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Judgment aggregation
Judgment aggregation problem: how to make a fair decision based
on individual judgments?

Preference aggregation or social choice: how to determine society’s
preference (e.g. results of elections) from individual preferences
(votes)? This is a special case of judgment aggregation.
Judgments can be formalized as consistent sets of logical formulas.
A framework for judgment aggregation:
I a set N of n individuals (agents, judges, voters),
I agenda A, a set of formulas of a fixed underlying logic

(containing ¬ and → with standard semantics), s.t. if A is not
of the form ¬B, then A ∈ A iff ¬A ∈ A,

I judgment set is a consistent Ri ⊆ A s.t. A ∈ Ri or ¬A ∈ Ri

for all A ∈ A not of the form ¬B,
I profile is an n-tuple R = (R1, . . . ,Rn) of judgment sets,
I judgment aggregation rule (JAR) is a function F which maps

each profile R to a judgment set F (R).

Judgment set Ri represents judgments of agent i , while F (R)
represents resulting collective judgment.
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Modal logic of judgment aggregation
Ågotnes et al.1 defined a sound and complete modal logic JAL for
reasoning about judgment aggregation, using a Hilbert-style
axiomatization.

The language of JAL is parametrized by N and A:

I a propositional variable pi for each i ∈ N,

I a propositional variable qA for each A ∈ A,

I a special propositional variable σ, representing the aggregated
judgment,

I formulas are built inductively using Boolean connectives and
modalities � and �.

Formulas are interpreted on the fixed Kripke frame:

I worlds are all pairs (R,A), where R is a profile and A ∈ A,
I accessibility relations corresponding to modalities are:

I �: ”have the same agenda item,”
I �: ”have the same profile.”

1T. Ågotnes, W. van der Hoek, and M. Wooldridge. On the logic of
preference and judgment aggregation.
Autonomous Agents and Multi-Agent Systems, 22(1):4–30, 2011
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1T. Ågotnes, W. van der Hoek, and M. Wooldridge. On the logic of
preference and judgment aggregation.
Autonomous Agents and Multi-Agent Systems, 22(1):4–30, 2011



Modal logic of judgment aggregation
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Semantics
A model is determined by a judgment aggregation rule F .

The
truth of a formula is defined inductively:

I F ,R,A 
 pi iff A ∈ Ri (”i judges that A holds”),

I F ,R,A 
 qB iff A = B,

I F ,R,A 
 σ iff A ∈ F (R) (”group judges that A holds”),

I F ,R,A 
 ¬ϕ iff F ,R,A 6
 ϕ,

I F ,R,A 
 ϕ ∨ ψ iff F ,R,A 
 ϕ or F ,R,A 
 ψ,

I F ,R,A 
 �ϕ iff F ,R ′,A 
 ϕ for all profiles R ′,

I F ,R,A 
 �ϕ iff F ,R,A′ 
 ϕ for all agenda items A′.

The validity (denoted 
 ϕ) and the global truth in a model
(F 
 ϕ) is defined as usual.
Clearly �� is in fact the universal modality. We can use an
abbreviation Uϕ := ��ϕ. We also use diamonds ♦, �, and E ,
respectively.
For C ⊆ N, we denote pC :=

∧
i∈C pi ∧

∧
i∈N\C ¬pi (”exactly

voters from C judge that A holds).
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∧
i∈N\C ¬pi (”exactly

voters from C judge that A holds).



Semantics
A model is determined by a judgment aggregation rule F . The
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Preference aggregation
In the case of preference aggregation, agenda is defined w.r.t. a
fixed set M of m alternatives.

Agenda items are ”x ∈ M is
preferred to y ∈ M.” Underlying logic is first-order theory of strict
linear orderings. Agenda items are expressed as formulas of the
form x < y or ¬(x < y). A judgment set determines a strict linear
ordering on M. A JAR is called a social welfare function (SWF).
Consider some properties of SWF’s which are expressive in JAL:

I We say that a social welfare function F satisfies the Pareto
condition if, whenever all voters prefer x to y , then so does
society. Clearly, this holds iff F 
 U(p1 ∧ · · · ∧ pn → σ).

