Attack in Between Ticks

Using a Continuous Model
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Verifier grants access, although actual round trip time
iIs greater than R!
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A full probabilistic analysis / explanation for a
newly discovered Attack in Between Ticks for
Distance Bounding Protocols

Verifier needs to perform four operations

(only one operation can be executed in one clock cycle)

(a) At sgp within an initial clock cycle, say sg = 1+ X,
Verifier sends m.

(b) At ty within the next clock cycle, say tg = 2+Y,
Verifier records when m is sent;

(c) At s; within some clock cycle, say s; = sg+4,
Verifier receives Response m/’.

(d) At t; within the next clock cycle, say t; = fsﬁ—%] + Z,
Verifier records when m’ is received *

For a fixed time response bound R,
Verifier grants the access to its resources iff

t1 —to < R.
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*Here X, Y, and Z are random variables distributed on the interval [0, 7].



The measured t; — tg against the actual s; — sg

Let X, Y, and Z be independent random variables (say,
uniformly) distributed on the interval [0, %]. Then

sop = 14 X, S1 = so+ 4,
to = 24Y, t; = [s1+3]+Z

For h >0, perror(h), the probability of the erroneous decision
Perror(h) = P(t1 —tg < R / s1 —so=£= R+ h)
iIs the conditional probability of the event
t1—to < R
subject to the constraint
s1—sg=¥f¢= R+ h.

NB: We take the uniform distribution here. However,
our main theorems are valid in the case of arbitrary non-
degenerated distributions for independent X, Y, and Z dis-

tributed on the interval [0, 3]. ,



dp(ty—to<x /s1—sp=4L=R+h)
The single-humped (“Dromedary camel” ) case:
e>1
)

Let £ =£— [£] > 3.
The conditional probability density of the measured time
interval t; — tg, given the actual time interval s; — sg = £:
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%P(tl—togw/sl—s():f:R—l—h)

The 2-humped (‘““Bactrian camel” ) case: E<%.
A bimodal distribution

Let £ =1¢— |¢] <%.
The conditional probability density of the measured time
interval t; — tg, given the actual time interval sy — sg = £:
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pe’rror(h) :P(tl —t() S R / S1 — S0 :E:R_|_h)

Inconsistency between the real time in nqture
and the discrete computer clock (¢ < >

Theorem 1.1 (See visualization and proofs on the next slides)

Let £=¢—|¢] <1

e Whatever 0 < h < 1 we take, with a positive probability
Verifier makes the erroneous decision by observing that

t1 —to < R
at the situation where the actual time interval
s1—sp=f¢=R+h

e For h > 1, contrary to our expectations,
the probability of the erroneous decision, perror(h), turns
out to be zero.

Pti1—tgy<R/sit—sg=£¢>R+1)=0.



pe’rror(h) — P(tl — 1o S R / S1 — 89 = b = R_|_h)
Real time vs Discrete computer clock.
“Derror(h) > 07 iff “h=4—R < 1”




A Proof. Five-Mins-Math for 0 < %
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The minimal R to guarantee pcrror(h) > 0, iIs R = |£] 1,
which provides the maximal possible h:

h=¢—R= (LEJ—I—%—&') — (Lﬁj—%—l—e) =1—('+e)=1-9

Notice that perror(h) # 1.

For h > 1, we have R < £—1 < [£]—3, hence,

perror(h) =0 !N



The actual discrepancy between the computer
discrete time and the real time in numbers

Let h =1—49. We have proved that
perror(h), the probability of the erroneous decision, is positive.

In particular,

e 1 clock cycle of a 24MHz processor = 42 ns;
So the critical h = 42ns
e Light travels 30cm in 1ns;

e T hus the error can be of 12.6 meters round trip, which
means the prover can be 6.3 meters further than the

distance bound.
e T he faster processors, the more reliable challenge-response
techniques.



The actual discrepancy between the computer
discrete time and the real time in numbers

Let h =1—49. We have proved that
perror(h), the probability of the erroneous decision, is positive.

In particular,
e 1 clock cycle of a 24MHz processor = 42 ns;
So the critical h = 42ns
e Light travels 30cm in 1ns;

e T hus the error can be of 12.6 meters round trip, which
means the prover can be 6.3 meters further than the
distance bound.

e T he faster processors, the more reliable challenge-response
techniques.

NB: The above numerical examples are valid even in the
case of arbitrary non-degenerated distributions for indepen-
dent X, Y, and Z distributed on the interval [0,%].



Can we Mitigate the Attack in Between Ticks
by using challenge-response rounds repeatedly 7

Theorem 1.2 Given a time response bound R, let Verifier
repeat the above protocol k£ times at the situation where
the actual time interval s1 —sg=¢ = R+h > R.
By observing

t1 —to > R

at least in one of these k independent trials, Verifier can
detect that “something is wrong” with the actual s; — sg.

Let pi(h) be the probability of the erroneous decision be-
cause of the fact that in all £ trials we observe “t; —tg < R”,
contrary to that the actual time interval s1 — sg > R+ h.
Then p(h) decreases significantly for large k:

k
pr(h) = (pe'rror(h)> — 0.
In the case of the uniformly distributed X, Y, and Z,
pr(h) — 0 uniformly with respect to h, since for all h

pr(h) < (#) g



The next slides can be skipped
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perror(h) — P(tl —to < R / s1—so=4£= R""h)
Inconsistency between the real time in n?ture
and the discrete computer clock (K >
Theorem 1.3 (See proofs on the next slides)
Let £=£— [£] > 3.

e Whatever 0 < h < % we take, with a positive probability
Verifier makes the erroneous decision by observing that

t1 —to < R
at the situation where the actual time interval
s1—sp=f¢{=R+h

e For h > %, contrary to our expectations,

the probability of the erroneous decision, perror(h), turns
out to be zero.

1
P(tl—t()SR/Sl—SOZEZR—I—E):O.

(recall that here we are in the case of £ > 1) H
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A Proof. Five-Mins-Math for ¢ > %
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The minimal R to guarantee pcrror(h) > 0, iIs R = |£] —I—%—I—e,
which provides that the maximal possible h is as follows:
1 1
h=¢—R=(([€]+1) — (L€J+5+€) = -—¢

2
Notice that perror(h) # 1.
For h > 7, we have R < £—3 < |£|+3, hence,

Perror(h) = 0 !!!
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