Probabilistic logics 000000000000000	PST logics ○○○○○○○○○ ○○○●○○○○○ ○	Future work 000
$L^{\mathbb{Q}}_{ST+PST}$: a complete axiomatization		
Inference rules		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- (a) From α and α ⊃ β infer β
 (b) From ρ and ρ → σ infer σ.
- From α infer $\alpha[1,1]$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $L^{\mathbb{Q}}_{ST+PST}$: a complete axiomatization

Inference rules

- (a) From α and α ⊃ β infer β
 (b) From ρ and ρ → σ infer σ.
- From α infer $\alpha[1,1]$.
- From the set of premises

$$\{\rho \to \neg \alpha[q,q] \mid q \in \mathbb{Q} \cap [0,1]\}$$

infer $\neg \rho$.

φ is deducible from Φ (Φ ⊢ φ) if there is an at most countable sequence of formulas φ₀, φ₁, ..., φ, such that every φ_i is an axiom or a formula from the set Φ, or is derived from the preceding formulas by an inference rule.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• ϕ is a theorem if $\emptyset \vdash \phi$

φ is deducible from Φ (Φ ⊢ φ) if there is an at most countable sequence of formulas φ₀, φ₁, ..., φ, such that every φ_i is an axiom or a formula from the set Φ, or is derived from the preceding formulas by an inference rule.

- ϕ is a theorem if $\emptyset \vdash \phi$
- Φ is consistent if there is no PST formula ρ such that $\Phi \vdash \rho \land \neg \rho$
- Φ is maximal consistent if it is consistent and for all $\psi \in \mathcal{F} \setminus \Phi$, $\Phi \cup \{\psi\}$ is inconsistent

PST logics

Future work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

Some theorems of $L_{ST+PST}^{\mathbb{Q}}$

Theorem (Deduction theorem)

Let Φ be a set of formulas. (a) $\Phi \cup \{\alpha\} \vdash \beta$ iff $\Phi \vdash \alpha \supset \beta$. (b) $\Phi \cup \{\rho\} \vdash \sigma$ iff $\Phi \vdash \rho \rightarrow \sigma$.

PST logics

Future work

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

Some theorems of $L_{ST+PST}^{\mathbb{Q}}$

Theorem (Deduction theorem)

Let Φ be a set of formulas. (a) $\Phi \cup \{\alpha\} \vdash \beta$ iff $\Phi \vdash \alpha \supset \beta$. (b) $\Phi \cup \{\rho\} \vdash \sigma$ iff $\Phi \vdash \rho \rightarrow \sigma$.

Lemma

(a)
$$\{\alpha \equiv \beta\} \vdash \alpha[\ell, u] \leftrightarrow \beta[\ell, u]$$

(b) $\vdash \|_{w \in \overline{W}} \mathscr{U}_{id \in ID} \mathscr{U}_{t=1}^{N} loc(id, \{w(id, t)\}, t)$

PST logics

Future work

 $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

Some theorems of $L_{ST+PST}^{\mathbb{Q}}$

Theorem (Deduction theorem)

Let Φ be a set of formulas. (a) $\Phi \cup \{\alpha\} \vdash \beta$ iff $\Phi \vdash \alpha \supset \beta$. (b) $\Phi \cup \{\rho\} \vdash \sigma$ iff $\Phi \vdash \rho \rightarrow \sigma$.

Lemma

(a)
$$\{\alpha \equiv \beta\} \vdash \alpha[\ell, u] \leftrightarrow \beta[\ell, u]$$

(b) $\vdash \|_{w \in \overline{W}} \mathscr{U}_{id \in ID} \mathscr{U}_{t=1}^{N} loc(id, \{w(id, t)\}, t)$

Lemma

For a maximal consistent set Φ and ST formula α there is a unique $\mu(\alpha)$ such that $\Phi \vdash \alpha[\mu(\alpha), \mu(\alpha)]$.

Probabilistic logics 00000000000000	PST logics ○○○○○○○○○○○○○○○○○○○○○	Future work 000
$L^{\mathbb{Q}}_{ST+PST}$: a complete axiomatization		
Completion		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 Φ – a theory $\{\alpha_i \mid i \in \omega\}$ – an enumeration of all ST-formulas $\{\rho_i \mid i \in \omega\}$ – an enumeration of all ST-formulas

$L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

Completion

Φ – a theory { $\alpha_i \mid i \in \omega$ } – an enumeration of all ST-formulas { $\rho_i \mid i \in \omega$ } – an enumeration of all ST-formulas