I We call F a dictatorship if there is a voter whose preferences
always agree with society’s, i.e. F 


∨
i∈N U(pi → σ).

I A SWF F is independent of irrelevant alternatives (IIA) if
society’s preference between two alternatives does not depend
on any individual’s ranking of any other alternative. This is
equivalent to F 
 U

∧
C⊆N(pC ∧ σ → �(pC → σ)).



Preference aggregation
In the case of preference aggregation, agenda is defined w.r.t. a
fixed set M of m alternatives. Agenda items are ”x ∈ M is
preferred to y ∈ M.”

Underlying logic is first-order theory of strict
linear orderings. Agenda items are expressed as formulas of the
form x < y or ¬(x < y). A judgment set determines a strict linear
ordering on M. A JAR is called a social welfare function (SWF).
Consider some properties of SWF’s which are expressive in JAL:

I We say that a social welfare function F satisfies the Pareto
condition if, whenever all voters prefer x to y , then so does
society. Clearly, this holds iff F 
 U(p1 ∧ · · · ∧ pn → σ).

I We call F a dictatorship if there is a voter whose preferences
always agree with society’s, i.e. F 


∨
i∈N U(pi → σ).

I A SWF F is independent of irrelevant alternatives (IIA) if
society’s preference between two alternatives does not depend
on any individual’s ranking of any other alternative. This is
equivalent to F 
 U

∧
C⊆N(pC ∧ σ → �(pC → σ)).



Preference aggregation
In the case of preference aggregation, agenda is defined w.r.t. a
fixed set M of m alternatives. Agenda items are ”x ∈ M is
preferred to y ∈ M.” Underlying logic is first-order theory of strict
linear orderings.

Agenda items are expressed as formulas of the
form x < y or ¬(x < y). A judgment set determines a strict linear
ordering on M. A JAR is called a social welfare function (SWF).
Consider some properties of SWF’s which are expressive in JAL:

I We say that a social welfare function F satisfies the Pareto
condition if, whenever all voters prefer x to y , then so does
society. Clearly, this holds iff F 
 U(p1 ∧ · · · ∧ pn → σ).

I We call F a dictatorship if there is a voter whose preferences
always agree with society’s, i.e. F 


∨
i∈N U(pi → σ).

I A SWF F is independent of irrelevant alternatives (IIA) if
society’s preference between two alternatives does not depend
on any individual’s ranking of any other alternative. This is
equivalent to F 
 U

∧
C⊆N(pC ∧ σ → �(pC → σ)).



Preference aggregation
In the case of preference aggregation, agenda is defined w.r.t. a
fixed set M of m alternatives. Agenda items are ”x ∈ M is
preferred to y ∈ M.” Underlying logic is first-order theory of strict
linear orderings. Agenda items are expressed as formulas of the
form x < y or ¬(x < y).

A judgment set determines a strict linear
ordering on M. A JAR is called a social welfare function (SWF).
Consider some properties of SWF’s which are expressive in JAL:

I We say that a social welfare function F satisfies the Pareto
condition if, whenever all voters prefer x to y , then so does
society. Clearly, this holds iff F 
 U(p1 ∧ · · · ∧ pn → σ).

I We call F a dictatorship if there is a voter whose preferences
always agree with society’s, i.e. F 


∨
i∈N U(pi → σ).

I A SWF F is independent of irrelevant alternatives (IIA) if
society’s preference between two alternatives does not depend
on any individual’s ranking of any other alternative. This is
equivalent to F 
 U

∧
C⊆N(pC ∧ σ → �(pC → σ)).



Preference aggregation
In the case of preference aggregation, agenda is defined w.r.t. a
fixed set M of m alternatives. Agenda items are ”x ∈ M is
preferred to y ∈ M.” Underlying logic is first-order theory of strict
linear orderings. Agenda items are expressed as formulas of the
form x < y or ¬(x < y). A judgment set determines a strict linear
ordering on M.

A JAR is called a social welfare function (SWF).
Consider some properties of SWF’s which are expressive in JAL:

I We say that a social welfare function F satisfies the Pareto
condition if, whenever all voters prefer x to y , then so does
society. Clearly, this holds iff F 
 U(p1 ∧ · · · ∧ pn → σ).

