Natural deduction for modal logic of judgment aggregation

Tin Perkov

Polytechnic of Zagreb

LAP 2014, Dubrovnik

Judgment aggregation problem: how to make a fair decision based on individual judgments?

Judgment aggregation problem: how to make a fair decision based on individual judgments?

Preference aggregation or social choice: how to determine society's preference (e.g. results of elections) from individual preferences (votes)?

Judgment aggregation problem: how to make a fair decision based on individual judgments?

Preference aggregation or social choice: how to determine society's preference (e.g. results of elections) from individual preferences (votes)? This is a special case of judgment aggregation.

Judgment aggregation problem: how to make a fair decision based on individual judgments?

Preference aggregation or social choice: how to determine society's preference (e.g. results of elections) from individual preferences (votes)? This is a special case of judgment aggregation.

Judgments can be formalized as consistent sets of logical formulas.

Judgment aggregation problem: how to make a fair decision based on individual judgments?

Preference aggregation or social choice: how to determine society's preference (e.g. results of elections) from individual preferences (votes)? This is a special case of judgment aggregation.

Judgments can be formalized as consistent sets of logical formulas.

A framework for judgment aggregation:

 \triangleright a set N of n individuals (agents, judges, voters),

Judgment aggregation problem: how to make a fair decision based on individual judgments?

Preference aggregation or social choice: how to determine society's preference (e.g. results of elections) from individual preferences (votes)? This is a special case of judgment aggregation.

Judgments can be formalized as consistent sets of logical formulas.

A framework for judgment aggregation:

- \triangleright a set N of n individuals (agents, judges, voters),
- ▶ agenda \mathcal{A} , a set of formulas of a fixed underlying logic (containing \neg and \rightarrow with standard semantics), s.t. if A is not of the form $\neg B$, then $A \in \mathcal{A}$ iff $\neg A \in \mathcal{A}$,

Judgment aggregation problem: how to make a fair decision based on individual judgments?

Preference aggregation or social choice: how to determine society's preference (e.g. results of elections) from individual preferences (votes)? This is a special case of judgment aggregation.

Judgments can be formalized as consistent sets of logical formulas.

A framework for judgment aggregation:

- \triangleright a set N of n individuals (agents, judges, voters),
- ▶ agenda \mathcal{A} , a set of formulas of a fixed underlying logic (containing \neg and \rightarrow with standard semantics), s.t. if A is not of the form $\neg B$, then $A \in \mathcal{A}$ iff $\neg A \in \mathcal{A}$,
- ▶ judgment set is a consistent $R_i \subseteq A$ s.t. $A \in R_i$ or $\neg A \in R_i$ for all $A \in A$ not of the form $\neg B$,

Judgment aggregation problem: how to make a fair decision based on individual judgments?

Preference aggregation or social choice: how to determine society's preference (e.g. results of elections) from individual preferences (votes)? This is a special case of judgment aggregation.

Judgments can be formalized as consistent sets of logical formulas.

A framework for judgment aggregation:

- \triangleright a set N of n individuals (agents, judges, voters),
- ▶ agenda \mathcal{A} , a set of formulas of a fixed underlying logic (containing \neg and \rightarrow with standard semantics), s.t. if A is not of the form $\neg B$, then $A \in \mathcal{A}$ iff $\neg A \in \mathcal{A}$,
- ▶ judgment set is a consistent $R_i \subseteq A$ s.t. $A \in R_i$ or $\neg A \in R_i$ for all $A \in A$ not of the form $\neg B$,
- ▶ profile is an *n*-tuple $R = (R_1, ..., R_n)$ of judgment sets,

Judgment aggregation problem: how to make a fair decision based on individual judgments?

Preference aggregation or social choice: how to determine society's preference (e.g. results of elections) from individual preferences (votes)? This is a special case of judgment aggregation.

Judgments can be formalized as consistent sets of logical formulas. A framework for judgment aggregation:

- \triangleright a set N of n individuals (agents, judges, voters),
- ▶ agenda \mathcal{A} , a set of formulas of a fixed underlying logic (containing \neg and \rightarrow with standard semantics), s.t. if A is not of the form $\neg B$, then $A \in \mathcal{A}$ iff $\neg A \in \mathcal{A}$,
- ▶ judgment set is a consistent $R_i \subseteq A$ s.t. $A \in R_i$ or $\neg A \in R_i$ for all $A \in A$ not of the form $\neg B$,
- ▶ profile is an *n*-tuple $R = (R_1, ..., R_n)$ of judgment sets,
- ▶ judgment aggregation rule (JAR) is a function F which maps each profile R to a judgment set F(R).

Judgment aggregation problem: how to make a fair decision based on individual judgments?

Preference aggregation or social choice: how to determine society's preference (e.g. results of elections) from individual preferences (votes)? This is a special case of judgment aggregation.

Judgments can be formalized as consistent sets of logical formulas.

