# Non-monotonic extensions of the weak Kleene clone with constants

José Martínez Fernández Logos Research Group - Universitat de Barcelona

September 24, 2014

 $\triangleright$   $\mathcal{O}_E$  denotes the set of all finitary functions on the set E.

- $\triangleright$   $\mathcal{O}_E$  denotes the set of all finitary functions on the set E.
- A clone (of functions on E) is a set of functions of O<sub>E</sub> which contains the projections and is closed under composition of functions. A clone is a clone with constants if it contains the constant functions.

- $\triangleright$   $\mathcal{O}_E$  denotes the set of all finitary functions on the set E.
- A clone (of functions on E) is a set of functions of O<sub>E</sub> which contains the projections and is closed under composition of functions. A clone is a clone with constants if it contains the constant functions.
- ▶ Notation: Let  $X \subseteq \mathcal{O}_E$ , then  $\langle X \rangle$  represents the clone with constants generated by X. If F is a clone,  $F^{(n)}$  represents the set of functions of F with n variables.

► A system of equations on a clone represents a self-referential net of sentences:

- ► A system of equations on a clone represents a self-referential net of sentences:
- ▶ Liar sentence: 'this sentence is false'  $x = \neg x$

- ► A system of equations on a clone represents a self-referential net of sentences:
- ▶ Liar sentence: 'this sentence is false'  $x = \neg x$
- ▶ (1) If this sentence is true, then the following sentence is not true.
  - (2) Either the previous sentence is not true or snow is white

- ► A system of equations on a clone represents a self-referential net of sentences:
- ▶ Liar sentence: 'this sentence is false'  $x = \neg x$
- ▶ (1) If this sentence is true, then the following sentence is not true.
  - (2) Either the previous sentence is not true or snow is white
- $x_1 = x_1 \rightarrow \neg x_2$   $x_2 = \neg x_1 \lor x_3$   $x_3 = 1$

# The Gupta-Belnap fixed-point property

▶ A clone  $F \subseteq \mathcal{O}_E$  has the *Gupta-Belnap fixed-point property* (f.p.p.) iff every system of equations of the form

$$x_{1} = f_{1}(x_{11}, x_{12}, \dots, x_{1i_{1}})$$

$$x_{2} = f_{2}(x_{21}, x_{22}, \dots, x_{2i_{2}})$$

$$\vdots$$

$$x_{n} = f_{n}(x_{n1}, x_{n2}, \dots, x_{ni_{n}})$$

$$\vdots$$

with  $f_n \in F$  and  $x_{ij} \in \{x_1, x_2, ...\}$  for all  $i, j, n \in \omega$ , has a solution in E.



# The Gupta-Belnap fixed-point property

▶ A clone  $F \subseteq \mathcal{O}_E$  has the Gupta-Belnap fixed-point property (f.p.p.) iff every system of equations of the form

$$x_{1} = f_{1}(x_{11}, x_{12}, \dots, x_{1i_{1}})$$

$$x_{2} = f_{2}(x_{21}, x_{22}, \dots, x_{2i_{2}})$$

$$\vdots$$

$$x_{n} = f_{n}(x_{n1}, x_{n2}, \dots, x_{ni_{n}})$$

$$\vdots$$

with  $f_n \in F$  and  $x_{ij} \in \{x_1, x_2, ...\}$  for all  $i, j, n \in \omega$ , has a solution in E.

► Fixed-Point Problem: characterize the clones with constants in O<sub>E</sub> that have the fixed-point property.



#### Some well known results

▶ Theorem (Visser): If  $(E, \leq)$  is a ccpo and the logical operators of an interpreted language are monotone functions on that order, then the scheme has the f.p.p.