I We call F a dictatorship if there is a voter whose preferences
always agree with society’s, i.e. F 


∨
i∈N U(pi → σ).

I A SWF F is independent of irrelevant alternatives (IIA) if
society’s preference between two alternatives does not depend
on any individual’s ranking of any other alternative. This is
equivalent to F 
 U

∧
C⊆N(pC ∧ σ → �(pC → σ)).



Preference aggregation
In the case of preference aggregation, agenda is defined w.r.t. a
fixed set M of m alternatives. Agenda items are ”x ∈ M is
preferred to y ∈ M.” Underlying logic is first-order theory of strict
linear orderings. Agenda items are expressed as formulas of the
form x < y or ¬(x < y). A judgment set determines a strict linear
ordering on M. A JAR is called a social welfare function (SWF).

Consider some properties of SWF’s which are expressive in JAL:

I We say that a social welfare function F satisfies the Pareto
condition if, whenever all voters prefer x to y , then so does
society. Clearly, this holds iff F 
 U(p1 ∧ · · · ∧ pn → σ).

I We call F a dictatorship if there is a voter whose preferences
always agree with society’s, i.e. F 


∨
i∈N U(pi → σ).

I A SWF F is independent of irrelevant alternatives (IIA) if
society’s preference between two alternatives does not depend
on any individual’s ranking of any other alternative. This is
equivalent to F 
 U

∧
C⊆N(pC ∧ σ → �(pC → σ)).



Preference aggregation
In the case of preference aggregation, agenda is defined w.r.t. a
fixed set M of m alternatives. Agenda items are ”x ∈ M is
preferred to y ∈ M.” Underlying logic is first-order theory of strict
linear orderings. Agenda items are expressed as formulas of the
form x < y or ¬(x < y). A judgment set determines a strict linear
ordering on M. A JAR is called a social welfare function (SWF).
Consider some properties of SWF’s which are expressive in JAL:

I We say that a social welfare function F satisfies the Pareto
condition if, whenever all voters prefer x to y , then so does
society.

Clearly, this holds iff F 
 U(p1 ∧ · · · ∧ pn → σ).

I We call F a dictatorship if there is a voter whose preferences
always agree with society’s, i.e. F 


∨
i∈N U(pi → σ).

I A SWF F is independent of irrelevant alternatives (IIA) if
society’s preference between two alternatives does not depend
on any individual’s ranking of any other alternative. This is
equivalent to F 
 U

∧
C⊆N(pC ∧ σ → �(pC → σ)).



Preference aggregation
In the case of preference aggregation, agenda is defined w.r.t. a
fixed set M of m alternatives. Agenda items are ”x ∈ M is
preferred to y ∈ M.” Underlying logic is first-order theory of strict
linear orderings. Agenda items are expressed as formulas of the
form x < y or ¬(x < y). A judgment set determines a strict linear
ordering on M. A JAR is called a social welfare function (SWF).
Consider some properties of SWF’s which are expressive in JAL:

I We say that a social welfare function F satisfies the Pareto
condition if, whenever all voters prefer x to y , then so does
society. Clearly, this holds iff F 
 U(p1 ∧ · · · ∧ pn → σ).

I We call F a dictatorship if there is a voter whose preferences
always agree with society’s, i.e. F 


∨
i∈N U(pi → σ).

I A SWF F is independent of irrelevant alternatives (IIA) if
society’s preference between two alternatives does not depend
on any individual’s ranking of any other alternative. This is
equivalent to F 
 U

∧
C⊆N(pC ∧ σ → �(pC → σ)).



Preference aggregation
In the case of preference aggregation, agenda is defined w.r.t. a
fixed set M of m alternatives. Agenda items are ”x ∈ M is
preferred to y ∈ M.” Underlying logic is first-order theory of strict
linear orderings. Agenda items are expressed as formulas of the
form x < y or ¬(x < y). A judgment set determines a strict linear
ordering on M. A JAR is called a social welfare function (SWF).
Consider some properties of SWF’s which are expressive in JAL:

I We say that a social welfare function F satisfies the Pareto
condition if, whenever all voters prefer x to y , then so does
society. Clearly, this holds iff F 
 U(p1 ∧ · · · ∧ pn → σ).