A framework for judgment aggregation:

- \triangleright a set N of n individuals (agents, judges, voters),
- ▶ agenda \mathcal{A} , a set of formulas of a fixed underlying logic (containing \neg and \rightarrow with standard semantics), s.t. if A is not of the form $\neg B$, then $A \in \mathcal{A}$ iff $\neg A \in \mathcal{A}$,
- ▶ judgment set is a consistent $R_i \subseteq A$ s.t. $A \in R_i$ or $\neg A \in R_i$ for all $A \in A$ not of the form $\neg B$,
- ▶ profile is an *n*-tuple $R = (R_1, ..., R_n)$ of judgment sets,
- ▶ judgment aggregation rule (JAR) is a function F which maps each profile R to a judgment set F(R).

Judgment set R_i represents judgments of agent i, while F(R) represents resulting collective judgment.

Ågotnes et al.¹ defined a sound and complete modal logic JAL for reasoning about judgment aggregation, using a Hilbert-style axiomatization.

¹T. Ågotnes, W. van der Hoek, and M. Wooldridge. On the logic of preference and judgment aggregation.

¹T. Ågotnes, W. van der Hoek, and M. Wooldridge. On the logic of preference and judgment aggregation.

Ågotnes et al. 1 defined a sound and complete modal logic JAL for reasoning about judgment aggregation, using a Hilbert-style axiomatization. The language of JAL is parametrized by N and A:

▶ a propositional variable p_i for each $i \in N$,

¹T. Ågotnes, W. van der Hoek, and M. Wooldridge. On the logic of preference and judgment aggregation.

- ▶ a propositional variable p_i for each $i \in N$,
- ▶ a propositional variable q_A for each $A \in A$,

¹T. Ågotnes, W. van der Hoek, and M. Wooldridge. On the logic of preference and judgment aggregation.

- ▶ a propositional variable p_i for each $i \in N$,
- ▶ a propositional variable q_A for each $A \in A$,
- ightharpoonup a special propositional variable σ , representing the aggregated judgment,

¹T. Ågotnes, W. van der Hoek, and M. Wooldridge. On the logic of preference and judgment aggregation.

- ▶ a propositional variable p_i for each $i \in N$,
- ▶ a propositional variable q_A for each $A \in A$,
- ightharpoonup a special propositional variable σ , representing the aggregated judgment,
- ▶ formulas are built inductively using Boolean connectives and modalities □ and ■.

¹T. Ågotnes, W. van der Hoek, and M. Wooldridge. On the logic of preference and judgment aggregation.

Ågotnes et al. 1 defined a sound and complete modal logic JAL for reasoning about judgment aggregation, using a Hilbert-style axiomatization. The language of JAL is parametrized by N and A:

- ▶ a propositional variable p_i for each $i \in N$,
- ▶ a propositional variable q_A for each $A \in A$,
- ightharpoonup a special propositional variable σ , representing the aggregated judgment,
- ▶ formulas are built inductively using Boolean connectives and modalities □ and ■.

Formulas are interpreted on the fixed Kripke frame:

• worlds are all pairs (R, A), where R is a profile and $A \in A$,

¹T. Ågotnes, W. van der Hoek, and M. Wooldridge. On the logic of preference and judgment aggregation.

Ågotnes et al. 1 defined a sound and complete modal logic JAL for reasoning about judgment aggregation, using a Hilbert-style axiomatization. The language of JAL is parametrized by N and A:

- ▶ a propositional variable p_i for each $i \in N$,
- ▶ a propositional variable q_A for each $A \in A$,
- ightharpoonup a special propositional variable σ , representing the aggregated judgment,
- ▶ formulas are built inductively using Boolean connectives and modalities □ and ■.

Formulas are interpreted on the fixed Kripke frame:

- worlds are all pairs (R, A), where R is a profile and $A \in A$,
- accessibility relations corresponding to modalities are:
 - ▶ □: "have the same agenda item,"

¹T. Ågotnes, W. van der Hoek, and M. Wooldridge. On the logic of preference and judgment aggregation.

Ågotnes et al. 1 defined a sound and complete modal logic JAL for reasoning about judgment aggregation, using a Hilbert-style axiomatization. The language of JAL is parametrized by N and A:

- ▶ a propositional variable p_i for each $i \in N$,
- ▶ a propositional variable q_A for each $A \in A$,
- ightharpoonup a special propositional variable σ , representing the aggregated judgment,
- ▶ formulas are built inductively using Boolean connectives and modalities □ and ■.

Formulas are interpreted on the fixed Kripke frame:

- worlds are all pairs (R, A), where R is a profile and $A \in A$,
- accessibility relations corresponding to modalities are:
 - ▶ □: "have the same agenda item,"
 - ▶ ■: "have the same profile."

¹T. Ågotnes, W. van der Hoek, and M. Wooldridge. On the logic of preference and judgment aggregation.

A model is determined by a judgment aggregation rule F.

