Certain applications of ultraproducts

Nenad Savić

Faculty of Technical Sciences, University of Novi Sad

Dubrovnik, 2014.

• Filters;

- Filters;
- Ultrafilters;

- Filters;
- Ultrafilters;
- Ultraproducts;

- Filters;
- Ultrafilters;
- Ultraproducts;
- Applications.

Definition

Filter on a set X is a subset \mathcal{F} of the power set $\mathcal{P}(X)$ such that:

Definition

Filter on a set X is a subset \mathcal{F} of the power set $\mathcal{P}(X)$ such that:

 $1.X \in \mathcal{F}$, (Whole set is big);

Definition

Filter on a set X is a subset \mathcal{F} of the power set $\mathcal{P}(X)$ such that:

 $1.X \in \mathcal{F}$, (Whole set is big);

 $2.A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$, (intersection of big sets is big);

Definition

Filter on a set X is a subset \mathcal{F} of the power set $\mathcal{P}(X)$ such that:

 $1.X \in \mathcal{F}$, (Whole set is big);

 $2.A, B \in \mathcal{F} \Rightarrow A \cap B \in \mathcal{F}$, (intersection of big sets is big);

 $3.A \in \mathcal{F} \land A \subseteq B \Rightarrow B \in \mathcal{F}$ (bigger set then a big set is big).

EXAMPLE

If $G \subseteq X$ then the family $\langle G \rangle = \{A \subseteq X \mid G \subseteq A\}$ is the (principal) filter on X.

EXAMPLE

If $G \subseteq X$ then the family $\langle G \rangle = \{A \subseteq X \mid G \subseteq A\}$ is the (principal) filter on X.

Definition

Ultrafilter on a set X is a collection of subsets of X that is a filter and cannot be enlarged (as a filter).

Definition

Ultrafilter on a set X is a collection of subsets of X that is a filter and cannot be enlarged (as a filter).

Consequence

If U is an ultrafilter on X and $A \subseteq X$, then

$$A \in U \quad \underline{\lor} \quad X \setminus A \in U.$$

Definition

Ultrafilter on a set X is a collection of subsets of X that is a filter and cannot be enlarged (as a filter).

Consequence

If U is an ultrafilter on X and $A \subseteq X$, then

$$A \in U \quad \underline{\vee} \quad X \setminus A \in U.$$

Theorem

If $card(X) = \lambda \ge \aleph_0$, how many ultrafilters are there on a set X?

Definition

Ultrafilter on a set X is a collection of subsets of X that is a filter and cannot be enlarged (as a filter).

Consequence

If U is an ultrafilter on X and $A \subseteq X$, then

$$A \in U \quad \underline{\vee} \quad X \setminus A \in U.$$

Theorem

If $card(X) = \lambda \ge \aleph_0$, how many ultrafilters are there on a set X?

$$2^{2^{\lambda}}$$

• index set *I*;

- index set *I*;
- *U*, ultrafilter on set *I*;

- index set *I*;
- *U*, ultrafilter on set *I*;
- $\{A_i \mid i \in I\}$ collection of structures on language \mathcal{L} ;

- index set I;
- *U*, ultrafilter on set *I*;
- $\{A_i \mid i \in I\}$ collection of structures on language \mathcal{L} ;
- Let $A = \prod_{i \in I} A_i$ be a cartesian product of sets A_i ;

- index set *I*;
- *U*, ultrafilter on set *I*;
- $\{A_i \mid i \in I\}$ collection of structures on language \mathcal{L} ;
- Let $A = \prod_{i \in I} A_i$ be a cartesian product of sets A_i ;
- Define a relation \sim_U on A with

$$f \sim_U g$$
 iff $\{i \in I \mid f(i) = g(i)\} \in U$.

- index set I;
- U, ultrafilter on set I;
- $\{A_i \mid i \in I\}$ collection of structures on language \mathcal{L} ;
- Let $A = \prod_{i \in I} A_i$ be a cartesian product of sets A_i ;
- Define a relation \sim_U on A with

$$f \sim_U g$$
 iff $\{i \in I \mid f(i) = g(i)\} \in U$.

Lemma

Let U be a filter on I. Then \sim_U is equivalence relation on $\prod A_i$. Conversely, if \sim_U is equivalence relation on $\prod A_i$ then U filter, if $card(A_i) \geqslant 3$, $\forall i \in I$.

