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Arithmetic Computational interpretations

Heyting Arithmetic (HA)

Godel (1941/1958) Dialectica interpretation using System T (higher-type
primitive recursion)

Kleene (1945) Relizability using general recursion

Kreisel (1962) Modified realizability via System T
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Arithmetic Computational interpretations

Heyting Arithmetic (HA)

Godel (1941/1958) Dialectica interpretation using System T (higher-type
primitive recursion)

Kleene (1945) Relizability using general recursion

Kreisel (1962) Modified realizability via System T

Peano Arithmetic (PA)
» Works for formulas implied by their own double negation translations

* Thanks to the fact that the induction axiom is one such formula
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Analysis Computational interpretation

What happens when the Axiom of Choice
Vx3yA(x,y) — IFVXA(x, f(x)), (AC)
is added to Arithmetic?
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Analysis Computational interpretation
What happens when the Axiom of Choice

Vx3yA(x,y) — IFVXA(x, f(x)), (AC)
is added to Arithmetic?
Intuitionistic “Analysis”
Computational interpretations still apply to HA+AC. J
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Analysis Computational interpretation
What happens when the Axiom of Choice

Vx3yA(x,y) — IFVXA(x, f(x)), (AC)
is added to Arithmetic?
Intuitionistic “Analysis”
Computational interpretations still apply to HA+AC.

Classical Analysis

But double-negation translation of AC is not provable from AC+HA, so
interpretations not directly applicable to classical Analysis.

-
-
I &LW Danko lli¢ — Computational interpretations of the classical axiom of choice




Analysis Computational interpretation
What happens when the Axiom of Choice

Vx3yA(x,y) — IFVXA(x, f(x)), (AC)
is added to Arithmetic?
Intuitionistic “Analysis”
Computational interpretations still apply to HA+AC.

Classical Analysis

But double-negation translation of AC is not provable from AC+HA, so
interpretations not directly applicable to classical Analysis.

Digression

There are forms of AC that are resistant to double-negation translations:
Raoult’'s Open Induction Principle:

Va (V8 < aU (B) = U(a)) = YaU(a),

where a € N — {0,1} ora € N — Nand U is open (i.e. X9).

-
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Kuroda’s Principle (1951)

If we add
—=Vx(A(x) V -A(X)) (KC)

to HA+AC, then the D-N translation of AC becomes provable!
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Kuroda’s Principle (1951)

If we add
—=Vx(A(x) V -A(X)) (KC)

to HA+AC, then the D-N translation of AC becomes provable!

This was known to Gddel.
Kreisel gives credit in §2.43 of Spector’s (1962) paper.

Double Negation Shift — intuitionistic equivalent of KC

Vx—=B(x) — —-—VxB(x). (DNS)
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Double Negation Shift Computational interpretation?

Double Negation Shift
—=Vx(A(X) V 2A(x)) (KC)J

Can we interpret it computationally?
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Double Negation Shift Computational interpretation?

Double Negation Shift
—=Vx(A(X) V 2A(x)) (KC)J

Can we interpret it computationally?

Formal/False Church’s Thesis
Already Gddel (1941) considers the special case of KC for

A(x) =3y T(x,x,y).

That directly refutes:

vx"IyNA(x, y) — 3eNvxIN (T (e, x, u) A A(x, U(u))). (CTo)

Ex. A form of CTy is used to prove soundness of Kleene’s realizability.

-
-
I &LW Danko lli¢ — Computational interpretations of the classical axiom of choice




Double Negation Shift Computational interpretation

Bar Recursion

Kreisel and Spector gave a computational interpretation of DNS by extending
the primitive recursive System T with a general recursive schema:

BR(G, Y,H,s) =
[ G(s) if Y(Ak. if k < |S| then S else 0) < |s|
| H(s,2x.BR(G, Y,H,s«x)) otherwise

» Soundness of BR is proven by an additional axiom like Bar Induction
 Improved in works of Coquand, Kohlenbach, Berger, Oliva, ...