A model is determined by a judgment aggregation rule F. The truth of a formula is defined inductively:

▶ $F, R, A \Vdash p_i$ iff $A \in R_i$ (" i judges that A holds"),

- ▶ $F, R, A \Vdash p_i$ iff $A \in R_i$ ("i judges that A holds"),
- ► $F, R, A \Vdash q_B$ iff A = B,

- ▶ $F, R, A \Vdash p_i$ iff $A \in R_i$ ("i judges that A holds"),
- ▶ $F, R, A \Vdash q_B$ iff A = B,
- ▶ $F, R, A \Vdash \sigma$ iff $A \in F(R)$ ("group judges that A holds"),

- ▶ $F, R, A \Vdash p_i$ iff $A \in R_i$ ("i judges that A holds"),
- ▶ $F, R, A \Vdash q_B$ iff A = B,
- ▶ $F, R, A \Vdash \sigma$ iff $A \in F(R)$ ("group judges that A holds"),
- $ightharpoonup F, R, A \Vdash \neg \varphi \text{ iff } F, R, A \not\Vdash \varphi,$
- $ightharpoonup F, R, A \Vdash \varphi \lor \psi \text{ iff } F, R, A \Vdash \varphi \text{ or } F, R, A \Vdash \psi,$

- ▶ $F, R, A \Vdash p_i$ iff $A \in R_i$ ("i judges that A holds"),
- ▶ $F, R, A \Vdash q_B$ iff A = B,
- ▶ $F, R, A \Vdash \sigma$ iff $A \in F(R)$ ("group judges that A holds"),
- $ightharpoonup F, R, A \Vdash \neg \varphi \text{ iff } F, R, A \not\Vdash \varphi,$
- $ightharpoonup F, R, A \Vdash \varphi \lor \psi \text{ iff } F, R, A \Vdash \varphi \text{ or } F, R, A \Vdash \psi,$
- ▶ $F, R, A \Vdash \Box \varphi$ iff $F, R', A \Vdash \varphi$ for all profiles R',

- ▶ $F, R, A \Vdash p_i$ iff $A \in R_i$ ("i judges that A holds"),
- ▶ $F, R, A \Vdash q_B$ iff A = B,
- ▶ $F, R, A \Vdash \sigma$ iff $A \in F(R)$ ("group judges that A holds"),
- \blacktriangleright $F, R, A \Vdash \neg \varphi$ iff $F, R, A \not\Vdash \varphi$,
- $ightharpoonup F, R, A \Vdash \varphi \lor \psi \text{ iff } F, R, A \Vdash \varphi \text{ or } F, R, A \Vdash \psi,$
- ▶ $F, R, A \Vdash \Box \varphi$ iff $F, R', A \Vdash \varphi$ for all profiles R',
- ▶ $F, R, A \Vdash \blacksquare \varphi$ iff $F, R, A' \Vdash \varphi$ for all agenda items A'.

A *model* is determined by a judgment aggregation rule F. The truth of a formula is defined inductively:

- ▶ $F, R, A \Vdash p_i$ iff $A \in R_i$ ("i judges that A holds"),
- ▶ $F, R, A \Vdash q_B$ iff A = B,
- ▶ $F, R, A \Vdash \sigma$ iff $A \in F(R)$ ("group judges that A holds"),
- $ightharpoonup F, R, A \Vdash \neg \varphi \text{ iff } F, R, A \not\Vdash \varphi,$
- $ightharpoonup F, R, A \Vdash \varphi \lor \psi \text{ iff } F, R, A \Vdash \varphi \text{ or } F, R, A \Vdash \psi,$
- ▶ $F, R, A \Vdash \Box \varphi$ iff $F, R', A \Vdash \varphi$ for all profiles R',
- ▶ $F, R, A \Vdash \blacksquare \varphi$ iff $F, R, A' \Vdash \varphi$ for all agenda items A'.

The validity (denoted $\Vdash \varphi$) and the global truth in a model $(F \Vdash \varphi)$ is defined as usual.

A *model* is determined by a judgment aggregation rule F. The truth of a formula is defined inductively:

- ▶ $F, R, A \Vdash p_i$ iff $A \in R_i$ ("i judges that A holds"),
- ▶ $F, R, A \Vdash q_B$ iff A = B,
- ▶ $F, R, A \Vdash \sigma$ iff $A \in F(R)$ ("group judges that A holds"),
- $ightharpoonup F, R, A \Vdash \neg \varphi \text{ iff } F, R, A \not\Vdash \varphi,$
- $ightharpoonup F, R, A \Vdash \varphi \lor \psi \text{ iff } F, R, A \Vdash \varphi \text{ or } F, R, A \Vdash \psi,$
- ▶ $F, R, A \Vdash \Box \varphi$ iff $F, R', A \Vdash \varphi$ for all profiles R',
- ▶ $F, R, A \Vdash \blacksquare \varphi$ iff $F, R, A' \Vdash \varphi$ for all agenda items A'.

The validity (denoted $\Vdash \varphi$) and the global truth in a model $(F \Vdash \varphi)$ is defined as usual.

Clearly $\square \blacksquare$ is in fact the universal modality. We can use an abbreviation $U\varphi := \square \blacksquare \varphi$.

A *model* is determined by a judgment aggregation rule F. The truth of a formula is defined inductively:

- ▶ $F, R, A \Vdash p_i$ iff $A \in R_i$ ("i judges that A holds"),
- ▶ $F, R, A \Vdash q_B$ iff A = B,
- ▶ $F, R, A \Vdash \sigma$ iff $A \in F(R)$ ("group judges that A holds"),
- \blacktriangleright $F, R, A \Vdash \neg \varphi$ iff $F, R, A \not\Vdash \varphi$,
- $ightharpoonup F, R, A \Vdash \varphi \lor \psi \text{ iff } F, R, A \Vdash \varphi \text{ or } F, R, A \Vdash \psi,$
- ▶ $F, R, A \Vdash \Box \varphi$ iff $F, R', A \Vdash \varphi$ for all profiles R',
- ▶ $F, R, A \Vdash \blacksquare \varphi$ iff $F, R, A' \Vdash \varphi$ for all agenda items A'.