 $\bullet \Phi_0 = \Phi.$

- **2** If ρ_i is consistent with Φ_{3i} , then $\Phi_{3i+1} = \Phi_{3i} \cup \{\rho_i\}$, otherwise $\Phi_{3i+1} = \Phi_{3i}$.
- $\Phi_{3i+2} = \Phi_{3i+1} \cup \{\alpha_i[q,q]\}$, where $q \in \mathbb{Q} \cap [0,1]$ is a number such that Φ_{3i+2} is consistent.
- If α_i is consistent with Φ_{3i+2} , then $\Phi_{3i+3} = \Phi_{3i+2} \cup {\alpha_i}$, otherwise $\Phi_{3i+3} = \Phi_{3i+2}$

$$\bullet \Phi^* = \bigcup_{n \in \omega} \Phi_n.$$

$L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

Completion

 Φ - a theory { $\alpha_i \mid i \in \omega$ } - an enumeration of all ST-formulas { $\rho_i \mid i \in \omega$ } - an enumeration of all ST-formulas

- **2** If ρ_i is consistent with Φ_{3i} , then $\Phi_{3i+1} = \Phi_{3i} \cup \{\rho_i\}$, otherwise $\Phi_{3i+1} = \Phi_{3i}$.
- $\Phi_{3i+2} = \Phi_{3i+1} \cup \{\alpha_i[q,q]\}$, where $q \in \mathbb{Q} \cap [0,1]$ is a number such that Φ_{3i+2} is consistent.
- If α_i is consistent with Φ_{3i+2} , then $\Phi_{3i+3} = \Phi_{3i+2} \cup {\alpha_i}$, otherwise $\Phi_{3i+3} = \Phi_{3i+2}$

$$\bullet \Phi^* = \bigcup_{n \in \omega} \Phi_n.$$

Finite consistency \neq consistency!

Probabilistic logics 00000000000000	PST logics	Future work 000
$\mathcal{L}^{\mathbb{Q}}_{ST+PST}$: a complete axiomatization		
Canonical model		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\Phi \subseteq \Phi^*$$
$$M^* = \langle W, I \rangle :$$

Probabilistic logics 00000000000000	PST logics ○○○○○○○○○○○○○○○○○○○	Future work 000
$\mathcal{L}^{\mathbb{Q}}_{S\mathcal{T}+\mathcal{P}S\mathcal{T}}$: a complete axiomatization		
Canonical model		

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

$$\begin{split} & \Phi \subseteq \Phi^* \\ & M^* = \langle W, I \rangle : \\ & \bullet \ W = \{ w \in \overline{W} \mid \forall \alpha \in \Phi^*, \Phi^* \vdash \alpha_w \supset \alpha \} . \\ & \bullet \ I(w) = \mu(\alpha_w), \text{ where } \Phi^* \vdash \alpha[\mu(\alpha), \mu(\alpha)] \end{split}$$

Probabilistic logics 00000000000000	PST logics ○○○○○○○○○○○○○○○○○	Future work 000
$L^{\mathbb{Q}}_{ST+PST}$: a complete axiomatization		
Canonical model		

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\begin{split} \Phi &\subseteq \Phi^* \\ M^* &= \langle W, I \rangle : \\ \bullet & W = \{ w \in \overline{W} \mid \forall \alpha \in \Phi^*, \Phi^* \vdash \alpha_w \supset \alpha \}. \\ \bullet & I(w) = \mu(\alpha_w), \text{ where } \Phi^* \vdash \alpha[\mu(\alpha), \mu(\alpha)] \end{split}$$

Theorem

M* is a PST structure.

PST logics

Future work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $L^{\mathbb{Q}}_{ST+PST}$: a complete axiomatization

Strong completeness theorem

$$M^* \models \rho$$
 iff $\Phi^* \vdash \rho$ It follows that:

PST logics

Future work

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

Strong completeness theorem

$$M^* \models \rho$$
 iff $\Phi^* \vdash \rho$ It follows that:

Theorem

Every consistent set Φ of formulas has a model.

Corollary

If $\Phi \models \phi$ then $\Phi \vdash \phi$.

PST logics

Future work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $L^{\mathbb{Q}}_{ST+PST}$: a complete axiomatization

Real-valued logic $L_{ST+PST}^{\mathbb{R}}$

R3a. From the set of premises

$$\{\rho \rightarrow \beta[\ell - \frac{1}{n}, 1] \mid n \in \omega \setminus \{0\}, \ell - \frac{1}{n} \ge 0\}$$

infer $\rho \rightarrow \beta[\ell, 1].$

PST logics

Future work

 $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

Real-valued logic $L_{ST+PST}^{\mathbb{R}}$

R3a. From the set of premises

$$\{
ho \rightarrow eta[\ell-rac{1}{n},1] \mid n \in \omega \setminus \{0\}, \ell-rac{1}{n} \geq 0\}$$

