Justification Logic – A Short Introduction

Thomas Studer

Institute of Computer Science and Applied Mathematics
University of Bern
Bern, Switzerland

September 2014

Modal Logic

Modal logic adds a new connective \square to the language of logic.
Two traditions:
Epistemic logic:
$\Box A$ means A is known $/$ believed
Proof theory:
$\Box A$ means A is provable in system S

Problems: Epistemic Tradition

Knowledge is justified true belief

True belief is modeled by $\Box A \to A$ but where are the justifications in modal logic?

Modal logic is logically omniscient

If an agent knows A, then she also knows all logical consequences of A.

This is follows from $\Box(A \to B) \to (\Box A \to \Box B)$ and the property that if $A \to B$ is provable, so is $\Box(A \to B)$.

Problems: Proof-Theoretic Tradition

- $\Box \bot \to \bot$ is an axiom.
- $\neg\Box\bot$ is provable.
- $\Box \neg \Box \bot$ is provable.

Problems: Proof-Theoretic Tradition

 $\Box \bot \to \bot$ is an axiom. $\neg \Box \bot$ is provable. $\Box \neg \Box \bot$ is provable. $\Box \bot$ means S proves \bot . $\neg \Box \bot$ means S does not prove \bot , that is

 $\Box \neg \Box \bot$ means S proves that S is consistent.

Problems: Proof-Theoretic Tradition

- $\Box \bot \to \bot$ is an axiom. $\neg \Box \bot$ is provable.
- $\Box \neg \Box \bot$ is provable.
- $\Box \bot$ means S proves \bot .
- $\neg\Box\bot$ means S does not prove \bot , that is
- $\neg\Box\bot$ means S is consistent.
- $\Box \neg \Box \bot$ means S proves that S is consistent.

Gödel: if S has a certain strength, it cannot prove its own consistency.

Syntax of the Logic of Proofs

Logic

The logic of proofs LP_{CS} is the justification counterpart of the modal logic S4.

Justification terms Tm

$$t ::= x \mid c \mid (t \cdot t) \mid (t + t) \mid !t$$

Formulas \mathcal{L}_i

$$A ::= p \mid \neg A \mid (A \rightarrow A) \mid t:A$$

Axioms for LP

• all propositional tautologies

•
$$t:(A \to B) \to (s:A \to (t \cdot s):B)$$
 (J)

•
$$t:A \to (t+s):A$$
, $s:A \to (t+s):A$ (+)

•
$$t:A \to A$$
 (jt)

•
$$t:A \rightarrow !t:t:A$$
 (j4)

Deductive System

Constant specification

A constant specification CS is any subset

 $\mathsf{CS} \subseteq \{(c,A) \mid c \text{ is a constant and } A \text{ is an axiom}\}.$

The deductive system LP_{CS} consists of the above axioms and the rules of modus ponens and axiom necessitation.

$$\frac{A \quad A \to B}{B}$$

$$\frac{(c,A) \in \mathsf{CS}}{c:A}$$

A Justified Version of $\Box A \lor \Box B \to \Box (A \lor B)$

Assume we are given LP_{CS} with

$$(a, A \to (A \lor B)) \in \mathsf{CS}$$
 and $(b, B \to (A \lor B)) \in \mathsf{CS}$.

By axiom necessitation we get

$$\mathsf{LP}_\mathsf{CS} \vdash a : (A \to (A \lor B))$$
 and $\mathsf{LP}_\mathsf{CS} \vdash b : (B \to (A \lor B))$.

Using (J) and (MP) we obtain

$$\mathsf{LP}_{\mathsf{CS}} \vdash x : A \to (a \cdot x) : (A \vee B) \quad \text{and} \quad \mathsf{LP}_{\mathsf{CS}} \vdash y : B \to (b \cdot y) : (A \vee B) \ .$$

Finally, from (+) we have

$$\begin{split} \mathsf{LP}_{\mathsf{CS}} \vdash (a \cdot x) : & (A \vee B) \to (a \cdot x + b \cdot y) : (A \vee B) \text{ and } \\ \mathsf{LP}_{\mathsf{CS}} \vdash (b \cdot y) : & (A \vee B) \to (a \cdot x + b \cdot y) : (A \vee B) \end{split} \ .$$

Using propositional reasoning, we obtain

$$\mathsf{LP}_{\mathsf{CS}} \vdash (x:A \lor y:B) \to (a \cdot x + b \cdot y):(A \lor B) \ .$$

Internalization

Definition

A constant specification CS for LP is called *axiomatically* appropriate if for each axiom F of LP, there is a constant c such that $(c,F) \in \mathsf{CS}$.