The validity (denoted $\Vdash \varphi$) and the global truth in a model $(F \Vdash \varphi)$ is defined as usual.

Clearly $\square \blacksquare$ is in fact the universal modality. We can use an abbreviation $U\varphi := \square \blacksquare \varphi$. We also use diamonds \lozenge , \blacklozenge , and E, respectively.

A model is determined by a judgment aggregation rule F. The truth of a formula is defined inductively:

- ▶ $F, R, A \Vdash p_i$ iff $A \in R_i$ ("i judges that A holds"),
- ▶ $F, R, A \Vdash q_B$ iff A = B,
- ▶ $F, R, A \Vdash \sigma$ iff $A \in F(R)$ ("group judges that A holds"),
- $ightharpoonup F, R, A \Vdash \neg \varphi \text{ iff } F, R, A \not\Vdash \varphi,$
- $ightharpoonup F, R, A \Vdash \varphi \lor \psi \text{ iff } F, R, A \Vdash \varphi \text{ or } F, R, A \Vdash \psi,$
- ▶ $F, R, A \Vdash \Box \varphi$ iff $F, R', A \Vdash \varphi$ for all profiles R',
- ▶ $F, R, A \Vdash \blacksquare \varphi$ iff $F, R, A' \Vdash \varphi$ for all agenda items A'.

The validity (denoted $\Vdash \varphi$) and the global truth in a model $(F \Vdash \varphi)$ is defined as usual.

Clearly $\square \blacksquare$ is in fact the universal modality. We can use an abbreviation $U\varphi := \square \blacksquare \varphi$. We also use diamonds \lozenge , \blacklozenge , and E, respectively.

For $C \subseteq N$, we denote $p_C := \bigwedge_{i \in C} p_i \land \bigwedge_{i \in N \setminus C} \neg p_i$ ("exactly voters from C judge that A holds).

In the case of preference aggregation, agenda is defined w.r.t. a fixed set M of m alternatives.

In the case of preference aggregation, agenda is defined w.r.t. a fixed set M of m alternatives. Agenda items are " $x \in M$ is preferred to $y \in M$."

In the case of preference aggregation, agenda is defined w.r.t. a fixed set M of m alternatives. Agenda items are " $x \in M$ is preferred to $y \in M$." Underlying logic is first-order theory of strict linear orderings.

In the case of preference aggregation, agenda is defined w.r.t. a fixed set M of m alternatives. Agenda items are " $x \in M$ is preferred to $y \in M$." Underlying logic is first-order theory of strict linear orderings. Agenda items are expressed as formulas of the form x < y or $\neg(x < y)$.

In the case of preference aggregation, agenda is defined w.r.t. a fixed set M of m alternatives. Agenda items are " $x \in M$ is preferred to $y \in M$." Underlying logic is first-order theory of strict linear orderings. Agenda items are expressed as formulas of the form x < y or $\neg(x < y)$. A judgment set determines a strict linear ordering on M.

In the case of preference aggregation, agenda is defined w.r.t. a fixed set M of m alternatives. Agenda items are " $x \in M$ is preferred to $y \in M$." Underlying logic is first-order theory of strict linear orderings. Agenda items are expressed as formulas of the form x < y or $\neg (x < y)$. A judgment set determines a strict linear ordering on M. A JAR is called a social welfare function (SWF).

In the case of preference aggregation, agenda is defined w.r.t. a fixed set M of m alternatives. Agenda items are " $x \in M$ is preferred to $y \in M$." Underlying logic is first-order theory of strict linear orderings. Agenda items are expressed as formulas of the form x < y or $\neg(x < y)$. A judgment set determines a strict linear ordering on M. A JAR is called a social welfare function (SWF). Consider some properties of SWF's which are expressive in JAL:

▶ We say that a social welfare function *F* satisfies the *Pareto* condition if, whenever all voters prefer *x* to *y*, then so does society.

In the case of preference aggregation, agenda is defined w.r.t. a fixed set M of m alternatives. Agenda items are " $x \in M$ is preferred to $y \in M$." Underlying logic is first-order theory of strict linear orderings. Agenda items are expressed as formulas of the form x < y or $\neg(x < y)$. A judgment set determines a strict linear ordering on M. A JAR is called a social welfare function (SWF). Consider some properties of SWF's which are expressive in JAL:

▶ We say that a social welfare function F satisfies the *Pareto* condition if, whenever all voters prefer x to y, then so does society. Clearly, this holds iff $F \Vdash U(p_1 \land \cdots \land p_n \to \sigma)$.