» One of the rare applications of Proof Theory to Mathematics other than
Logic itself — Kohlenbach’s Proof Mining

-
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Analysis Alternative computational interpretation

Interpretations based on computational side-effects
Griffin 1990 “A formulae-as-types notion of control”
Krivine 2003 “Dependent choice, ‘quote’ and the clock”

Herbelin 2011 “A constructive proof of the axiom of dependent choice,
compatible with classical logic”

Questions

» Can one simplify the approach of side-effect and abstract machines?
- Ex. Do call/cc and quote go beyond primitive recursion?
« |s full classical logic necessary to prove soundness?

- Ex. DNS does not brake the Disjunction Property of intuitionistic predicate
calculus

-
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Do we need more than System T?

Schwichtenberg (1979)
System T is closed over bar recursion at types N and N — N. J
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Do we need more than System T?

Schwichtenberg (1979)
System T is closed over bar recursion at types N and N — N.

Kreisel (§12.2 of Spector (1962))

Those low types are sufficient for interpreting the classical AC for formulas of

the form
o' NxN Ag (o, x),

where Ag is quantifier-free.
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Do we need more than System T?

Schwichtenberg (1979)
System T is closed over bar recursion at types N and N — N.

Kreisel (§12.2 of Spector (1962))

Those low types are sufficient for interpreting the classical AC for formulas of
the form
o' NxN Ag (o, x),

where Ag is quantifier-free.

Can we ask for more than that?
There are classically true formulas that are not recursively realizable, ex.:

Vx3yvzau((u=0— T(x,x,y)) A (u# 0 — T(x,x,2)))

-
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Conservative extension of System T with
control operators

-
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Goal: System T* and its properties

Theorem (Normalization)

There is a normalization function | [—] s.t. for every term p of System T of
type v - 7, the term | [p] is a normal form of System T of the same type
(v 7 7).

Proposition (Equations)

s [[Wknp]]a,p =] [[P]]p 4 thp]]a,p =l a
1 [fstpair(p, q)], =1 [P, | [sndpair(p,q)], =4 [al,
1 [app(lamp, @)1, =1 [Pl ia1, ., | [rec(zero,p, q)], =1 [pl,

| [rec(succr,p,q)], = -
V' Ishiftp], =4 [ele, 1" [app(app(hyp, x), Vo, =4 [V]s,

¢ :=n(Z2 v = n(Zs a = n(pa)))

-
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T=T+ composable continuations panvy-Filinski’s shift in call-by-name

Types: T 30, 7:=N|oc—71|ox*T

Terms:
yko ()T
hyp ————— kn ———— lam -2
yp(a;’y)l—a W (v ko a yho—T
YyFo—=T1 k0o . ykFo yET YEoxT
app —m—F—— air ———— fst ——
pp yET P YyhEoxT yko
YyhEoxT vEN
snd ——— zero succ
yET vyFN vyEFN
reCWI—N yFo YyFN—=o—o0o Shiﬁ(N—>U—>N;7)I—N
yko yko

-
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System Tt Ackermann’s function (Example)

A= 2dm. BRm(On.n+ 1)(Am’ AuAn. R n(ul)(An" Aw.uw)),
is represented by

lam
(rec hyp(lam(succ hyp))
(lam
(lam
(lam
(rec hyp(app(wkn hyp)(succ zero))

(lam(lam(app(wkn(wkn(wkn hyp))) hyp))))))))

i.e. a 15'-order representation with de Bruijn indices 0 := hyp, 1 := wkn hyp, ...

-
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System Tt Ackermann’s function (Example)

The Agda formalization really computes ex. A(3,2) to be succ - - - succ zero.
N ——’

29 times

(If one has enough RAM available)

-
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System T (not T+) Normal forms

Normal terms (),

P WO i) K M L e
yko Yo —T YRoxT
v N
zero succ
odis 7N
and neutral terms (i),
yiFo Yyeo—=T ko
I kn ——— app ———————
Plomko ke PR
fst1EBT*T g2 g 2N ko yRNZo o
'y[— ’y|_7' 7'50-
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Normalization-by-evaluation

Normalization is proven using a constructive normalization-by-evaluation proof
in continuation-passing style (CPS). System T is evaluated into the following
continuation monad:

ylFo =Yy >y (V227 (12 ko = v FN)= 1 FN)

Yl N=~FN
Yl(c =71)=VY >~y Fo=+"IF7)
Yl (oxT)=vlFoxylFT

where

2 > M
ZCOI’]S ry ry

> refl —_—
>y (0:72) > 71

-
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Normalization-by-evaluation The forcing “monad”