#### Some well known results

- ▶ Theorem (Visser): If  $(E, \leq)$  is a ccpo and the logical operators of an interpreted language are monotone functions on that order, then the scheme has the f.p.p.
- ▶ The order of information on *E*<sub>3</sub>:



#### Some well known results

- ▶ Theorem (Visser): If  $(E, \leq)$  is a ccpo and the logical operators of an interpreted language are monotone functions on that order, then the scheme has the f.p.p.
- ▶ The order of information on E<sub>3</sub>:



► Corollary (Kripke, Martin, Woodruff): The clones generated by the Kleene strong and weak operators have the f.p.p.

▶ The operator of pathologicality:

|   | $\downarrow$ |
|---|--------------|
| 0 | 0            |
| 1 | 0            |
| 2 | 1            |

▶ The operator of pathologicality:

|   | $\downarrow$ |
|---|--------------|
| 0 | 0            |
| 1 | 0            |
| 2 | 1            |

▶ Proposition (Gupta-Martin-Belnap): The interpreted language  $\langle \neg_k, \wedge_w, \downarrow \rangle$  has the f.p.p.

▶ The operator of pathologicality:

|   | <b></b> |
|---|---------|
| 0 | 0       |
| 1 | 0       |
| 2 | 1       |

- ▶ Proposition (Gupta-Martin-Belnap): The interpreted language  $\langle \neg_k, \wedge_w, \downarrow \rangle$  has the f.p.p.
- ▶ Fact: The interpreted language  $\langle \neg_k, \land_s, \downarrow \rangle$  has not the f.p.p.

▶ The operator of pathologicality:

|   | $\downarrow$ |
|---|--------------|
| 0 | 0            |
| 1 | 0            |
| 2 | 1            |

- ▶ Proposition (Gupta-Martin-Belnap): The interpreted language  $\langle \neg_k, \wedge_w, \downarrow \rangle$  has the f.p.p.
- ▶ Fact: The interpreted language  $\langle \neg_k, \land_s, \downarrow \rangle$  has not the f.p.p.
- ▶ Proof:  $x = \neg_k \downarrow (x \land_s 2)$

▶ Theorem: Let  $F \subseteq \mathcal{O}_3$  be a clone with constants. Then F has the f.p.p. iff every function in  $F^{(1)}$  has a fixed point. The same characterization is valid for two-valued clones with constants.

- ▶ Theorem: Let  $F \subseteq \mathcal{O}_3$  be a clone with constants. Then F has the f.p.p. iff every function in  $F^{(1)}$  has a fixed point. The same characterization is valid for two-valued clones with constants.
- Auxiliary functions:

| $\wedge_o$ | 0 | 1 | 2 | $\odot$ | 0 | 1 | 2 |   | $\gamma_3$ |   | $\beta_2$ |  |
|------------|---|---|---|---------|---|---|---|---|------------|---|-----------|--|
|            | 0 |   |   |         |   |   |   |   |            | 0 | 0         |  |
| 1          | 0 | 1 | 1 | 1       |   |   |   |   |            | 1 | 2         |  |
| 2          | 0 | 1 | 2 | 2       | 0 | 1 | 2 | 2 | 1          | 2 | 0         |  |

- ▶ Theorem: Let  $F \subseteq \mathcal{O}_3$  be a clone with constants. Then F has the f.p.p. iff every function in  $F^{(1)}$  has a fixed point. The same characterization is valid for two-valued clones with constants.
- Auxiliary functions:

| $\wedge_o$ | 0 | 1 | 2 | $\odot$ | 0 | 1 | 2 |   |   |   |   |
|------------|---|---|---|---------|---|---|---|---|---|---|---|
| 0          | 0 | 0 | 0 | 0       |   |   |   | 0 | 0 | 0 | 0 |
| 1          | 0 | 1 | 1 |         |   |   |   | 1 |   |   |   |
| 2          | 0 | 1 | 2 | 2       | 0 | 1 | 2 | 2 | 1 | 2 | 0 |

 $\triangleright$  Proposition: There are 12 clones with constants on  $E_3$  which are maximal for the fixed point property. They are isomorphic to one of the following four clones:

- ▶ Theorem: Let  $F \subseteq \mathcal{O}_3$  be a clone with constants. Then F has the f.p.p. iff every function in  $F^{(1)}$  has a fixed point. The same characterization is valid for two-valued clones with constants.
- Auxiliary functions:

|   |   |   |   | $\odot$ |   |   |   |   |   |   | $\beta_2$ |
|---|---|---|---|---------|---|---|---|---|---|---|-----------|
| 0 | 0 | 0 | 0 | 0       | 0 | 0 | 0 | 0 | 0 | 0 |           |
| 1 | 0 | 1 | 1 | 1       | 0 | 0 | 1 | 1 | 1 |   | ı         |
| 2 | 0 | 1 | 2 | 2       | 0 | 1 | 2 | 2 | 1 | 2 | 0         |

- ▶ Proposition: There are 12 clones with constants on  $E_3$  which are maximal for the fixed point property. They are isomorphic to one of the following four clones:
  - $M_2 = \langle \wedge_s, \vee_s, \gamma_3, \beta_2 \rangle$



- ▶ Theorem: Let  $F \subseteq \mathcal{O}_3$  be a clone with constants. Then F has the f.p.p. iff every function in  $F^{(1)}$  has a fixed point. The same characterization is valid for two-valued clones with constants.
- Auxiliary functions:

|   |   |   |   | $\odot$ |   |   |   |   |   |   | $\beta_2$ |
|---|---|---|---|---------|---|---|---|---|---|---|-----------|
| 0 | 0 | 0 | 0 | 0       | 0 | 0 | 0 | 0 | 0 | 0 |           |
| 1 | 0 | 1 | 1 | 1       | 0 | 0 | 1 | 1 | 1 |   | ı         |
| 2 | 0 | 1 | 2 | 2       | 0 | 1 | 2 | 2 | 1 | 2 | 0         |

- ▶ Proposition: There are 12 clones with constants on *E*<sub>3</sub> which are maximal for the fixed point property. They are isomorphic to one of the following four clones:
  - $M_2 = \langle \land_s, \lor_s, \gamma_3, \beta_2 \rangle$
  - $K_2 = \langle \neg_k, \wedge_s \rangle$



- ▶ Theorem: Let  $F \subseteq \mathcal{O}_3$  be a clone with constants. Then F has the f.p.p. iff every function in  $F^{(1)}$  has a fixed point. The same characterization is valid for two-valued clones with constants.
- Auxiliary functions:

| $\wedge_o$ | 0 | 1 | 2 | $\odot$ | 0 | 1 | 2 |   | $\gamma_3$ |   | $\beta_2$ |
|------------|---|---|---|---------|---|---|---|---|------------|---|-----------|
| 0          | 0 | 0 | 0 |         |   |   |   |   | 0          |   | 0         |
| 1          | 0 | 1 | 1 |         |   |   |   |   | 1          |   | 2         |
| 2          | 0 | 1 | 2 | 2       | 0 | 1 | 2 | 2 | 1          | 2 | 0         |

- ▶ Proposition: There are 12 clones with constants on  $E_3$  which are maximal for the fixed point property. They are isomorphic to one of the following four clones:
  - $M_2 = \langle \land_s, \lor_s, \gamma_3, \beta_2 \rangle$
  - $K_2 = \langle \neg_k, \wedge_s \rangle$
  - $H_2 = \langle \wedge_w, \vee_w, \wedge_o, \vee_o \rangle$



- ▶ Theorem: Let  $F \subseteq \mathcal{O}_3$  be a clone with constants. Then F has the f.p.p. iff every function in  $F^{(1)}$  has a fixed point. The same characterization is valid for two-valued clones with constants.
- Auxiliary functions:

| $\wedge_o$ | 0 | 1 | 2 | $\odot$ | 0 | 1 | 2 |   | $\gamma_3$ |   | $\beta_2$ |
|------------|---|---|---|---------|---|---|---|---|------------|---|-----------|
| 0          | 0 | 0 | 0 | 0       | 0 | 0 | 0 | 0 | 0          |   | 0         |
| 1          | 0 | 1 | 1 | 1       | 0 | 0 | 1 | 1 | 1          |   |           |
| 2          | 0 | 1 | 2 | 2       | 0 | 1 | 2 | 2 | 1          | 2 | 0         |