In the case of preference aggregation, agenda is defined w.r.t. a fixed set M of m alternatives. Agenda items are " $x \in M$ is preferred to $y \in M$." Underlying logic is first-order theory of strict linear orderings. Agenda items are expressed as formulas of the form x < y or $\neg(x < y)$. A judgment set determines a strict linear ordering on M. A JAR is called a social welfare function (SWF). Consider some properties of SWF's which are expressive in JAL:

- ▶ We say that a social welfare function F satisfies the *Pareto* condition if, whenever all voters prefer x to y, then so does society. Clearly, this holds iff $F \Vdash U(p_1 \land \cdots \land p_n \to \sigma)$.
- ▶ We call F a *dictatorship* if there is a voter whose preferences always agree with society's, i.e. $F \Vdash \bigvee_{i \in N} U(p_i \to \sigma)$.

In the case of preference aggregation, agenda is defined w.r.t. a fixed set M of m alternatives. Agenda items are " $x \in M$ is preferred to $y \in M$." Underlying logic is first-order theory of strict linear orderings. Agenda items are expressed as formulas of the form x < y or $\neg(x < y)$. A judgment set determines a strict linear ordering on M. A JAR is called a social welfare function (SWF). Consider some properties of SWF's which are expressive in JAL:

- ▶ We say that a social welfare function F satisfies the *Pareto* condition if, whenever all voters prefer x to y, then so does society. Clearly, this holds iff $F \Vdash U(p_1 \land \cdots \land p_n \to \sigma)$.
- ▶ We call F a *dictatorship* if there is a voter whose preferences always agree with society's, i.e. $F \Vdash \bigvee_{i \in N} U(p_i \to \sigma)$.
- ▶ A SWF *F* is *independent of irrelevant alternatives* (IIA) if society's preference between two alternatives does not depend on any individual's ranking of any other alternative.

In the case of preference aggregation, agenda is defined w.r.t. a fixed set M of m alternatives. Agenda items are " $x \in M$ is preferred to $y \in M$." Underlying logic is first-order theory of strict linear orderings. Agenda items are expressed as formulas of the form x < y or $\neg(x < y)$. A judgment set determines a strict linear ordering on M. A JAR is called a social welfare function (SWF). Consider some properties of SWF's which are expressive in JAL:

- ▶ We say that a social welfare function F satisfies the *Pareto* condition if, whenever all voters prefer x to y, then so does society. Clearly, this holds iff $F \Vdash U(p_1 \land \cdots \land p_n \to \sigma)$.
- ▶ We call F a *dictatorship* if there is a voter whose preferences always agree with society's, i.e. $F \Vdash \bigvee_{i \in N} U(p_i \to \sigma)$.
- ▶ A SWF F is independent of irrelevant alternatives (IIA) if society's preference between two alternatives does not depend on any individual's ranking of any other alternative. This is equivalent to $F \Vdash U \bigwedge_{C \subset N} (p_C \land \sigma \to \Box(p_C \to \sigma))$.

Arrow's Theorem

Denote the formulas from previous examples as follows:

- Pareto := $U(p_1 \wedge \cdots \wedge p_n \rightarrow \sigma)$,
- ► IIA := $U \bigwedge_{C \subseteq N} (p_C \land \sigma \to \Box (p_C \to \sigma))$,
- ▶ Dictatorial := $F \Vdash \bigvee_{i \in N} U(p_i \to \sigma)$.

We can now express (instances of) Arrow's impossibility theorem (if there are more then two alternatives, there is no non-dictatorial SWF that satisfies the Pareto condition and IIA): if $|M| \geqslant 3$, then $\Vdash \neg (Pareto \land IIA \land \neg Dictatorial)$. Ågotnes et al. make some steps towards a formal Hilbert-style proof. I propose an alternative approach – a natural deduction system – to formalize a proof of Arrow's Theorem adapted from Sen², as presented by Endriss³.

In K.J. Arrow and M.D. Intriligator, editors, *Handbook of Mathematical Economics, Volume 3.* North-Holland, 1986

²A.K. Sen. Social choice theory.

³U. Endriss. Logic and social choice theory.

In A. Gupta and J. van Benthem, editors, *Logic and Philosophy Today*. College Publications, 2011

Let $Prof = \{R_1, R_2, \dots\}$ and $Var = \{X_1, X_2, \dots\}$ be countable sets of symbols. A *proof* is a sequence of clauses of the form $R, X : \varphi$, where $R \in Prof$, $X \in Var \cup \mathcal{A}$, and φ is a formula of the language of JAL, built using the following rules:

$$\frac{R,X:\varphi}{R,X:\psi} (\land I)$$

$$\frac{R,X:\varphi \land \psi}{R,X:\varphi} (\land E) \qquad \frac{R,X:\varphi \land \psi}{R,X:\psi} (\land E)$$

$$\frac{R,X:\varphi}{R,X:\varphi} (\lor I) \qquad \frac{R,X:\psi}{R,X:\varphi \lor \psi} (\lor I)$$

$$\frac{R,X:\varphi}{R,X:\varphi} (DN)$$

$$\frac{R,X:\varphi \rightarrow \psi}{R,X:\varphi} (\rightarrow E) \qquad \frac{R,X:\varphi}{R,X:\neg \varphi} (\neg E)$$

$$\begin{bmatrix} R, X : \varphi \\ \vdots \\ R, X : \psi \end{bmatrix}$$

$$R, X : \varphi \lor \varphi'$$

$$\vdots \\ R, X : \psi$$

$$R, X : \varphi \to \psi \quad (\to I)$$

$$R, X : \psi$$

$$R, X : \varphi'$$

$$\vdots$$

$$R, X : \varphi'$$

$$\vdots$$

$$R, X : \psi$$

where R' and X' are any (including R and X).

where R' and $X' \in Var$ are new, i.e. did not appear in the proof before.