The ‘return’ and ‘run’ operations:

n=):vko=lko w(=) v FN=~lN
nH=>1 k= K > [H] >, puH=H>e (>1 a— @)
Monotonicity properties:
- ez =yFo=> ko
L—a(o) >y =>Tko=>mko
—](_) e>ym=mlFo=> o
—Jgmez2rn=2mko=>rlko
ﬂ'—'ﬂ(_) >y =mlEy= pwllEy
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Normalization-by-evaluation

The reify function

V(=)yFo=qyko

TINH=puH
Y77 H = lam(?"
(>1 6
H(21 : ZconsZrefl)
(>2 ¢
¢ >ren ([7717 hyp]72 ") e
(Z3 K(=3 - >2)))))
717" H = pair

aia (215'_>

H>1 (>2 a— proj; a >wen (>3 k(>3 - >2))))

H>1 (22 a— proj, a > (>3 k(>3 - >2))))
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Normalization-by-evaluation

The reify function

V(=)yFo=qyko

TINH=puH
Y77 H = lam(?"
(>1 k-
H(21 : ZconsZrefl)
(>2 ¢
¢ >ren ([7717 hyp]72 ") e
(Z3 K(=3 - >2)))))
717" H = pair

aia (215'_>

H>1 (>2 a— proj; a >wen (>3 k(>3 - >2))))

H>1 (22 a = proj, a > (>3 k(>3 - >2))))
This function shows that we can actually run the monad at any type

-
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Normalization-by-evaluation The reflect function

M (=)iykeo=qlko

1 p=mn(ep)
77T p=n(>2 a =17 app(Lpas,, 17 @)
"7 p =17 fstp,”1” snd p)

This function is needed only by the o — 7-case of reify. Morally, it only performs
n-expansion.

-
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Normalization-by-evaluation The evaluation function

-1 vk o =YY IEAy (Y I o)
Thyp], = proj; p

[[Wkn p]]p = [[p]]projg P

[[lamp]]p =n(>1ar [[p]](a,“'p]]b))

[pair(p, @)1, = n(lPl,, [al,)

[fstpl, ==1 k= [pl, 21 (Z2 @ = Proj; a Zren (23— £(Z3 - 22)))

[shiftp, =21 & = 1Pl p0sn(zsamsn(azm(Zemsm(4- 25 22, [0 1
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Normalization-by-evaluation

Theorem (Normalization)

There is a normalization function | [—] s.t. for every term p of System T of
type v - 7, the term | [p] is a normal form of System T of the same type
(ylrT).

Proof.

Compose the defined functions:
7[[—]]ET_) vk o =YY Iy IF o)
M ()iyko=qlko
V(=)iylko=>qyko

-
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Equations holding of the normalization function

Proposition
The following definitional equalities hold,

1 [wknpla,, =1 [P,
{ thp]]a,p =l a
1 [fstpair(p, q)], =1 [P,
| [sndpair(p, )], =1 [al,
1 [app(lamp, )], =1 [Plia1, .
| [rec(zero, p, q)], =1 [pl,
1 [rec(succr, p,q)], =1 [app(app(q. r), rec(r, p.q))],
1 [shittpl, =1 [p],.,
1" lapp(app(hyp, x), V)s., =4 V1.0

where for the last two equations,

2RI TEERZ

¢ :=n(Z2 v = (=3 a = n(ua))).

-
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Equations holding of the normalization function

Proof of the proposition.

Equations (1)—(7) follow from the ones that hold already of the [—]_, function.
Equations (8)—(9) also follow by definition, this time reification being applied for
only one concrete type, N. O
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Equations holding of the normalization function

Proof of the proposition.