- ▶ Proposition: There are 12 clones with constants on *E*<sub>3</sub> which are maximal for the fixed point property. They are isomorphic to one of the following four clones:
  - $M_2 = \langle \land_s, \lor_s, \gamma_3, \beta_2 \rangle$
  - $K_2 = \langle \neg_k, \wedge_s \rangle$
  - $H_2 = \langle \wedge_w, \vee_w, \wedge_o, \vee_o \rangle$
  - $G_2 = \langle \neg_k, \wedge_w, \odot \rangle$



Problem: determine all the clones that can be obtained when we add to the weak Kleene clone a set of functions that include some function which is non-monotonic on the order of information.

- Problem: determine all the clones that can be obtained when we add to the weak Kleene clone a set of functions that include some function which is non-monotonic on the order of information.
- Fact: The strong Kleene clone coincides with the clone of three-valued functions monotonic on the order of information.

- Problem: determine all the clones that can be obtained when we add to the weak Kleene clone a set of functions that include some function which is non-monotonic on the order of information.
- Fact: The strong Kleene clone coincides with the clone of three-valued functions monotonic on the order of information.
- Problem: determine all the clones that that are extensions of the weak Kleene clone but are not included in the strong Kleene clone.

- Problem: determine all the clones that can be obtained when we add to the weak Kleene clone a set of functions that include some function which is non-monotonic on the order of information.
- ► Fact: The strong Kleene clone coincides with the clone of three-valued functions monotonic on the order of information.
- Problem: determine all the clones that that are extensions of the weak Kleene clone but are not included in the strong Kleene clone.
- ▶ Facts (Jablonskij): The only maximal three-valued clones that contain the weak Kleene clone are  $U_2$  and  $C_2$ .



# The interval $[K_w, U_2]$

Graph of non-monotonic expansions of  $K_w$  included in  $U_2$ :



|   | $\alpha_5$ | $\gamma_1$ | $\cdot$ | 0 | 1 | 2 | - | l |   |   |
|---|------------|------------|---------|---|---|---|---|---|---|---|
| 0 | 2          | 1          |         |   |   | 0 | 0 | 0 | 0 | 0 |
|   | 2          |            | 1       | 0 | 0 | 0 |   | 0 |   |   |
| 2 | 0          | 0          | 2       | 0 | 0 | 2 | 2 | 0 | 1 | 2 |

|   | $\alpha_5$ |   |   | 0 | 1 | 2 | $\odot$ |   |   |   |
|---|------------|---|---|---|---|---|---------|---|---|---|
| 0 | 2          | 1 | 0 | 0 | 0 | 0 | 0       | 0 | 0 | 0 |
|   | 2          |   | 1 | 0 | 0 | 0 | 1       | 0 | 0 | 1 |
| 2 | 0          | 0 | 2 | 0 | 0 | 2 | 2       | 0 | 1 | 2 |

▶  $U_2$  is the clone of the functions that preserve the relation  $\begin{pmatrix} 0 & 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 1 & 0 \end{pmatrix}$ 

|   | $\alpha_5$ |   |   | l |   |   | _ | l |   |   |
|---|------------|---|---|---|---|---|---|---|---|---|
| 0 | 2          | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|   | 2          |   | 1 | 0 | 0 | 0 |   | 0 |   |   |
| 2 | 0          | 0 | 2 | 0 | 0 | 2 | 2 | 0 | 1 | 2 |

- ▶  $U_2$  is the clone of the functions that preserve the relation  $\begin{pmatrix} 0 & 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & 1 & 0 \end{pmatrix}$
- L<sub>2</sub><sup>10</sup> is the clone of the functions that preserve the relation  $\begin{pmatrix} 0 & 1 & 2 & 0 & 0 & 1 & 1 & 2 & 2 & 0 & 1 \\ 0 & 1 & 2 & 0 & 0 & 1 & 1 & 2 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 & 2 & 0 & 2 & 0 & 1 & 2 & 2 \end{pmatrix}$



Notation: Let  $f \in \mathcal{O}_3$ . The derived set of f, denoted der f, is the set of all functions which can be obtained from f with some (all, none) of its variables replaced by constants.