Lemma (Internalization)

Let CS be an axiomatically appropriate constant specification. For arbitrary formulas A, B_1, \ldots, B_n , if

$$B_1,\ldots,B_n\vdash_{\mathsf{LP}_{\mathsf{CS}}} A$$
 ,

then there is a term t such that

$$x_1:B_1,\ldots,x_n:B_n\vdash_{\mathsf{LP}_{\mathsf{CS}}} t:A$$

for fresh variables x_1, \ldots, x_n .

Forgetful Projection

Definition (Forgetful projection)

The mapping \circ from justified formulas to modal formulas is defined as follows

- $(\neg A)^{\circ} := \neg A^{\circ};$
- $(A \to B)^{\circ} := A^{\circ} \to B^{\circ};$

Lemma (Forgetful projection)

For any constant specification CS and any formula F we have

$$LP_{CS} \vdash F$$
 implies $S4 \vdash F^{\circ}$.

Realization

Definition (Realization)

A realization is a mapping r from modal formulas to justified formulas such that $(r(A))^{\circ} = A$.

Definition

We say a justification logic LP_{CS} realizes S4 if there is a realization r such that for any formula A we have

$$S4 \vdash A$$
 implies $LP_{CS} \vdash r(A)$.

Realization Theorem

Definition (Schematic CS)

We say that a constant specification is *schematic* if it satisfies the following: for each constant c, the set of axioms $\{A \mid (c,A) \in \mathsf{CS}\}$ consists of all instances of one or several (possibly zero) axiom schemes of LP.

Theorem (Realization)

Let CS be an axiomatically appropriate and schematic constant specification. There exists a realization r such that for all formulas A

$$S4 \vdash A \implies LP_{CS} \vdash r(A)$$
.

Arithmetical Semantics

Originally, LP_{CS} was developed to provide classical provability semantics for intuitionistic logic.

Arithmetical Semantics for LP_{CS}: Justification terms are interpreted as proofs in Peano arithmetic and operations on terms correspond to computable operations on proofs in PA.

$$Int \quad \xrightarrow{G\ddot{o}del} \quad S4 \quad \xrightarrow{Realization} \quad JL \quad \xrightarrow{Arithm. \ sem.} \quad CL + proofs$$

Self-referentiality

Definition (Self-referential CS)

A constant specification CS is called *self-referential* if $(c,A) \in \mathsf{CS}$ for some axiom A that contains at least one occurrence of the constant c.

S4 and LP_{CS} describe self-referential knowledge. That means if LP_{CS} realizes S4 for some constant specification CS, then that constant specification must be self-referential.

Lemma

Consider the S4-theorem $G:=\neg\Box((P\to\Box P)\to\bot)$ and let F be any realization of G.

If $LP_{CS} \vdash F$, then CS must be self-referential.

Basic evaluation

Definition (Basic Evaluation)

A basic evaluation * for LP_{CS} is a function:

$$*: \mathsf{Prop} \to \{0,1\} \text{ and } *: \mathsf{Tm} \to \mathcal{P}(\mathcal{L}_j)$$
, such that

- $\bullet F \in (s \cdot t)^* \text{ if } (G \to F) \in s^* \text{ and } G \in t^* \text{ for some } G$
- $2 \quad F \in (s+t)^* \text{ if } F \in s^* \text{ or } F \in t^*$
- $s: F \in (!s)^* \text{ if } F \in s^*$

Quasimodel

Definition (Quasimodel)

A *quasimodel* is a tuple $\mathcal{M}=(W,R,*)$ where $W\neq\varnothing$, $R\subseteq W\times W$, and the *evaluation* * maps each world $w\in W$ to a basic evaluation $*_w$.

Definition (Truth in quasimodels)

 $\mathcal{M}, w \Vdash p$ if and only if $p_w^* = 1$ for $p \in \mathsf{Prop}$; $\mathcal{M}, w \Vdash F \to G$ if and only if $\mathcal{M}, w \nvDash F$ or $\mathcal{M}, w \Vdash G$; $\mathcal{M}, w \Vdash \neg F$ if and only if $\mathcal{M}, w \nvDash F$; $\mathcal{M}, w \Vdash t : F$ if and only if $F \in t_w^*$.

Model

Given
$$\mathcal{M}=(W,R,*)$$
 and $w\in W$, we define

$$\square_w := \{ F \in \mathcal{L}_i \mid \mathcal{M}, v \Vdash F \text{ whenever } R(w, v) \} .$$

Definition (Modular Model)

A modular model $\mathcal{M} = (W, R, *)$ is a quasimodel with

 \bullet $t_w^* \subseteq \square_w$ for all $t \in \mathsf{Tm}$ and $w \in W$;

(JYB)

- \mathbf{Q} R is reflexive;
- $oldsymbol{0}$ R is transitive.