I We call F a dictatorship if there is a voter whose preferences
always agree with society’s, i.e. F 


∨
i∈N U(pi → σ).

I A SWF F is independent of irrelevant alternatives (IIA) if
society’s preference between two alternatives does not depend
on any individual’s ranking of any other alternative. This is
equivalent to F 
 U

∧
C⊆N(pC ∧ σ → �(pC → σ)).



Preference aggregation
In the case of preference aggregation, agenda is defined w.r.t. a
fixed set M of m alternatives. Agenda items are ”x ∈ M is
preferred to y ∈ M.” Underlying logic is first-order theory of strict
linear orderings. Agenda items are expressed as formulas of the
form x < y or ¬(x < y). A judgment set determines a strict linear
ordering on M. A JAR is called a social welfare function (SWF).
Consider some properties of SWF’s which are expressive in JAL:

I We say that a social welfare function F satisfies the Pareto
condition if, whenever all voters prefer x to y , then so does
society. Clearly, this holds iff F 
 U(p1 ∧ · · · ∧ pn → σ).

I We call F a dictatorship if there is a voter whose preferences
always agree with society’s, i.e. F 


∨
i∈N U(pi → σ).

I A SWF F is independent of irrelevant alternatives (IIA) if
society’s preference between two alternatives does not depend
on any individual’s ranking of any other alternative.

This is
equivalent to F 
 U

∧
C⊆N(pC ∧ σ → �(pC → σ)).



Preference aggregation
In the case of preference aggregation, agenda is defined w.r.t. a
fixed set M of m alternatives. Agenda items are ”x ∈ M is
preferred to y ∈ M.” Underlying logic is first-order theory of strict
linear orderings. Agenda items are expressed as formulas of the
form x < y or ¬(x < y). A judgment set determines a strict linear
ordering on M. A JAR is called a social welfare function (SWF).
Consider some properties of SWF’s which are expressive in JAL:

I We say that a social welfare function F satisfies the Pareto
condition if, whenever all voters prefer x to y , then so does
society. Clearly, this holds iff F 
 U(p1 ∧ · · · ∧ pn → σ).

I We call F a dictatorship if there is a voter whose preferences
always agree with society’s, i.e. F 


∨
i∈N U(pi → σ).

I A SWF F is independent of irrelevant alternatives (IIA) if
society’s preference between two alternatives does not depend
on any individual’s ranking of any other alternative. This is
equivalent to F 
 U

∧
C⊆N(pC ∧ σ → �(pC → σ)).



Arrow’s Theorem

Denote the formulas from previous examples as follows:

I Pareto := U(p1 ∧ · · · ∧ pn → σ),

I IIA := U
∧

C⊆N(pC ∧ σ → �(pC → σ)),

I Dictatorial := F 

∨

i∈N U(pi → σ).

We can now express (instances of) Arrow’s impossibility theorem
(if there are more then two alternatives, there is no non-dictatorial
SWF that satisfies the Pareto condition and IIA): if |M| > 3, then

 ¬(Pareto ∧ IIA ∧ ¬Dictatorial). Ågotnes et al. make some steps
towards a formal Hilbert-style proof. I propose an alternative
approach – a natural deduction system – to formalize a proof of
Arrow’s Theorem adapted from Sen2, as presented by Endriss3.