• Consider
$$\prod A_i/U = \{f_U \mid f \in \prod A_i\}$$
, where $f_U = \{g \in \prod A_i \mid f \sim_U g\}$

- Consider $\prod A_i/U = \{f_U \mid f \in \prod A_i\}$, where $f_U = \{g \in \prod A_i \mid f \sim_U g\}$
- ullet On $\prod A_i/U$ we define a model ${\mathcal A}$ of language ${\mathcal L}$ as follows:

- Consider $\prod A_i/U = \{f_U \mid f \in \prod A_i\}$, where $f_U = \{g \in \prod A_i \mid f \sim_U g\}$
- On $\prod A_i/U$ we define a model \mathcal{A} of language \mathcal{L} as follows:
- If R is relation symbol, ar(R) = n, then

$$\langle f_{1_U}, \ldots, f_{n_U} \rangle \in R^{\mathcal{A}} \quad iff \quad \{i \in I \mid \langle f_1(i), \ldots, f_n(i) \rangle \in R^{\mathcal{A}_i}\} \in U;$$

- Consider $\prod A_i/U = \{f_U \mid f \in \prod A_i\}$, where $f_U = \{g \in \prod A_i \mid f \sim_U g\}$
- On $\prod A_i/U$ we define a model \mathcal{A} of language \mathcal{L} as follows:
- If R is relation symbol, ar(R) = n, then

$$\langle f_{1_U},\ldots,f_{n_U}\rangle\in R^{\mathcal{A}} \quad iff \quad \{i\in I\mid \langle f_1(i),\ldots,f_n(i)\rangle\in R^{\mathcal{A}_i}\}\in U;$$

• If F is function symbol $ar(F) = n, n \ge 1$, then

$$F^{\mathcal{A}}(f_{1_U},\ldots,f_{n_U})=g_U\quad \text{iff}\quad \{i\in I\mid F^{\mathcal{A}_i}(f_1(i),\ldots,f_n(i))=g(i)\}\in U;$$

- Consider $\prod A_i/U = \{f_U \mid f \in \prod A_i\}$, where $f_U = \{g \in \prod A_i \mid f \sim_U g\}$
- On $\prod A_i/U$ we define a model \mathcal{A} of language \mathcal{L} as follows:
- If R is relation symbol, ar(R) = n, then

$$\langle f_{1_U},\ldots,f_{n_U}\rangle\in R^{\mathcal{A}} \quad iff \quad \{i\in I\mid \langle f_1(i),\ldots,f_n(i)\rangle\in R^{\mathcal{A}_i}\}\in U;$$

• If F is function symbol ar(F) = n, $n \ge 1$, then

$$F^{\mathcal{A}}(f_{1_U},\ldots,f_{n_U})=g_U\quad \text{iff}\quad \{i\in I\mid F^{\mathcal{A}_i}(f_1(i),\ldots,f_n(i))=g(i)\}\in U;$$

• If c is constant, then

$$c^{\mathcal{A}} = \{c^{\mathcal{A}_i} \mid i \in I\}_{\mathcal{U}}.$$

Certain applications of ultraproducts
Ultraproduct construction
Los's theorem

Theorem

(Łoś's theorem)

For every formula $\varphi(x_1,\ldots,x_n)$ of language \mathcal{L} we have:

$$A \models_{\nu} \varphi(x_1,\ldots,x_n)$$
 iff $\{i \in I \mid A_i \models_{\nu_i} \varphi(x_1,\ldots,x_n)\} \in U$.

Theorem

(Łoś's theorem)

For every formula $\varphi(x_1,\ldots,x_n)$ of language \mathcal{L} we have:

$$\mathcal{A} \models_{\nu} \varphi(x_1,\ldots,x_n)$$
 iff $\{i \in I \mid \mathcal{A}_i \models_{\nu_i} \varphi(x_1,\ldots,x_n)\} \in U$.

Definition

Collection $A = \{A_i \mid i \in I\}$ has **finite intersection property** (f.i.p) iff

$$A_{i_1} \cap \cdots \cap A_{i_n} \neq \emptyset$$
,

for arbitrary finite subcollection.

Łoś's theorem

Theorem

(Łoś's theorem)

For every formula $\varphi(x_1,\ldots,x_n)$ of language $\mathcal L$ we have:

$$\mathcal{A} \models_{\nu} \varphi(x_1, \dots, x_n)$$
 iff $\{i \in I \mid \mathcal{A}_i \models_{\nu_i} \varphi(x_1, \dots, x_n)\} \in U$.

Definition

Collection $A = \{A_i \mid i \in I\}$ has **finite intersection property** (f.i.p) iff

$$A_{i_1}\cap\cdots\cap A_{i_n}\neq\emptyset$$
,

for arbitrary finite subcollection.

Theorem

Every colletion of subsets of X with f.i.p. can be extended to ultrafilter on X.

Certain applications of ultraproducts
Ultraproduct construction
Los's theorem

Theorem

Every field has an algebraic closure.

Theorem

Every field has an algebraic closure.

Non-standard analysis

Theorem

Every field has an algebraic closure.

Non-standard analysis

index set $\mathbb N$

Theorem

Every field has an algebraic closure.

Non-standard analysis

index set \mathbb{N} U non principal ultrafilter on \mathbb{N} ,

Theorem

Every field has an algebraic closure.