The following rules reflect the semantics of propositional variables, and consistency and completeness of judgment sets.

$$\frac{R, X : q_{A}}{R, X : q_{A}} (Q1) \qquad \frac{R, X : q_{A}}{R, X : \neg q_{B}} (Q2) \qquad \overline{R, X : \bigvee_{A \in \mathcal{A}} q_{A}} (Q3)$$

$$\frac{R, X : q_{A}}{R', X : q_{A}} (Q4) \qquad \qquad \frac{R, X : q_{A}}{R, X' : q_{A}}$$

$$\frac{R, X : q_{A}}{R, X' : \varphi} (Q5)$$

where $A, B \in \mathcal{A}$, $B \neq A$, $R, R' \in Prof$, $X, X' \in Var \cup \mathcal{A}$.

The following rules reflect the semantics of propositional variables, and consistency and completeness of judgment sets.

$$\frac{R, X : q_{A}}{R, X : q_{A}} (Q1) \qquad \frac{R, X : q_{A}}{R, X : \neg q_{B}} (Q2) \qquad \overline{R, X : \bigvee_{A \in \mathcal{A}} q_{A}} (Q3)$$

$$\frac{R, X : q_{A}}{R', X : q_{A}} (Q4) \qquad \qquad \frac{R, X : q_{A}}{R, X' : q_{A}}$$

$$\frac{R, X : q_{A}}{R, X' : \varphi} (Q5)$$

where $A, B \in \mathcal{A}$, $B \neq A$, $R, R' \in Prof$, $X, X' \in Var \cup \mathcal{A}$.

$$\begin{array}{c} R, A_1 : p \\ \vdots \\ R, A_k : p \\ R, B : p \end{array}$$
 (Compl)

where $A_1, \ldots, A_k \vdash B$ in the underlying logic, p is any p_i or σ , and \tilde{X} is $\neg X$ if X is not of the form $\neg Y$, otherwise it is Y.

Universal domain rules

An individual can judge about agenda items in any possible way, so a JAR must provide a group decision for any possible profile (universal domain assumption).

Universal domain rules

An individual can judge about agenda items in any possible way, so a JAR must provide a group decision for any possible profile (universal domain assumption). This allows a type of argument in an informal proof, which begins like this: let R be a profile such that individuals from $C_1 \subseteq N$ judge A_1 , individuals from C_2 judge A_2 , and so on.

Universal domain rules

An individual can judge about agenda items in any possible way, so a JAR must provide a group decision for any possible profile (universal domain assumption). This allows a type of argument in an informal proof, which begins like this: let R be a profile such that individuals from $C_1 \subseteq N$ judge A_1 , individuals from C_2 judge A_2 , and so on. To address this, we add the following rules:

$$R_{1}, X' : p_{i}$$

$$R_{2}, X' : \neg p_{j}$$

$$R', A_{k} : p_{C_{k}}$$

$$\vdots$$

$$R, X : \varphi$$

where R' is new, $X' \in Var$, $C_1, \ldots, C_k, C \subseteq N$ and $A_1, \ldots, A_k \in \mathcal{A}$ s.t. for all $i \in N$, $\{A_j : i \in C_j\} \cup \{\neg A_j : i \notin C_j\}$ is consistent in the underlying logic.

A proof can end at any point, provided all boxes are completed. A formula φ is a *theorem* (we write $\vdash \varphi$) if there is a proof (with all boxes completed) which ends with a clause $R, X : \varphi$.

A proof can end at any point, provided all boxes are completed. A formula φ is a *theorem* (we write $\vdash \varphi$) if there is a proof (with all boxes completed) which ends with a clause $R, X : \varphi$.

Theorem

Let φ be any formula of the language of JAL. Then $\vdash \varphi$ iff $\Vdash \varphi$.

A proof can end at any point, provided all boxes are completed. A formula φ is a *theorem* (we write $\vdash \varphi$) if there is a proof (with all boxes completed) which ends with a clause $R, X : \varphi$.

Theorem

Let φ be any formula of the language of JAL. Then $\vdash \varphi$ iff $\Vdash \varphi$.

Proof.

 (\Rightarrow) The claim follows by induction from the apparent soundness of the rules.

A proof can end at any point, provided all boxes are completed. A formula φ is a *theorem* (we write $\vdash \varphi$) if there is a proof (with all boxes completed) which ends with a clause $R, X : \varphi$.

Theorem

Let φ be any formula of the language of JAL. Then $\vdash \varphi$ iff $\Vdash \varphi$.

Proof.

- (⇒) The claim follows by induction from the apparent soundness of the rules.
- (⇐) We prove the axioms and simulate the inference rules from Ågotnes et al. in the natural deduction system.