2A.K. Sen. Social choice theory.
In K.J. Arrow and M.D. Intriligator, editors, Handbook of Mathematical
Economics, Volume 3. North-Holland, 1986

3U. Endriss. Logic and social choice theory.
In A. Gupta and J. van Benthem, editors, Logic and Philosophy Today. College
Publications, 2011



Natural deduction rules
Let Prof = {R1,R2, . . . } and Var = {X1,X2, . . . } be countable
sets of symbols. A proof is a sequence of clauses of the form
R,X : ϕ, where R ∈ Prof , X ∈ Var ∪ A, and ϕ is a formula of the
language of JAL, built using the following rules:

R,X : ϕ
R,X : ψ

R,X : ϕ ∧ ψ (∧I)

R,X : ϕ ∧ ψ
R,X : ϕ

(∧E)
R,X : ϕ ∧ ψ
R,X : ψ

(∧E)

R,X : ϕ

R,X : ϕ ∨ ψ (∨I)
R,X : ψ

R,X : ϕ ∨ ψ (∨I)

R,X : ¬¬ϕ
R,X : ϕ

(DN)

R,X : ϕ→ ψ
R,X : ϕ

R,X : ψ
(→E)

R,X : ϕ
R,X : ¬ϕ
R,X : ⊥ (¬E)
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R ′,X ′ : ⊥
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R,X : �ϕ
R ′,X : ϕ

(�E)
R,X : �ϕ
R,X ′ : ϕ

(�E)
R,X : Uϕ

R ′,X ′ : ϕ
(UE)

R,X : ϕ

R ′,X : ♦ϕ
(♦I)

R,X : ϕ

R,X ′ : �ϕ
(�I)

R,X : ϕ

R ′,X ′ : Eϕ
(E I)

where R ′ and X ′ are any (including R and X ).
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Natural deduction rules

The following rules reflect the semantics of propositional variables,
and consistency and completeness of judgment sets.

R,A : qA
(Q1) R,X : qA

R,X : ¬qB
(Q2) R,X :

∨
A∈AqA

(Q3)

R,X : qA
R ′,X : qA

(Q4)
R,X : qA
R,X ′ : qA
R,X : ϕ

R,X ′ : ϕ
(Q5)

where A,B ∈ A, B 6= A, R,R ′ ∈ Prof , X ,X ′ ∈ Var ∪ A.

R,A1 : p
...

R,Ak : p

R,B : p
(Cons)

R,X : ¬p
R, X̃ : p

(Compl)

where A1, . . . ,Ak ` B in the underlying logic, p is any pi or σ, and
X̃ is ¬X if X is not of the form ¬Y , otherwise it is Y .
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Universal domain rules
An individual can judge about agenda items in any possible way, so
a JAR must provide a group decision for any possible profile
(universal domain assumption).

This allows a type of argument in
an informal proof, which begins like this: let R be a profile such
that individuals from C1 ⊆ N judge A1, individuals from C2 judge
A2, and so on. To address this, we add the following rules:

R ′,A1 : pC1

...

R ′,Ak : pCk

...

R,X : ϕ

R,X : ϕ (UD1)

R1,X
′ : pi

R2,X
′ : ¬pj

R ′,X ′ : pC
...

R,X : ϕ

R,X : ϕ (UD2)

where R ′ is new, X ′ ∈ Var , C1, . . . ,Ck ,C ⊆ N and A1, . . . ,Ak ∈ A
s.t. for all i ∈ N, {Aj : i ∈ Cj} ∪ {¬Aj : i /∈ Cj} is consistent in the
underlying logic.
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Soundness and completeness

A proof can end at any point, provided all boxes are completed. A
formula ϕ is a theorem (we write ` ϕ) if there is a proof (with all
boxes completed) which ends with a clause R,X : ϕ.

Theorem
Let ϕ be any formula of the language of JAL. Then ` ϕ iff 
 ϕ.

Proof.

(⇒) The claim follows by induction from the apparent soundness
of the rules.

(⇐) We prove the axioms and simulate the inference rules from
Ågotnes et al. in the natural deduction system.

Further work: questions regarding complexity, implementation etc.
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of the rules.

(⇐) We prove the axioms and simulate the inference rules from
Ågotnes et al. in the natural deduction system.

Further work: questions regarding complexity, implementation etc.



An admissible rule for preference aggregation

Recall that agenda items in the case of preference aggregation are
of the form x < y or ¬(x < y), so we can consider agenda items
to be pairs of alternatives.

So, in proofs we can write R, (x , y) : ϕ
instead of R,X : ϕ. It is easy to see that the following variant of
universal domain rule is admissible for preference aggregation:

R ′, (x1, y1) : pC1

...