- Notation: Let  $f \in \mathcal{O}_3$ . The derived set of f, denoted der f, is the set of all functions which can be obtained from f with some (all, none) of its variables replaced by constants.
- ▶ We say that the variable  $x_i$  is a contaminant variable (in f) if, for every  $a_1, \ldots, a_n \in E_3$ ,  $f(a_1, \ldots, a_n) = 2$  whenever  $a_i = 2$ .

- ▶ Notation: Let  $f \in \mathcal{O}_3$ . The derived set of f, denoted der f, is the set of all functions which can be obtained from f with some (all, none) of its variables replaced by constants.
- ▶ We say that the variable  $x_i$  is a contaminant variable (in f) if, for every  $a_1, \ldots, a_n \in E_3$ ,  $f(a_1, \ldots, a_n) = 2$  whenever  $a_i = 2$ .
- ▶  $I_{01}$  is the the set of all functions that preserve the set  $\{0,1\}$ .

- Notation: Let  $f \in \mathcal{O}_3$ . The derived set of f, denoted der f, is the set of all functions which can be obtained from f with some (all, none) of its variables replaced by constants.
- ▶ We say that the variable  $x_i$  is a contaminant variable (in f) if, for every  $a_1, \ldots, a_n \in E_3$ ,  $f(a_1, \ldots, a_n) = 2$  whenever  $a_i = 2$ .
- ▶  $I_{01}$  is the the set of all functions that preserve the set  $\{0,1\}$ .
- ▶ If  $f \in I_{01}$ , then the restriction of f, denoted re f, is the function re  $f : E_2 \to E_2$  defined as re  $f(a_1, \ldots, a_n) = f(a_1, \ldots, a_n)$ , for all  $a_1, \ldots, a_n \in E_2$ .



- ▶ Let  $f \in \mathcal{O}_3$ . Then  $f \in K_w$  if, and only if, f satisfies the conditions:
  - (1) for all  $g \in \text{der } f$ , if  $g \neq c_2$ , then  $g \in I_{01}$ ,
  - (2) all essential variables of f are contaminant variables.

- ▶ Let  $f \in \mathcal{O}_3$ . Then  $f \in K_w$  if, and only if, f satisfies the conditions:
  - (1) for all  $g \in \text{der } f$ , if  $g \neq c_2$ , then  $g \in I_{01}$ ,
  - (2) all essential variables of f are contaminant variables.
- ▶ Let  $f \in \mathcal{O}_3$ . Then  $f \in \langle \neg_2, \land_w, \downarrow \rangle$  if, and only if, f satisfies the conditions:
  - (1) For every  $g \in \text{der } f$ , if  $g \neq c_2$ , then  $g \in I_{01}$ .
  - (2) If  $f(a_1,\ldots,a_n)\neq 2$ , for some  $a_i\in E_3$  and  $a_{i_1}=\ldots=a_{i_j}=2$ , for  $1\leq j\leq n$  and  $1\leq i_1\leq\ldots\leq i_j\leq n$ , then the function

re 
$$f(a_1,\ldots,a_{i_1-1},x_1,a_{i_1+1},\ldots,a_{i_j-1},x_j,a_{i_j+1},\ldots,a_n)$$

is constant.