 $\text{ infer } \rho \ \rightarrow \ \beta[\ell,1].$

The construction of Φ^* : $\mathcal{F} = \{\psi_i | i = 0, 1, 2, \ldots\}$

- $\bullet \Phi_0 = \Phi.$
- **2** If ψ_i is consistent with Φ_i , then $\Phi_{i+1} = \Phi_i \cup \{\psi_i\}$.
- **(3)** If ψ_i is not consistent with Φ_i , then there are two cases:

• If
$$\psi_i = \rho \rightarrow \beta[\ell, 1]$$
, then

$$\Phi_{i+1} = \Phi_i \cup \{\rho \to \beta[0, \ell - \frac{1}{n}]\},\$$

where *n* is a positive integer such that Φ_{i+1} is consistent. 2 Otherwise, $\Phi_{i+1} = \Phi_i$.

・ロト ・西ト ・ヨト ・ヨー うらぐ

PST logics

Future work

 $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

Real-valued logic $L_{ST+PST}^{\mathbb{R}}$

R3a. From the set of premises

$$\{
ho \
ightarrow \ eta[\ell-rac{1}{n},1] \ | \ n \ \in \omega \setminus \{0\}, \ell-rac{1}{n} \geq 0\}$$

 $\text{ infer } \rho \ \rightarrow \ \beta[\ell,1].$

The construction of Φ^* : $\mathcal{F} = \{\psi_i | i = 0, 1, 2, \ldots\}$

- $\bullet \Phi_0 = \Phi.$
- **2** If ψ_i is consistent with Φ_i , then $\Phi_{i+1} = \Phi_i \cup \{\psi_i\}$.
- **③** If ψ_i is not consistent with Φ_i , then there are two cases:

• If
$$\psi_i =
ho o eta[\ell, 1]$$
, then

$$\Phi_{i+1} = \Phi_i \cup \{\rho \to \beta[0, \ell - \frac{1}{n}]\},\$$

where *n* is a positive integer such that Φ_{i+1} is consistent. 2 Otherwise, $\Phi_{i+1} = \Phi_i$.

$$I(w) = \sup\{\ell \in [0,1] \cap \mathbb{Q} \mid \Phi^* \vdash \alpha_w[\ell_b 1]\}_{\text{A stars}} \in \mathcal{I}_{\mathcal{A}}$$

Outline

Probabilistic logics

- About probabilistic logics
- Syntax and semantics
- Non-compactness as an axiomatization issue
- Variants
- 2 PST logics
 - The PST framework for probabilistic spatiotemporal databases
 - $L_{ST+PST}^{\mathbb{Q}}$: syntax and semantics
 - $L_{ST+PST}^{\mathbb{Q}}$: a complete axiomatization

3 Future work

adding temporal operators

adding temporal operators

Temporal operators

Temporal operators (CTL*)

Basic:

- \bigcirc next, U until
 - $\bigcirc \alpha$: α has to hold at the next state
 - $\alpha U\beta$: α has to hold at least until β , which holds at the current or a future moment
- A universal path operator (branching time)

Temporal operators

Temporal operators (CTL*)

Basic:

- \bigcirc next, U until
 - $\bigcirc \alpha$: α has to hold at the next state
 - $\alpha U\beta$: α has to hold at least until β , which holds at the current or a future moment

• A – universal path operator (branching time)

Other:

- $F\alpha$ is $\top U\alpha$ sometime
- $G\alpha$ is $\neg F \neg \alpha$ always
- $E\alpha$ is $\neg A \neg \alpha$ existential path operator

Temporal base

PST logics

Future work 00●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Axiomatization issues

non-compactness

$$T = \{\neg G\alpha\} \cup \{\bigcirc^n \alpha \mid n \in \omega\}$$

Temporal base

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Axiomatization issues

non-compactness

$$T = \{\neg G\alpha\} \cup \{\bigcirc^n \alpha \mid n \in \omega\}$$

• probability of $\alpha U\beta$ – beyond finite additivity (todo)

Temporal base

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Axiomatization issues

non-compactness

$$T = \{\neg G\alpha\} \cup \{\bigcirc^n \alpha \mid n \in \omega\}$$

- probability of $\alpha U\beta$ beyond finite additivity (todo)
- Semantical property: if $T \models \alpha$, then $AT \models A\alpha$.

Temporal base

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Axiomatization issues

non-compactness

$$T = \{\neg G\alpha\} \cup \{\bigcirc^n \alpha \mid n \in \omega\}$$

- probability of $\alpha U\beta$ beyond finite additivity (todo)
- Semantical property: if $T \models \alpha$, then $AT \models A\alpha$.
- $T \vdash \alpha \Rightarrow AT \vdash A\alpha$ must be theorem