R ′, (xk , yk) : pCk

...

R, (x , y) : ϕ

R, (x , y) : ϕ (UD)

where for each i ∈ N, {xj < yj : i ∈ Cj} ∪ {¬(xj < yj) : i /∈ Cj} is
consistent for all possible choices of x1, y1, . . . , xk , yk ∈ M.
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An example of derivation

If C ⊆ D, then ` (Pareto ∧ IIA)→ (�(pC → σ)→ U(pD → σ)).

This is an important part of a proof of Arrow’s Theorem.
A natural deduction proof should end with
R, (x , y) : (Pareto ∧ IIA)→ (�(pC → σ)→ U(pD → σ)).



An example of derivation

If C ⊆ D, then ` (Pareto ∧ IIA)→ (�(pC → σ)→ U(pD → σ)).
This is an important part of a proof of Arrow’s Theorem.

A natural deduction proof should end with
R, (x , y) : (Pareto ∧ IIA)→ (�(pC → σ)→ U(pD → σ)).



An example of derivation

If C ⊆ D, then ` (Pareto ∧ IIA)→ (�(pC → σ)→ U(pD → σ)).
This is an important part of a proof of Arrow’s Theorem.
A natural deduction proof should end with
R, (x , y) : (Pareto ∧ IIA)→ (�(pC → σ)→ U(pD → σ)).



An example of derivation

R, (x , y) : Pareto ∧ IIA

...

R, (x , y) : �(pC → σ)→ U(pD → σ)

R, (x , y) : (Pareto ∧ IIA)→ (�(pC → σ)→ U(pD → σ)) (→I)



An example of derivation

R, (x , y) : Pareto ∧ IIA

R, (x , y) : �(pC → σ)

...

R, (x , y) : U(pD → σ)

R, (x , y) : �(pC → σ)→ U(pD → σ) (→I)

R, (x , y) : (Pareto ∧ IIA)→ (�(pC → σ)→ U(pD → σ)) (→I)



An example of derivation

R, (x , y) : Pareto ∧ IIA

R, (x , y) : �(pC → σ)

...

R ′, (x ′, y ′) : pD → σ

R, (x , y) : U(pD → σ) (UI)

R, (x , y) : �(pC → σ)→ U(pD → σ) (→I)

R, (x , y) : (Pareto ∧ IIA)→ (�(pC → σ)→ U(pD → σ)) (→I)



An example of derivation

R, (x , y) : Pareto ∧ IIA

R, (x , y) : �(pC → σ)

R ′′, (x , y) : pC

R ′′, (x ′, y ′) : pD

R ′′, (y , y ′) : pN

R ′′, (x ′, x) : pN
...

R ′, (x ′, y ′) : pD → σ

R, (x , y) : U(pD → σ) (UI)

R, (x , y) : �(pC → σ)→ U(pD → σ) (→I)

R, (x , y) : (Pareto ∧ IIA)→ (�(pC → σ)→ U(pD → σ)) (→I)



An example of derivation

R, (x , y) : Pareto ∧ IIA
R, (x , y) : �(pC → σ)

R ′′, (x , y) : pC

R ′′, (x ′, y ′) : pD

R ′′, (y , y ′) : pN

R ′′, (x ′, x) : pN
...

R ′, (x ′, y ′) : pD → σ



An example of derivation

R, (x , y) : Pareto ∧ IIA
R, (x , y) : �(pC → σ)

R ′′, (x , y) : pC

R ′′, (x ′, y ′) : pD

R ′′, (y , y ′) : pN

R ′′, (x ′, x) : pN

R ′′, (x , y) : pC → σ (�E)

...

R ′, (x ′, y ′) : pD → σ



An example of derivation

R, (x , y) : Pareto ∧ IIA
R, (x , y) : �(pC → σ)

R ′′, (x , y) : pC

R ′′, (x ′, y ′) : pD

R ′′, (y , y ′) : pN

R ′′, (x ′, x) : pN

R ′′, (x , y) : pC → σ (�E)

R ′′, (x , y) : σ (→E)

...