(3) If  $f \neq c_2$  and there are  $a_1, \ldots, a_n \in E_3$  such that  $f(a_1, \ldots, a_n) = 2$ , then there is  $a_i, 1 \leq i \leq n$ , such that  $a_i = 2$  and  $f(x_1, \ldots, x_{i-1}, 2, x_{i+1}, \ldots, x_n) = c_2$ .

- ▶ Let  $f \in \mathcal{O}_3$ . Then  $f \in \langle \neg_2, \land_w, \gamma_1 \rangle$  if, and only if, f satisfies the conditions:
  - (1) for all  $g \in \text{der } f$ , if  $g \neq c_2$ , then  $g \in I_{01}$ ,
  - (2) if  $f \neq c_2$  and  $f(a_1, \ldots, a_n) = 2$  for some  $a_1, \ldots, a_n \in E_3$ , then there is  $a_i$  such that  $a_i = 2$  and  $f(x_1, \ldots, x_{i-1}, 2, x_{i+1}, \ldots, x_n) = c_2$ .

- ▶ Let  $f \in \mathcal{O}_3$ . Then  $f \in \langle \neg_2, \land_w, \gamma_1 \rangle$  if, and only if, f satisfies the conditions:
  - (1) for all  $g \in \operatorname{der} f$ , if  $g \neq c_2$ , then  $g \in I_{01}$ ,
  - (2) if  $f \neq c_2$  and  $f(a_1, \ldots, a_n) = 2$  for some  $a_1, \ldots, a_n \in E_3$ , then there is  $a_i$  such that  $a_i = 2$  and  $f(x_1, \ldots, x_{i-1}, 2, x_{i+1}, \ldots, x_n) = c_2$ .
- ▶  $G_2$  is the clone of all functions  $f \in \mathcal{O}_3$  that satisfy the following conditions:
  - 1. For every  $g \in \text{der } f$ , if  $g \neq c_2$ , then  $g \in I_{01}$ .
  - 2. If  $f(a_1, \ldots, a_n) \neq 2$  and  $a_{i_1} = \ldots = a_{i_j} = 2$ , for  $1 \leq j \leq n$  and  $1 \leq i_1 \leq \ldots \leq i_j \leq n$ , then the function

re 
$$f(a_1, \ldots, a_{i_1-1}, x_1, a_{i_1+1}, \ldots, a_{i_j-1}, x_j, a_{i_j+1}, \ldots, a_n)$$

is constant.

- ▶ Let  $f \in \mathcal{O}_3$ . Then  $f \in \langle \neg_2, \land_w, \gamma_1 \rangle$  if, and only if, f satisfies the conditions:
  - (1) for all  $g \in \text{der } f$ , if  $g \neq c_2$ , then  $g \in \textit{I}_{01}$ ,
  - (2) if  $f \neq c_2$  and  $f(a_1, \ldots, a_n) = 2$  for some  $a_1, \ldots, a_n \in E_3$ , then there is  $a_i$  such that  $a_i = 2$  and  $f(x_1, \ldots, x_{i-1}, 2, x_{i+1}, \ldots, x_n) = c_2$ .
- ▶  $G_2$  is the clone of all functions  $f \in \mathcal{O}_3$  that satisfy the following conditions:
  - 1. For every  $g \in \text{der } f$ , if  $g \neq c_2$ , then  $g \in I_{01}$ .
  - 2. If  $f(a_1, \ldots, a_n) \neq 2$  and  $a_{i_1} = \ldots = a_{i_j} = 2$ , for  $1 \leq j \leq n$  and  $1 \leq i_1 \leq \ldots \leq i_j \leq n$ , then the function

re 
$$f(a_1, \ldots, a_{i_1-1}, x_1, a_{i_1+1}, \ldots, a_{i_j-1}, x_j, a_{i_j+1}, \ldots, a_n)$$

is constant.

▶  $L_2^9$  is the clone of all functions  $f \in \mathcal{O}_3$  that satisfy the condition: for all  $g \in \text{der } f$ , if  $g \neq c_2$ , then  $g \in I_{01}$ .