A proof can end at any point, provided all boxes are completed. A formula φ is a *theorem* (we write $\vdash \varphi$) if there is a proof (with all boxes completed) which ends with a clause $R, X : \varphi$.

Theorem

Let φ be any formula of the language of JAL. Then $\vdash \varphi$ iff $\Vdash \varphi$.

Proof.

- (⇒) The claim follows by induction from the apparent soundness of the rules.
- (⇐) We prove the axioms and simulate the inference rules from Ågotnes et al. in the natural deduction system.

Further work: questions regarding complexity, implementation etc.

An admissible rule for preference aggregation

Recall that agenda items in the case of preference aggregation are of the form x < y or $\neg(x < y)$, so we can consider agenda items to be pairs of alternatives.

An admissible rule for preference aggregation

Recall that agenda items in the case of preference aggregation are of the form x < y or $\neg(x < y)$, so we can consider agenda items to be pairs of alternatives. So, in proofs we can write $R, (x, y) : \varphi$ instead of $R, X : \varphi$.

An admissible rule for preference aggregation

Recall that agenda items in the case of preference aggregation are of the form x < y or $\neg(x < y)$, so we can consider agenda items to be pairs of alternatives. So, in proofs we can write $R,(x,y):\varphi$ instead of $R,X:\varphi$. It is easy to see that the following variant of universal domain rule is admissible for preference aggregation:

$$R', (x_1, y_1) : p_{C_1}$$

$$\vdots$$

$$R', (x_k, y_k) : p_{C_k}$$

$$\vdots$$

$$R, (x, y) : \varphi$$

$$R, (x, y) : \varphi$$
 (UD)

where for each $i \in N$, $\{x_j < y_j : i \in C_j\} \cup \{\neg(x_j < y_j) : i \notin C_j\}$ is consistent for all possible choices of $x_1, y_1, \dots, x_k, y_k \in M$.

If
$$C \subseteq D$$
, then $\vdash (Pareto \land IIA) \rightarrow (\Box(p_C \rightarrow \sigma) \rightarrow U(p_D \rightarrow \sigma))$.

If $C \subseteq D$, then $\vdash (Pareto \land IIA) \rightarrow (\Box(p_C \rightarrow \sigma) \rightarrow U(p_D \rightarrow \sigma))$. This is an important part of a proof of Arrow's Theorem.

If $C \subseteq D$, then $\vdash (Pareto \land IIA) \rightarrow (\Box(p_C \rightarrow \sigma) \rightarrow U(p_D \rightarrow \sigma))$. This is an important part of a proof of Arrow's Theorem. A natural deduction proof should end with $R, (x, y) : (Pareto \land IIA) \rightarrow (\Box(p_C \rightarrow \sigma) \rightarrow U(p_D \rightarrow \sigma))$.

```
R, (x, y): Pareto \wedge IIA
\vdots
R, (x, y): \Box(p_C \rightarrow \sigma) \rightarrow U(p_D \rightarrow \sigma)
R, (x, y): (Pareto \wedge IIA) \rightarrow (\Box(p_C \rightarrow \sigma) \rightarrow U(p_D \rightarrow \sigma)) \ (\rightarrow I)
```

$$R, (x, y) : Pareto \wedge IIA$$

$$R, (x, y) : \Box(p_C \to \sigma)$$

$$\vdots$$

$$R, (x, y) : U(p_D \to \sigma)$$

$$R, (x, y) : \Box(p_C \to \sigma) \to U(p_D \to \sigma) \quad (\to I)$$

$$R, (x, y) : (Pareto \wedge IIA) \to (\Box(p_C \to \sigma) \to U(p_D \to \sigma)) \quad (\to I)$$

$$R, (x, y) : Pareto \wedge IIA$$

$$R, (x, y) : \Box(p_C \to \sigma)$$

$$\vdots$$

$$R', (x', y') : p_D \to \sigma$$

$$R, (x, y) : U(p_D \to \sigma) \quad (UI)$$

$$R, (x, y) : \Box(p_C \to \sigma) \to U(p_D \to \sigma) \quad (\to I)$$

$$R, (x, y) : (Pareto \wedge IIA) \to (\Box(p_C \to \sigma) \to U(p_D \to \sigma)) \quad (\to I)$$