Non-standard analysis

index set \mathbb{N} U non principal ultrafilter on \mathbb{N} , $\mathbb{R}^{\mathbb{N}}/U$

Theorem

Every field has an algebraic closure.

Non-standard analysis

index set \mathbb{N} U non principal ultrafilter on \mathbb{N} , $\mathbb{R}^{\mathbb{N}}/U$

• infinitesimal:

$$\langle 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \rangle_U;$$

Theorem

Every field has an algebraic closure.

Non-standard analysis

index set \mathbb{N} U non principal ultrafilter on \mathbb{N} , $\mathbb{R}^{\mathbb{N}}/U$

• infinitesimal:

$$\langle 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \rangle_U;$$

• "non-standard large number":

$$\langle 1, 2, 3, 4, \dots \rangle_U$$

Theorem

If every finite subset of theory T has a model then T has a model.

Theorem

If every finite subset of theory T has a model then T has a model.

Proof.

Theorem

If every finite subset of theory T has a model then T has a model.

Proof.

For $P \in S_{\omega}(T)$, let $M_P \models P$.

Theorem

If every finite subset of theory T has a model then T has a model.

Proof.

For $P \in S_{\omega}(T)$, let $M_P \models P$. Define J_P as follows:

$$J_P = \{Q \in S_\omega(T) \mid M_Q \models P\},\$$

Theorem

If every finite subset of theory T has a model then T has a model.

Proof.

For $P \in S_{\omega}(T)$, let $M_P \models P$. Define J_P as follows:

$$J_P = \{Q \in S_\omega(T) \mid M_Q \models P\},\$$

and show that $\mathcal{J} = \{J_P \mid P \in S_\omega(T)\}$ has f.i.p.

Theorem

If every finite subset of theory T has a model then T has a model.

Proof.

For $P \in S_{\omega}(T)$, let $M_P \models P$. Define J_P as follows:

$$J_P = \{Q \in S_\omega(T) \mid M_Q \models P\},\$$

andI show that $\mathcal{J}=\{J_P\mid P\in S_\omega(T)\}$ has f.i.p.If $P_1,\ldots,P_n\in S_\omega(T)$, then

$$P_1 \cup \cdots \cup P_n \in J_{P_1} \cap \cdots \cap J_{P_n}$$
.

Theorem

If every finite subset of theory T has a model then T has a model.

Proof.

For $P \in S_{\omega}(T)$, let $M_P \models P$. Define J_P as follows:

$$J_P = \{ Q \in S_\omega(T) \mid M_Q \models P \},$$

andI show that $\mathcal{J}=\{J_P\mid P\in S_\omega(T)\}$ has f.i.p.If $P_1,\ldots,P_n\in S_\omega(T)$, then

$$P_1 \cup \cdots \cup P_n \in J_{P_1} \cap \cdots \cap J_{P_n}$$
.

Let U be an ultrafilter containing \mathcal{J} .

Theorem

If every finite subset of theory T has a model then T has a model.

Proof.

For $P \in S_{\omega}(T)$, let $M_P \models P$. Define J_P as follows:

$$J_P = \{ Q \in S_\omega(T) \mid M_Q \models P \},$$

andI show that $\mathcal{J}=\{J_P\mid P\in S_\omega(T)\}$ has f.i.p.If $P_1,\ldots,P_n\in S_\omega(T)$, then

$$P_1 \cup \cdots \cup P_n \in J_{P_1} \cap \cdots \cap J_{P_n}$$
.

Let *U* be an ultrafilter containing \mathcal{J} . Then, $\prod_{P \in S_{in}(T)} M_P/U \models T$,

Theorem

If every finite subset of theory T has a model then T has a model.

Proof.

For $P \in S_{\omega}(T)$, let $M_P \models P$. Define J_P as follows:

$$J_P = \{Q \in S_\omega(T) \mid M_Q \models P\},\$$

andI show that $\mathcal{J}=\{J_P\mid P\in\mathcal{S}_{\omega}(T)\}$ has f.i.p.If $P_1,\ldots,P_n\in\mathcal{S}_{\omega}(T)$, then

$$P_1 \cup \cdots \cup P_n \in J_{P_1} \cap \cdots \cap J_{P_n}$$
.

Let U be an ultrafilter containing \mathcal{J} . Then, $\prod_{P \in S_{\omega}(T)} M_P/U \models T$, because for all

$$\varphi \in T$$

$${P \in S_{\omega}(T) \mid M_P \models \varphi} = J_{{\varphi}} \in U.$$

Bell, J.L., Slomson, A.B., *Models and Ultraproducts: An Introduction*, North-Holland, Amsterdam, 1969.

Mendelson, E., *Introduction to mathematical logic*, D. Van Nostrand company, 1979.

Savić, N., *Ultrafilteri*, master thesis, University of Novi Sad, 2013.

Thank you for your attention!