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Modal Logic

Modal logic adds a new connective � to the language of logic.

Two traditions:

Epistemic logic:

�A means A is known / believed

Proof theory:

�A means A is provable in system S
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Modal Logic: How It Works

A

and

A→ B

thus

B

�A ∧ �(A→ B) → �B
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Problems: Epistemic Tradition

Knowledge is justified true belief

True belief is modeled by �A→ A but

where are the justifications in modal logic?

Modal logic is logically omniscient

If an agent knows A, then she also knows all logical consequences
of A.

This is follows from �(A→ B)→ (�A→ �B) and the property
that if A→ B is provable, so is �(A→ B).

Thomas Studer Justification Logic – A Short Introduction



Problems: Proof-Theoretic Tradition

�⊥ → ⊥ is an axiom.

¬�⊥ is provable.

�¬�⊥ is provable.

�⊥ means S proves ⊥.

¬�⊥ means S does not prove ⊥, that is

¬�⊥ means S is consistent.

�¬�⊥ means S proves that S is consistent.

Gödel: if S has a certain strength, it cannot prove its own
consistency.
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Justification Logic

A
since r

and

A→ B
since s

thus

B
since s·r

r:A ∧ s:(A→ B) → s·r:B
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Syntax of the Logic of Proofs

Logic

The logic of proofs LPCS is the justification counterpart of the
modal logic S4.

Justification terms Tm

t ::= x | c | (t · t) | (t + t) | !t

Formulas Lj

A ::= p | ¬A | (A→ A) | t:A
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Axioms for LP

all propositional tautologies

t:(A→ B)→ (s:A→ (t·s):B) (J)

t:A→ (t + s):A, s:A→ (t + s):A (+)

t:A→ A (jt)

t:A→!t:t:A (j4)
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Deductive System

Constant specification

A constant specification CS is any subset

CS ⊆ {(c, A) | c is a constant and A is an axiom}.

The deductive system LPCS consists of the above axioms and the
rules of modus ponens and axiom necessitation.

A A→ B

B

(c, A) ∈ CS

c:A
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A Justified Version of �A ∨�B → �(A ∨B)

Assume we are given LPCS with

(a,A→ (A ∨B)) ∈ CS and (b, B → (A ∨B)) ∈ CS .

By axiom necessitation we get

LPCS ` a:(A→ (A ∨B)) and LPCS ` b:(B → (A ∨B)) .

Using (J) and (MP) we obtain

LPCS ` x:A→ (a ·x):(A∨B) and LPCS ` y:B → (b ·y):(A∨B) .

Finally, from (+) we have

LPCS ` (a · x):(A ∨B)→ (a · x + b · y):(A ∨B) and

LPCS ` (b · y):(A ∨B)→ (a · x + b · y):(A ∨B) .

Using propositional reasoning, we obtain

LPCS ` (x:A ∨ y:B)→ (a · x + b · y):(A ∨B) .

Thomas Studer Justification Logic – A Short Introduction



Internalization

Definition

A constant specification CS for LP is called axiomatically
appropriate if for each axiom F of LP, there is a constant c such
that (c, F ) ∈ CS.

Lemma (Internalization)

Let CS be an axiomatically appropriate constant specification. For
arbitrary formulas A,B1, . . . , Bn, if

B1, . . . , Bn `LPCS
A ,

then there is a term t such that

x1:B1, . . . , xn:Bn `LPCS
t:A

for fresh variables x1, . . . , xn.
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Forgetful Projection

Definition (Forgetful projection)

The mapping ◦ from justified formulas to modal formulas is
defined as follows

1 P ◦ := P for P atomic;

2 (¬A)◦ := ¬A◦;

3 (A→ B)◦ := A◦ → B◦;

4 (t:A)◦ := �A◦.

Lemma (Forgetful projection)

For any constant specification CS and any formula F we have

LPCS ` F implies S4 ` F ◦ .
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Realization

Definition (Realization)

A realization is a mapping r from modal formulas to justified
formulas such that (r(A))◦ = A.

Definition

We say a justification logic LPCS realizes S4 if there is a
realization r such that for any formula A we have

S4 ` A implies LPCS ` r(A) .
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Realization Theorem

Definition (Schematic CS)

We say that a constant specification is schematic if it satisfies the
following: for each constant c, the set of axioms {A | (c, A) ∈ CS}
consists of all instances of one or several (possibly zero) axiom
schemes of LP.

Theorem (Realization)

Let CS be an axiomatically appropriate and schematic constant
specification. There exists a realization r such that for all
formulas A

S4 ` A =⇒ LPCS ` r(A) .
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Arithmetical Semantics

Originally, LPCS was developed to provide classical provability
semantics for intuitionistic logic.

Arithmetical Semantics for LPCS: Justification terms are
interpreted as proofs in Peano arithmetic and operations on terms
correspond to computable operations on proofs in PA.

Int
Gödel−−−→ S4

Realization−−−−−−→ JL
Arithm. sem.−−−−−−−→ CL + proofs
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Self-referentiality

Definition (Self-referential CS)

A constant specification CS is called self-referential if (c, A) ∈ CS
for some axiom A that contains at least one occurrence of the
constant c.