$$R, (x, y) : Pareto \wedge IIA$$

$$R, (x, y) : \Box(p_C \to \sigma)$$

$$R'', (x, y) : p_C$$

$$R'', (x', y') : p_D$$

$$R'', (y, y') : p_N$$

$$R'', (x', x) : p_N$$

$$\vdots$$

$$R, (x, y) : U(p_D \to \sigma) \quad (UI)$$

$$R, (x, y) : \Box(p_C \to \sigma) \to U(p_D \to \sigma) \quad (\to I)$$

$$R, (x, y) : (Pareto \wedge IIA) \to (\Box(p_C \to \sigma) \to U(p_D \to \sigma)) \quad (\to I)$$

```
R, (x, y) : Pareto \land IIA

R, (x, y) : \Box(p_C \rightarrow \sigma)

R'', (x, y) : p_C

R'', (x', y') : p_D

R'', (y, y') : p_N

R'', (x', x) : p_N

\vdots

R', (x', y') : p_D \rightarrow \sigma
```

```
R,(x,y): Pareto \wedge IIA
R,(x,y):\Box(p_C\to\sigma)
 R'', (x, y) : p_C
 R'', (x', y') : p_D
 R'', (y, y') : p_N
 R'', (x', x) : p_N
 R'', (x, y) : p_C \to \sigma \quad (\Box E)
\overline{R',(x',y')}: p_D \to \sigma
```

```
R,(x,y): Pareto \wedge IIA
R,(x,y):\Box(p_C\to\sigma)
 R'', (x, y) : p_C
 R'', (x', y') : p_D
 R'', (v, v') : p_N
 R'', (x', x) : p_N
 R'', (x, y) : p_C \to \sigma \quad (\Box E)
 R'',(x,y):\sigma (\rightarrow E)
\overline{R',(x',y')}:p_D\to\sigma
```

```
R,(x,y): Pareto \wedge IIA
R,(x,y):\Box(p_C\to\sigma)
R'', (x, y) : p_C
 R'', (x', y') : p_D
 R'', (y, y') : p_N
 R'', (x', x) : p_N
 R'', (x, y) : p_C \to \sigma \quad (\Box E)
 R'',(x,y):\sigma (\rightarrow E)
 R'', (y, y') : \sigma (Pareto)
 R'', (x', x) : \sigma (Pareto)
R',(x',y'):p_D\to\sigma
```

```
R,(x,y): Pareto \wedge IIA
R,(x,y):\Box(p_C\to\sigma)
R'', (x, y) : p_C
 R'', (x', y') : p_D
R'', (y, y') : p_N
 R'', (x', x) : p_N
 R'',(x,y):p_C\to\sigma (\BoxE)
 R'',(x,y):\sigma (\rightarrow E)
 R'', (y, y') : \sigma (Pareto)
 R'', (x', x) : \sigma (Pareto)
 R'', (x', y') : \sigma (Cons)
R', (x', y') : p_D \rightarrow \sigma
```

```
R, (x, y) : Pareto \wedge IIA
R, (x, y) : \Box(p_C \rightarrow \sigma)
```

```
R'', (x, y) : p_C
R'', (x', y') : p_D
R'', (v, v') : p_N
R'', (x', x) : p_N
R'', (x, y) : p_C \to \sigma \quad (\Box E)
R'',(x,y):\sigma (\rightarrow E)
R'', (y, y') : \sigma (Pareto)
R'', (x', x) : \sigma (Pareto)
R'', (x', y') : \sigma (Cons)
R'', (x', y') : p_D \wedge \sigma \quad (\land I)
```

```
R,(x,y):\Box(p_C\to\sigma)
R'', (x, y) : p_C
R'', (x', y') : p_D
R'', (v, v') : p_N
R'', (x', x) : p_N
 R'',(x,y):p_C\to\sigma (\BoxE)
 R'',(x,y):\sigma (\rightarrow E)
 R'', (y, y') : \sigma (Pareto)
 R'', (x', x) : \sigma (Pareto)
 R'', (x', y') : \sigma (Cons)
 R'', (x', y') : p_D \wedge \sigma \quad (\land I)
 R'', (x', v') : p_D \wedge \sigma \rightarrow \Box(p_D \rightarrow \sigma)
```

 $D'(x', y') \cdot p_{\pi} \setminus \sigma$

$$R, (x, y) : \Box(p_C \to \sigma)$$

$$R'', (x, y) : p_C$$

$$R'', (x', y') : p_D$$

$$R'', (y, y') : p_N$$

$$R'', (x', x) : p_N$$

$$R'', (x, y) : p_C \to \sigma \quad (\Box E)$$

$$R'', (x, y) : \sigma \quad (\to E)$$

$$R'', (x, y) : \sigma \quad (Pareto)$$

$$R'', (x', x) : \sigma \quad (Pareto)$$

$$R'', (x', x') : \sigma \quad (Cons)$$

$$R'', (x', y') : p_D \land \sigma \quad (\land I)$$

$$R'', (x', y') : p_D \land \sigma \to \Box(p_D \to \sigma) \quad (IIA)$$

$$R'', (x', y') : \Box(p_D \to \sigma) \quad (\to E)$$

$$R, (x, y) : \Box(p_C \to \sigma)$$

$$R'', (x, y) : p_C$$

$$R'', (x', y') : p_D$$

$$R'', (y, y') : p_N$$

$$R'', (x', x) : p_N$$

$$R'', (x, y) : p_C \to \sigma \quad (\Box E)$$

$$R'', (x, y) : \sigma \quad (\to E)$$

$$R'', (x, y) : \sigma \quad (Pareto)$$

$$R'', (x', x) : \sigma \quad (Pareto)$$

$$R'', (x', x') : \sigma \quad (Cons)$$

$$R'', (x', y') : p_D \land \sigma \quad (\land I)$$

$$R'', (x', y') : p_D \land \sigma \to \Box(p_D \to \sigma) \quad (HA)$$

$$R'', (x', y') : \Box(p_D \to \sigma) \quad (\to E)$$

$$R', (x', y') : p_D \to \sigma \quad (\Box E)$$