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Aim To present a logic-oriented representation of
L-domains.

Advantage Among others this allows talking about things like
higher type functionals or the semantics of
programming language in proof assistants.



Let

I A be a set of atomic propositions.

Our language will have no logical connectives. Finite conjunctions
will be represented by finite sets of atomic propositions. To state
when such finite sets will contain consistent information or not, the
logic includes

I a consistency predicate Con

satisfying the natural requirement

X ∈ Con∧Y ⊆ X =⇒ Y ∈ Con



In addition, there is

I an entailment relation `⊆ Con×A

saying what atomic propositions are entailed by which finite
consistent sets of atomic proposition. Entailment is extended to
finite sets of atomic propositions in the obvious way:

X ` Y ⇐⇒ (∀a ∈ Y )X ` a

The following conditions have to be satisfied:

X ` Y =⇒ Y ∈ Con (Entailment preserves consistency)

X ,Y ∈ Con∧Y ⊇ X ∧ X ` a =⇒ Y ` a (Weakening)

X ` Y ∧ Y ` a =⇒ X ` a (Transitivity, Cut)



Finally, we assume that A contains an element true which is
entailed under any assumption

∅ ` true



In the next step, let us assume that we are given

I a set I the elements of which are called possible worlds and

I a binary relation R on I , the accessability relation such that

I for every i ∈ I there is a consistency predicate Coni and an
entailment relation `i satisfying the requirements introduced
so far.

When moving from i to j according to R, we expect to gain more
knowledge about the subject our language is related to. So, the
following monotonicity conditions appear very naturally:

iRj =⇒ Coni ⊆ Conj

iRj ∧ X ∈ Coni ∧X `i a =⇒ X `j a

iRj ∧ X ∈ Coni ∧ X `j a =⇒ X `i a

The last requirement says that world j is conservative over world i .



Finally, let us suppose the

I = A,

that is, world a is the world in which statement a “holds”.

Coni should then be thought of as the collection of those finite
sets of elementary statements that are consistent with statement i .

So, it is natural to require that

{i} ∈ Coni .

As a consequence we obtain

{i} ∈ Coni iRj ⇒ Coni ⊆ Conj
iRj ⇒ {i} ∈ Conj



We now choose the accessibility relation R to be as weak as
possible, i.e., we require that also

{i} ∈ Conj =⇒ iRj

So, we have
iRj ⇐⇒ {i} ∈ Conj

which says:

World j is accessible from world i , exactly if statement i is
consistent with statement j .



Definition
Let A be a set, R be a binary relation on A, true ∈ A, (Coni )i∈A
be a family of subsets of Pf (A), and (`i )i∈A be a family of
relations `i⊆ Coni ×A. Then (A,R, (Coni )i∈A, (`i )i∈A, true) is
an information frame if the following conditions hold, for all
i , j , a ∈ A and all finite subsets X ,Y ,F of A:

I {i} ∈ Coni

I Y ⊆ X ∧ X ∈ Coni ⇒ Y ∈ Coni

I ∅ `i true
I X `i Y ⇒ Y ∈ Coni

I X ,Y ∈ Coni ∧Y ⊇ X ∧ X `i a⇒ Y `i a

I X `i Y ∧ Y `i a⇒ X `i a



I iRj ⇒ Coni ⊆ Conj

I {i} ∈ Conj ⇒ iRj .

I iRj ∧ X ∈ Coni ∧X `i a⇒ X `j a

I iRj ∧ X ∈ Coni ∧X `j a⇒ X `i a

I X `i F ⇒ (∃e ∈ A)X `i e ∧ {e} `e F .

The last requirement is an interpolation property. Among others it
says that finite derivable information can be coded into an
elementary statement.