S4 and LPCS describe self-referential knowledge. That means if
LPCS realizes S4 for some constant specification CS, then that
constant specification must be self-referential.

Lemma

Consider the S4-theorem G := ¬�((P → �P )→ ⊥) and let F be
any realization of G.
If LPCS ` F , then CS must be self-referential.
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Basic evaluation

Definition (Basic Evaluation)

A basic evaluation ∗ for LPCS is a function:

∗ : Prop→ {0, 1} and ∗ : Tm→ P(Lj), such that

1 F ∈ (s·t)∗ if (G→ F ) ∈ s∗ and G ∈ t∗ for some G

2 F ∈ (s + t)∗ if F ∈ s∗ or F ∈ t∗

3 F ∈ t∗ if (t, F ) ∈ CS

4 s:F ∈ (!s)∗ if F ∈ s∗

Thomas Studer Justification Logic – A Short Introduction



Quasimodel

Definition (Quasimodel)

A quasimodel is a tuple M = (W,R, ∗) where W 6= ∅,
R ⊆W ×W , and the evaluation ∗ maps each world w ∈W to a
basic evaluation ∗w.

Definition (Truth in quasimodels)

M, w 
 p if and only if p∗w = 1 for p ∈ Prop;

M, w 
 F → G if and only if M, w 1 F or M, w 
 G;

M, w 
 ¬F if and only if M, w 1 F ;

M, w 
 t:F if and only if F ∈ t∗w.
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Model

Given M = (W,R, ∗) and w ∈W , we define

�w := {F ∈ Lj | M, v 
 F whenever R(w, v)} .

Definition (Modular Model)

A modular model M = (W,R, ∗) is a quasimodel with

1 t∗w ⊆ �w for all t ∈ Tm and w ∈W ; (JYB)

2 R is reflexive;

3 R is transitive.

Theorem (Soundness and Completeness)

For all formulas F ∈ Lj ,

LPCS ` F ⇐⇒ M 
 F for all modular models M.
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Decidability

In modal logic, decidability is a consequence of the finite model
property. For LPCS the situation is more complicated since CS
usually is infinite.

Theorem

LPCS is decidable for decidable schematic constant
specifications CS.

A decidable CS is not enough:

Theorem

There exists a decidable constant specification CS such that LPCS

is undecidable.
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Complexity

Theorem

Let CS be a schematic constant specification.
The problem whether LPCS ` t:B belongs to NP.

Definition

A constant specification is called schematically injective if it is
schematic and each constant justifies no more that one axiom
scheme.

Theorem

Let CS be a schematically injective and axiomatically appropriate
constant specification.
The derivability problem for LPCS is Πp

2-complete.
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Logical Omniscience

Modal logic of knowledge contains the epistemic closure principle
in the form of axiom

�(A→ B)→ (�A→ �B) ,

which yields an unrealistic feature called logical omniscience
whereby an agent knows all logical consequences of her
assumptions.

Definition

A proof system for a logic L is a binary relation E ⊂ Σ? × L
between words in some alphabet, called proofs, and theorems of L
such that

1 E is computable in polynomial time and

2 for all formulas F , L ` F if and only if there exists y with
E(y, F ).
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Logical Omniscience II

Knowledge assertion A is a provable formula of the form

�B for S4 or t:B for LPCS

with the object of knowledge function OK(A) := B.

Definition (Logical Omniscience Test (LOT))

An proof system E for an epistemic logic L is not logically
omniscient, or passes LOT, if there exists a polynomial P such
that for any knowledge assertion A, there is a proof of OK(A) in E
with the size bounded by P (size(A)).
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Logical Omniscience III

Theorem (S4 is logically omniscient)

There is no proof system for S4 that passes LOT unless
NP=PSPACE.

Theorem (LPCS is not logically omniscient)

Let CS be a schematic constant specification. There is a proof
system for LPCS that passes LOT.

Thomas Studer Justification Logic – A Short Introduction



Dynamic Epistemic Logic

A A

After the announcement of A, the agent believes A, i.e. [A]�A

Problem

The �-operator does not tell us whether A is believed because of
the announcement or whether A is believed independent of it.
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Update as Evidence: the Logic JUPCS for Belief Expansion

Fundamental principle

After the announcement of A,

the announcement itself justifies the agent’s belief in A.

For each formula A we add a new justification term up(A).

Some axioms of JUP:

Success: [A] up(A):A

Persistence: t:B → [A]t:B.

Reduction axioms

Minimal change

Iterated updates
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Basic Properties of JUPCS

Lemma (Minimal change)

Let t be a term that does not contain up(A) as a subterm. Then

JUPCS ` [A]t:B ↔ t:B .

Lemma (Ramsey I)

JUPCS ` t:(A→ B)→ [A](t·up(A)):B.

Lemma (Ramsey II)

Let CS be an axiomatically appropriate constant specification. For
each term t there exists a term s such that

JUPCS ` [A]t:B → s:(A→ B) .
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Thank you!
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