Equations (1)—(7) follow from the ones that hold already of the [—]_, function.
Equations (8)—(9) also follow by definition, this time reification being applied for
only one concrete type, N. O

This is easy to say but difficult to prove: one needs to find the right formulation
of defining equations for [—].
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A modified realizability interpretation
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Optimized modified realizability translation
Berger-Schwichtenberg-Buchholz (2002); Seisenberger (2008)

Computationally irrelevant formulas

N:=P|NAN|VX'N|A— N

Y »-formulas

S:=N|3x"N|N—=S|NAS|SAN

Forgetful map of formulas to types

[N A B| :=|B| [AAN|:=|A] |AA B| = |A| % |B]|
IN — B| := |B| |A— B|:=|Al — |B| VXTA| =7 — |A|
[3X"N| =71 [3XTA| =1 *|A| IN| :=N

Y, are exactly those A for which |A| = N

-
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Goal: Extract programs from proofs of > ,-formulas

Definition (Modified realizability interpretation “o mr A” of a formula A
by a term p of type |I'| i |A| of System T)

pmrN:=N
pmrNAB:=NA(pmrB)
pmrAAN:=(pmrA)AN
pmrAAB:= (] [fstp], mr A) A (] [sndp], mr B)
pmrN— B:=N— (pmr B)
pmrA— B:=Vx([{ [x], mr Al =[] [app(p, x)], mr B])
p mr Yx" A(x) == ¥x" (1 [app(p, x)], mr A(x))
pmr 3Ix”N(x) := N(p)
pmr3x"A(x) := | [sndp], mr A( [fstp],),

where | [—] is normalization and we assume an interpretation p : || lI- |T].

-
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HA“"+AC

ATEA M

ATHB
rFA— B

rHAAB

Al
r-A °F

r-A r-B

A core proof system for ,-Analysis

M- A
BriA W

rFA—B  THA

r-AAnB

I 3IxTA(x)

r=B

rHAAB
r=B

r=A(rm)
I+ 3x™A(x)

2
Ng

M A(xT) x ¢ FV(T)

I+ vx™A(x)
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[EVX(AX) +B)  x¢FV(B) _
E

I+ vx™A(x)
FEA(rm)

E




HAw++AC A core proof system for X,-Analysis

I - A(zero) I+ VvxY(A(x) — A(succ x)) |
ND
I+ vxNA(x)

VXN(A(x) = S(x)),T + S(r)

A SecXx
FEA() SHIFT ( 2)

+ the full Axiom of Choice
vx?3yTA(x, y) = 7YX A(x, f(X)). (AC‘”)J

-
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Soundness of modified realizability

Theorem (Soundness)

If HA“" +AC proves Cy, Cs, ..., Cn = A, and A is computationally relevant, then
there exists a term p of System T+ such that HA“* alone proves that, for every
p:|Cil,|Coly .., |Cal IF |Gy, |Csl, - .., |Cal,

L [hyp], mr Cy, | [wknhyp], mrCs,..., | [wkn" hyp], mr C,+ | [p], mrA.

Proof.

Induction on the derivation, with realizing terms as usual. One further analyses
the components of A to give optimized realizers. For example, in general, the
axiom AC7 is realized by the term

lam pair(lam app(fst wkn hyp, hyp), lam app(snd wkn hyp, hyp)),
but when A(x, y) is computationally irrelevant the realizer is the term

lam hyp.

-
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Soundness of modified realizability SHIFT case
VXN(A(x) = S(x)),T + S(r) .

ASeXx
AN FT ( 2)

Proof for the SHIFT case.
The goal is to prove

1 [hyp], mr Cy,..., | [wkn"hyp], mr C, - | [shiftp], mr A(r).

-
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Soundness of modified realizability SHIFT case
VxXN(A(x) — S(x)),T + S(r)

ASeXx
AN SHIFT ( 2)

Proof for the SHIFT case.
The goal is to prove

1 [hyp], mr Cy,..., | [wkn"hyp], mr C, - | [shiftp], mr A(r).
Using equation (8), we obtain ¢ and the goal becomes

| [hyp], mr Cy, ..., ] [wkn"hyp], mr C,+ | [p]s , mr A(r).

-
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Soundness of modified realizability SHIFT case
VxXN(A(x) — S(x)),T + S(r)

ASeXx
AN SHIFT ( 2)

Proof for the SHIFT case.
The goal is to prove

1 [hyp], mr Cy,..., | [wkn"hyp], mr C, - | [shiftp], mr A(r).
Using equation (8), we obtain ¢ and the goal becomes
| [hyp], mr Cy, ..., ] [wkn"hyp], mr C,+ | [p]s , mr A(r).