Theorem (Soundness and Completeness)

For all formulas $F \in \mathcal{L}_j$,

$$\mathsf{LP}_\mathsf{CS} \vdash F \iff \mathcal{M} \Vdash F \text{ for all modular models } \mathcal{M}.$$

Decidability

In modal logic, decidability is a consequence of the finite model property. For LP_{CS} the situation is more complicated since CS usually is infinite.

Theorem

LP_{CS} is decidable for decidable schematic constant specifications CS.

A decidable CS is not enough:

$\mathsf{Theorem}$

There exists a decidable constant specification CS such that LP_{CS} is undecidable.

Complexity

Theorem

Let CS be a schematic constant specification. The problem whether $LP_{CS} \vdash t:B$ belongs to NP.

Complexity

$\mathsf{Theorem}$

Let CS be a schematic constant specification.

The problem whether LP_{CS} $\vdash t:B$ belongs to NP.

Definition

A constant specification is called *schematically injective* if it is schematic and each constant justifies no more that one axiom scheme.

Theorem

Let CS be a schematically injective and axiomatically appropriate constant specification.

The derivability problem for LP_{CS} is Π_2^p -complete.

Logical Omniscience

Modal logic of knowledge contains the epistemic closure principle in the form of axiom

$$\Box(A \to B) \to (\Box A \to \Box B)$$
 ,

which yields an unrealistic feature called *logical omniscience* whereby an agent knows all logical consequences of her assumptions.

Definition

A proof system for a logic L is a binary relation $E\subset \Sigma^\star \times \mathsf{L}$ between words in some alphabet, called proofs, and theorems of L such that

- $oldsymbol{0}$ E is computable in polynomial time and
- ② for all formulas F, $\mathsf{L} \vdash F$ if and only if there exists y with E(y,F).

Logical Omniscience II

Knowledge assertion A is a provable formula of the form

 $\Box B$ for S4 or t:B for $\mathsf{LP}_{\mathsf{CS}}$

with the object of knowledge function OK(A) := B.

Definition (Logical Omniscience Test (LOT))

An proof system E for an epistemic logic L is *not logically omniscient*, or *passes LOT*, if there exists a polynomial P such that for any knowledge assertion A, there is a proof of $\mathsf{OK}(A)$ in E with the size bounded by $P(\mathsf{size}(A))$.

Logical Omniscience III

Theorem (S4 is logically omniscient)

There is no proof system for S4 that passes LOT unless NP=PSPACE.

Theorem (LP_{CS} is not logically omniscient)

Let CS be a schematic constant specification. There is a proof system for LP_{CS} that passes LOT.

After the announcement of A, the agent believes A, i.e. $[A] \square A$

After the announcement of A, the agent believes A, i.e. $[A]\Box A$

Problem

The \Box -operator does not tell us whether A is believed because of the announcement or whether A is believed independent of it.

Update as Evidence: the Logic JUP_{CS} for Belief Expansion

Fundamental principle

After the announcement of A, the announcement itself justifies the agent's belief in A.

Update as Evidence: the Logic JUP_{CS} for Belief Expansion

Fundamental principle

After the announcement of A, the announcement itself justifies the agent's belief in A.

For each formula A we add a new justification term up(A).

Some axioms of JUP:

• Success: $[A] \operatorname{up}(A):A$

Update as Evidence: the Logic JUP_{CS} for Belief Expansion

Fundamental principle

After the announcement of A, the announcement itself justifies the agent's belief in A.

For each formula A we add a new justification term up(A).

Some axioms of JUP:

- $\bullet \; \mathsf{Success} \colon \left[A \right] \mathsf{up}(A) \mathpunct{:} A$
- Persistence: $t:B \to [A]t:B$.
- Reduction axioms
- Minimal change
- Iterated updates

Basic Properties of JUP_{CS}

Lemma (Minimal change)

Let t be a term that does not contain $\operatorname{up}(A)$ as a subterm. Then

$$\mathsf{JUP_{CS}} \vdash [A]t:B \leftrightarrow t:B$$
.

Basic Properties of JUP_{CS}

Lemma (Minimal change)

Let t be a term that does not contain $\operatorname{up}(A)$ as a subterm. Then

$$\mathsf{JUP}_\mathsf{CS} \vdash [A]t : B \leftrightarrow t : B$$
.

Lemma (Ramsey I)

$$\mathsf{JUP_{CS}} \vdash t:(A \to B) \to [A](t \cdot \mathsf{up}(A)):B.$$

Lemma (Ramsey II)

Let CS be an axiomatically appropriate constant specification. For each term t there exists a term s such that

$$\mathsf{JUP}_\mathsf{CS} \vdash [A]t:B \to s:(A \to B)$$
.

Thank you!

