Conditions for doing research

Henk Barendregt Faculty of Science Radboud University Nijmegen, The Netherlands

1. Attitude

not for gain

2. Genuine interestFinding a topic: reading, listeningLiking it!Creating a new world OR exploring a known world (or both)Having a *problem*

- 3. Disicpline Concentration
- 4. Relax

Theory of combinators CL terms ::= x | | | K | S | term term

$$P = P$$

$$KPQ = P$$

$$SPQR = PR(QR)$$

Simulating λ -abstraction

$$\begin{array}{rccc} [x]x & \triangleq & \mathsf{I} \\ [x]y & \triangleq & \mathsf{K}y \\ [x]\mathsf{C} & \triangleq & \mathsf{K}\mathsf{C} \\ [x](PQ) & \triangleq & \mathsf{S}([x]P)([x]Q) \end{array}$$

Simulating λ -calculus in CL

$$(x)_{\lambda} \triangleq x$$

$$(PQ)_{\lambda} \triangleq (P)_{\lambda}(Q)_{\lambda}$$

$$(\lambda x.M)_{\lambda} \triangleq [x](M)_{\lambda}$$

SSSSSSSS → SS(SS(SS(SSS))) SSS(SSS)(SSS) →

Picture: Joerg Endrullis

Barendregt-Endrullis-Klop-Waldmann [2015] In Festschrift for logician (still under embargo) Church: no normal form, no meaning.

Problem: make a recursion theoretic model of the combinators such that

P doesn't have a nf $\Leftrightarrow [\![P]\!]\uparrow$

On $\mathbb{N}_* \triangleq \mathbb{N} \cup \{*\}$ define $xy \triangleq \varphi_x(y)$ if defined $\triangleq *$ else

In particular x * = *x = **

Using the S_n^m theorem one can construct $i,k,s{\in}\mathbb{N}$ such that for all $p,q,r{\in}\mathbb{N}$

$$ip = p$$

 $kpq = p$
 $spqr = pr(qr)$

This also holds for almost all $p, q, r \in \mathbb{N}_*$, except $kp * = * \neq p$ in general :(

We can interpret combinators $P \mapsto \llbracket P \rrbracket \in \mathbb{N}_*$

I showed P is a normal form $\Rightarrow [\![P]\!] \neq *$ (by smallprint S_n^m theorem) P has no nf $\Rightarrow [\![P]\!] = *$ (non-trivial, via length of computation)

This seems to imply $Con(\{P = Q \mid P, Q \text{ do not have a nf}\})$

But $[\Omega, I] = [\Omega, S] \vdash I = S$, giving a contradiction! Memo: $[R, S] \triangleq \lambda z. zRS$

 $\Omega = \omega \omega$ with $\omega \triangleq (\lambda x. xx)_{\lambda} = \mathsf{SII}$

Now $\llbracket \omega \rrbracket = sii = e$, say, with and ex = xx

So $ex \downarrow \Leftrightarrow xx \downarrow$

Do we have $ee \downarrow$? [Problem of Henkin!]

We have $ee \downarrow$ if and only if $ee \downarrow$ in a non-trivial way

We can fiddle with the S_n^m -theorem and make ee = 17

but for natural choices of i, k, s one has $ee\uparrow$, using 'length of computation'

Although Ω and hence $[\Omega, \mathbf{I}]$ do not have normal forms, one has

```
[\Omega, \mathbf{I}]\mathbf{K} = \mathbf{I}[\Omega, \mathbf{S}]\mathbf{K} = \mathbf{S}
```

So $[\Omega, \mathbf{I}]$ and $[\Omega, \mathbf{S}]$ cannot be equated

```
What is at stake is:
```

```
although [\Omega, I] isn't a normal form, it can be solved to a nf: [\Omega, I]K = I
```

```
From this it is a small step to
```

```
DEFINITION. P is solvable iff for some Q_1 \dots Q_n one has PQ_1 \dots Q_n =
```

With some work I could show

THEOREM [1971]. $Con(\{P = Q \mid P, Q \text{ are unsolvable}\})$

Needed: LEMMA. If U is unsolvable and FU = I, then $\forall P.FP = I$

Not much later Hyland and Wadsworth proved

THEOREM [1973]. P is unsolvable iff $\llbracket P \rrbracket^{\mathcal{D}_{\infty}} = \bot$

Kleene's first model is what later became a pca, 'partial combinatory algebra'

Proving the recursion theorem one first constructs a PR function g such that

$$g(n,m) \sim nm \quad \text{if } nm \downarrow$$

 $\sim * \quad \text{else}$

where $x \sim y$ iff $\forall z.xz \simeq yz$.

Attempt 1.

$$\mathbb{S} = \langle \mathbb{N}_* / \sim, . \rangle$$
 with $n.m = g(n,m)$

Doesn't work:

$$\mathbb{S} \not\models P = Q \Rightarrow FP = FQ$$

Definition

$$x E_0 y \quad \Leftrightarrow \quad x = y$$

$$x E_{n+1} y \quad \Leftrightarrow \quad \forall z \in \mathbb{N}_* . [x z E_n y z]$$

$$\mathbb{S}_0 = \mathbb{N}_*$$

$$\mathbb{S}_{n+1} = \{ p \in \mathbb{S}_n \mid x E_n y \Rightarrow p x E_n p y \}$$

Eventually this stabilizes $\mathbb{S}_\infty, E_\infty$ and we consider

$$\mathbb{S} = \langle \mathbb{S}_{\infty} / E_{\infty} \rangle$$

But it is not clear whether $i, k, s \in \mathbb{S}$

Definition

$$\mathbb{N}^{\mathsf{CL}} = \mathbb{N}^{\mathsf{CL}}_{*}$$

$$x E_0 y \quad \Leftrightarrow \quad x = y$$
$$x E_{n+1} y \quad \Leftrightarrow \quad \forall z \in \mathbb{N}^{\mathsf{CL}} . [x z E_n y z]$$

For the limit $\mathbb S$ it is not clear whether it is not degenerate in the sense that i=k=s

Omega rule

$$\frac{PZ = QZ \text{ for all closed } Z}{P = Q}$$

Consistency of it: proved in 1971

Universal generators: expect for a possible exception the ω -rule is valid:

 \boldsymbol{P} should'nt be a universal generator

Plotkin [1973] ω -incompleteness

 λ -algebras vs λ -models

Categorical model in category with not enough points, Koymans [1982] Hyland [2015] avoids the syntactical definition of λ -algebra

Hyland [2015] In Böhm Festschrift