Definition
Let A = (A,R, (Coni )i∈A, (`i )i∈A, true) be an information frame.
A subset x of A is a theory of A if the following three conditions
hold:

1. (∀F ⊆f x)(∃i ∈ x)F ∈ Coni

2. (∀i ∈ x)(∀X ⊆f x)(∀a ∈ A)[X ∈ Coni ∧X `i a⇒ a ∈ x ]

3. (∀a ∈ x)(∃i ∈ x)(∃X ⊆f x)X ∈ Coni ∧X `i a.

Thus, a theory of A is

I finitely consistent,

I closed under entailment, and

I every statement is obtained in this way, i.e., it is entailed in
some world by finitely many statements that itself have been
obtained in this world or worlds from which the present world
is accessible.



Let |A| denote the set of theories of A.

Lemma
|A| is directed-complete.

This means that if T is a collection of theories such any two
theories x and y have a common extension in T , i.e., there is a
larger theory z ⊇ x ∪ y , then also

⋃
T is a theory of A.



The consistent sets in A generate a canonical basis of |A|. For
i ∈ A and X ∈ Coni let

[X ]i = { a ∈ A | X `i a }.

Lemma

1. [X ]i is a theory of A, for each i ,X with X ∈ Coni .

2. For every z ∈ |A|, the set of all [X ]i with {i} ∪ X ⊆ z is
directed and z is its union.



Lemma

1. [∅]i = [true]j , for all i , j ∈ A.

2. [∅]true ⊆ x, for all x ∈ |A|.

Lemma
Let x , y , z ∈ |A| so that x , y ⊆ z. Then⋃

{ [Z ]k | Z ∈ Conk ∧k ∈ z ∧ Z ⊆f x ∪ y }

is the least upper bound of x and y in ↓z = { u ∈ |A| | u ⊆ z }.
To sum up:

Theorem
Let (A,R, (Coni )i∈A, (`i )i∈A, true) be an information frame.
Then (|A|,⊆, [∅]true) is an L-domain with basis

Ĉon = { [X ]i | i ∈ A ∧ X ∈ Coni }.



Let us now see more generally what we called L-domain.

We had a partially ordered set D = (D,v) with least element ⊥.

Definition
S ⊆ D is directed, if

I S is not empty and

I for all x , y ∈ S there is some z ∈ S with x , y v z .

Definition
D is directed-complete if every directed subset has a least upper
bound in D.



Definition
For x , y ∈ D, x approximates y , written x � y , if for every
directed subset S of D,

y v
⊔

S =⇒ (∃s ∈ S)x v s.

Lemma
Let (A,R, (Coni )i∈A, (`i )i∈A, true) be an information frame. For
x , y ∈ |A|,

x � y ⇐⇒ (∃i ∈ A)(∃V ∈ Coni ){i} ∪ V ⊆ y ∧ V `i x .

The characterization nicely reflects the intuition that x � y if x is
covered by a “finite part” of y .



Definition
B ⊆ D is a basis of D if for each x ∈ D,

I Bx = { u ∈ B | u � x } is directed and

I x =
⊔

Bx .

Definition
D is an L-domain if

I D is directed-complete,

I has a basis, and
I for every z ∈ D and all x , y v z there is some element v ∈ D

such that
I x , y v v v z ,
I for all w ∈ D, if x , y v w v z , then v v w ,

i.e., v is the least upper bound of x , y relative to ↓z . We
write x tz y .



Let us now conversely see how every L-domain determines an
information frame.

Let D be an L-domain with basis B and least element ⊥.

For u ∈ B define,

Conu = {X ⊆f B | X ⊆ ↓u }, X `u v ⇐⇒ v �
⊔u

X

uRv ⇐⇒ u v v

Theorem
B = (B,R, (Conu)u∈B , (`u)u∈B ,⊥) is an information frame such
that D and |B| are isomorphic domains.



Let us finally consider some important special cases.

Definition
D is a continuous Scott domain if

I D is directed-complete,

I has a basis, and

I for all x , y ∈ D such that {x , y} is bounded from above the
least upper bound x t y exists in D.

So, a continuous Scott domain is an L-domain in which bounded
finite sets have even global least upper bounds.



