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Definition

Filter on a set X is a subset F of the power set P(X ) such that:

1.X ∈ F , (Whole set is big);

2.A,B ∈ F ⇒ A ∩ B ∈ F , (intersection of big sets is big);

3.A ∈ F ∧ A ⊆ B ⇒ B ∈ F (bigger set then a big set is big).
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Ultrafilters

Definition

Ultrafilter on a set X is a collection of subsets of X that is a filter and cannot
be enlarged (as a filter).

Consequence

If U is an ultrafilter on X and A ⊆ X , then

A ∈ U ∨ X \ A ∈ U.

.

Theorem

If card(X ) = λ ≥ ℵ0, how many ultrafilters are there on a set X ?

22λ

.
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Ultraproduct construction

index set I ;

U, ultrafilter on set I ;

{Ai | i ∈ I} collection of structures on language L;

Let A =
∏

i∈I Ai be a cartesian product of sets Ai ;

Define a relation ∼U on A with

f ∼U g iff {i ∈ I | f (i) = g(i)} ∈ U.

Lemma

Let U be a filter on I . Then ∼U is equivalence relation on
∏

Ai . Conversely, if
∼U is equivalence relation on

∏
Ai then U filter, if card(Ai ) > 3, ∀i ∈ I .
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Ultraproduct construction

Consider
∏

Ai/U = {fU | f ∈
∏

Ai}, where fU = {g ∈
∏

Ai | f ∼U g}
On

∏
Ai/U we define a model A of language L as follows:

If R is relation symbol, ar(R) = n, then

〈f1U , . . . , fnU 〉 ∈ RA iff {i ∈ I | 〈f1(i), . . . , fn(i)〉 ∈ RAi } ∈ U;

If F is function symbol ar(F ) = n, n > 1, then

FA(f1U , . . . , fnU ) = gU iff {i ∈ I | FAi (f1(i), . . . , fn(i)) = g(i)} ∈ U;

If c is constant, then
cA = {cAi | i ∈ I}U .
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Ultraproduct construction

 Loś’s theorem

Theorem

( Loś’s theorem)
For every formula ϕ(x1, . . . , xn) of language L we have:

A |=ν ϕ(x1, . . . , xn) iff {i ∈ I | Ai |=νi ϕ(x1, . . . , xn)} ∈ U.

Definition

Collection A = {Ai | i ∈ I} has finite intersection property (f.i.p) iff

Ai1 ∩ · · · ∩ Ain 6= ∅,

for arbitrary finite subcollection.

Theorem

Every colletion of subsets of X with f.i.p. can be extended to ultrafilter on X .
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Algebra

Theorem

Every field has an algebraic closure.

Non-standard analysis
index set N U non principal ultrafilter on N, RN/U

infinitesimal:

〈1, 1

2
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1

3
,

1

4
, . . . 〉U ;

”non-standard large number”:
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Applications

Compactness theorem

Theorem

If every finite subset of theory T has a model then T has a model.

Proof.

For P ∈ Sω(T ), let MP |= P.Define JP as follows:

JP = {Q ∈ Sω(T ) | MQ |= P},

andl show that J = {JP | P ∈ Sω(T )} has f.i.p.If P1, . . . ,Pn ∈ Sω(T ), then

P1 ∪ · · · ∪ Pn ∈ JP1 ∩ · · · ∩ JPn .

Let U be an ultrafilter containing J .Then,
∏

P∈Sω(T )

MP/U |= T ,because for all

ϕ ∈ T
{P ∈ Sω(T ) | MP |= ϕ} = J{ϕ} ∈ U.
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Thank you for your attention!
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