We can now use the induction hypothesis with p := (¢, p),

1 [hypl,., mrvx"(A(x) — S(x)), ! [wknhyp], , mr Ci,...,
+ [wkn™" hyp], , mr Co - | [p],,, mr S(r).
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Soundness of modified realizability SHIFT case
VxXN(A(x) — S(x)),T + S(r)

ASeXx
AN SHIFT ( 2)

Proof for the SHIFT case.
The goal is to prove

1 [hyp], mr Cy,..., | [wkn"hyp], mr C, - | [shiftp], mr A(r).
Using equation (8), we obtain ¢ and the goal becomes
| [hyp], mr Cy, ..., ] [wkn"hyp], mr C,+ | [p]s , mr A(r).

We can now use the induction hypothesis with p := (¢, p),

1 [hypl,., mrvx"(A(x) — S(x)), ! [wknhyp], , mr Ci,...,
+ [wkn™" hyp], , mr Co - | [p],,, mr S(r).

Thanks to equation (1), the induction hypothesis becomes - - - O
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Soundness of modified realizability SHIFT case

VXN(A(X) = S(x)),T + S(r)

ASecX
FEA() SHIFT ( 2)

Proof for the SHIFT case.
Thanks to equation (1), the induction hypothesis becomes

1 [hypls,, mr Vx"(A(x) — S(x)), ) [hyp], mr Ci, ...,
1 [wkn"hyp], mr C, + | [p]s,, mr S(r).
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Soundness of modified realizability SHIFT case

VXN(A(X) = S(x)),T + S(r)

ASecX
FEA() SHIFT ( 2)

Proof for the SHIFT case.
Thanks to equation (1), the induction hypothesis becomes

1 [hypls,, mr Vx"(A(x) — S(x)), ) [hyp], mr Ci, ...,
1 [wkn"hyp], mr C, + | [p]s,, mr S(r).

Finally, thanks to equation (9), we can finish the proof by applying the SHIFT
rule for:

S'(x,¥) =1 [y]s,, mr S(x)
A(x,y) =1 [Y]s,, mrA(x).

-
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Soundness of modified realizability Extensions

The limitations to A, S of the SHIFT rule are not strict. We can actually extract a
program of System T for full classical Analysis.

The catch is that not always is such a program correct. J

Way forward

Although full classical Analysis is not uniformly realizable it may well be
realizable for concrete non-X, statements — such that are sound w.r.t. some
SHIFT rule.

-
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Y >-Analysis refutes “Church’s Thesis” but satisfies Church’s
Rule

Corollary

The X»-fragment of classical Analysis satisfies the Existence Property,
Given a derivation of T + 3x7 A(x), there exists a term p of type T of
System T such that T + A(p).

and, consequently, the Weak Church’s Rule,

Given a (closed) derivation of § - YxN3yNA(x, y), there exists a total

recursive functionf : N — N such that, for alln € N, we have that

0 + A(n, fn), where m denotes the term succ- - - succ zero.
N’

m times

-
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Y >-Analysis satisfies Church’s Rule

Example Application

Principles like
—-—3x"N — Ix"N (MP)
VxT——A o ——vxVA, (DNS)
where
-B:=B—-M M, N — comp. irrelevant A —any

are constructive even in presence of AC and Induction, solely because

MP,DNS € T».

-
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Conclusion
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One can:
1. avoid bar recursion (viz. supplement Schwichtenberg (1979))
2. replace control operators at run-time with partial evaluation at compile-time

Further details

» An interpretation of the Sigma-2 fragment of classical Analysis in System
T, ArXiV:1301.5089

o Agda script: http://www.lix.polytechnique.fr/~danko

« A Direct Version of Veldman’s Proof of Open Induction on Cantor Space
via Delimited Control Operators (with Keiko Nakata), LIPIcs 26, 2014

» Delimited control operators prove Double-negation Shift, in APAL 163,
2012

—
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One can:
1. avoid bar recursion (viz. supplement Schwichtenberg (1979))
2. replace control operators at run-time with partial evaluation at compile-time

Further details

» An interpretation of the Sigma-2 fragment of classical Analysis in System
T, ArXiV:1301.5089

o Agda script: http://www.lix.polytechnique.fr/~danko

« A Direct Version of Veldman’s Proof of Open Induction on Cantor Space
via Delimited Control Operators (with Keiko Nakata), LIPIcs 26, 2014

» Delimited control operators prove Double-negation Shift, in APAL 163,
2012

Thank you!
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