Let again B be a basis of D and

Conu = {X ⊆f B | X ⊆ ↓u }

X `u v ⇐⇒ v �
⊔u

X

uRv ⇐⇒ u v v

Now, assume for u, v ∈ B that

X ∈ Conu ∩Conv ,

which means that both, u and v , are upper bounds of X . Then we
have that ⊔u

X =
⊔

X =
⊔v

X

which implies that

X `u w ⇐⇒ X `v w



Theorem
Let A = (A,R, (Coni )i∈A, (`i )i∈A, true) be an information frame.
Then |A| is a continuous Scott domain if, and only if, A satisfies
Condition (S) saying that for all X ⊆f A and i , j ∈ A,

X ∈ Coni ∩Conj ⇒ (∀a ∈ A)[X `i a⇔ X `j a]. (S)

In the presence of Condition (S) we even have a syntactic
translation from information frames to continuous information
systems known to characterize continuous Scott domains. The
idea is to hide the explicit consistency witnesses i .



Theorem
Let A = (A,R, (Coni )i∈A, (`i )i∈A, true) be an information frame
satisfying Condition (S) and define

Con =
⋃
{Coni | i ∈ A } and ` =

⋃
{ `i | i ∈ A }.

Then (A,Con,`) is a continuous information system, i.e., for all
a ∈ A and all finite subsets X ,Y of A the following conditions
hold:

I ∅ ∈ Con

I X ⊆ Y ∈ Con⇒ X ∈ Con

I {a} ∈ Con

I X ` Y ⇒ Y ∈ Con

I X ` a ∧ X ⊆ Y ⇒ Y ` a

I X ` Y ∧ Y ` a⇒ X ` a

I X ` a⇒ (∃Y ∈ Con)X ` Y ∧ Y ` a.



Definition
An L-domain D is algebraic if the set

KD = { x ∈ D | x � x }

is a basis of D.



Definition
An element j ∈ A is reflexive, if {j} `j j .

Let Arefl denote the set of reflexive elements of A.

Theorem
Let A = (A,R, (Coni )i∈A, (`i )i∈A, true) be an information frame.
Then |A| is an algebraic L-domain if, and only if, A satisfies
Condition (ALG) saying that for all X ⊆f A and i , j ∈ A,

X `i F ⇒ (∃j ∈ Arefl)X `i j ∧ {j} `j F . (ALG)

In the presence of both Conditions (S) and (ALG) we even have a
syntactic translation from information frames to algebraic
information systems known to characterize algebraic Scott
domains.



Theorem
Let A = (A,R, (Coni )i∈A, (`i )i∈A, true) be an information frame
satisfying Conditions (S) as well as (ALG), and define

Conrefl = {X ⊆f Arefl | (∃i ∈ Arefl)A ∈ Coni }
and X `refl a⇐⇒ (∃i ∈ Arefl)X `i a.

Then (Arefl,Conrefl,`refl) is an algebraic information system, i.e.,
for all a ∈ Arefl and all finite subsets X ,Y of Arefl the following
conditions hold:

I ∅ ∈ Conrefl

I X ⊆ Y ∈ Conrefl ⇒ X ∈ Conrefl

I {a} ∈ Conrefl

I X `refl Y ⇒ Y ∈ Conrefl

I X `refl a ∧ X ⊆ Y ⇒ Y `refl a

I X `refl Y ∧ Y `refl a⇒ X `refl a

I a ∈ X ⇒ X ` a.



In the case of Scott’s information systems morphisms between two
such systems

(A,ConA,`A) and (B,ConB ,`B)

are certain relations
H ⊆ ConA×B,

called approximable mappings.

In the case of information frames they are families (Hi )i∈A of such
relations

Hi ⊆ ConAi ×B.



Further results:

I With approximable mappings as morphisms information
frames form a Cartesian closed category equivalent to the
category of L-domains with Scott continuous functions.

I The exponent between two information frames can explicitly
be constructed.
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