R ′, (x ′, y ′) : pD → σ



An example of derivation

R, (x , y) : Pareto ∧ IIA
R, (x , y) : �(pC → σ)

R ′′, (x , y) : pC

R ′′, (x ′, y ′) : pD

R ′′, (y , y ′) : pN

R ′′, (x ′, x) : pN

R ′′, (x , y) : pC → σ (�E)

R ′′, (x , y) : σ (→E)

R ′′, (y , y ′) : σ (Pareto)

R ′′, (x ′, x) : σ (Pareto)

...

R ′, (x ′, y ′) : pD → σ



An example of derivation

R, (x , y) : Pareto ∧ IIA
R, (x , y) : �(pC → σ)

R ′′, (x , y) : pC

R ′′, (x ′, y ′) : pD

R ′′, (y , y ′) : pN

R ′′, (x ′, x) : pN

R ′′, (x , y) : pC → σ (�E)

R ′′, (x , y) : σ (→E)

R ′′, (y , y ′) : σ (Pareto)

R ′′, (x ′, x) : σ (Pareto)

R ′′, (x ′, y ′) : σ (Cons)

...

R ′, (x ′, y ′) : pD → σ



An example of derivation

R, (x , y) : Pareto ∧ IIA
R, (x , y) : �(pC → σ)

R ′′, (x , y) : pC

R ′′, (x ′, y ′) : pD

R ′′, (y , y ′) : pN

R ′′, (x ′, x) : pN

R ′′, (x , y) : pC → σ (�E)

R ′′, (x , y) : σ (→E)

R ′′, (y , y ′) : σ (Pareto)

R ′′, (x ′, x) : σ (Pareto)

R ′′, (x ′, y ′) : σ (Cons)

R ′′, (x ′, y ′) : pD ∧ σ (∧I)

...

R ′, (x ′, y ′) : pD → σ



An example of derivation

R, (x , y) : �(pC → σ)

R ′′, (x , y) : pC

R ′′, (x ′, y ′) : pD

R ′′, (y , y ′) : pN

R ′′, (x ′, x) : pN

R ′′, (x , y) : pC → σ (�E)

R ′′, (x , y) : σ (→E)

R ′′, (y , y ′) : σ (Pareto)

R ′′, (x ′, x) : σ (Pareto)

R ′′, (x ′, y ′) : σ (Cons)

R ′′, (x ′, y ′) : pD ∧ σ (∧I)

R ′′, (x ′, y ′) : pD ∧ σ → �(pD → σ) (IIA)

...

R ′, (x ′, y ′) : pD → σ



An example of derivation
R, (x , y) : �(pC → σ)

R ′′, (x , y) : pC

R ′′, (x ′, y ′) : pD

R ′′, (y , y ′) : pN

R ′′, (x ′, x) : pN

R ′′, (x , y) : pC → σ (�E)

R ′′, (x , y) : σ (→E)

R ′′, (y , y ′) : σ (Pareto)

R ′′, (x ′, x) : σ (Pareto)

R ′′, (x ′, y ′) : σ (Cons)

R ′′, (x ′, y ′) : pD ∧ σ (∧I)

R ′′, (x ′, y ′) : pD ∧ σ → �(pD → σ) (IIA)

R ′′, (x ′, y ′) : �(pD → σ) (→E)

...

R ′, (x ′, y ′) : pD → σ



An example of derivation
R, (x , y) : �(pC → σ)

R ′′, (x , y) : pC

R ′′, (x ′, y ′) : pD

R ′′, (y , y ′) : pN

R ′′, (x ′, x) : pN

R ′′, (x , y) : pC → σ (�E)

R ′′, (x , y) : σ (→E)

R ′′, (y , y ′) : σ (Pareto)

R ′′, (x ′, x) : σ (Pareto)

R ′′, (x ′, y ′) : σ (Cons)

R ′′, (x ′, y ′) : pD ∧ σ (∧I)

R ′′, (x ′, y ′) : pD ∧ σ → �(pD → σ) (IIA)

R ′′, (x ′, y ′) : �(pD → σ) (→E)

R ′, (x ′, y ′) : pD → σ (�E)

R ′, (x ′, y ′) : pD → σ (UD)


