Probabilistic Justification Logic

Ioannis Kokkinis

Logic and Theory Group Institute of Computer Science University of Bern

joint work with Petar Maksimović, Zoran Ognjanović and Thomas Studer

> Logic and Applications Dubrovnik September 23, 2015

- Introduction
 - Motivation
 - The Justification Logic J
- Probabilistic Justification Logic
 - The Logics PJ and PPJ
 - Formalization of the Lottery Paradox
- 3 Epilogue

- Introduction
 - Motivation
 - The Justification Logic J
- Probabilistic Justification Logic
 - The Logics PJ and PPJ
 - Formalization of the Lottery Paradox
- 3 Epilogue

- Introduction
 - Motivation
 - The Justification Logic J
- Probabilistic Justification Logic
 - The Logics PJ and PPJ
 - Formalization of the Lottery Paradox
- Epilogue

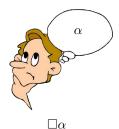
From Classical Logic to Justification Logic

c.p.l.
$$+$$
 " $\square \alpha$ " \rightarrow (Propositional) Modal Logic

From Classical Logic to Justification Logic

c.p.l. + "
$$\square \alpha$$
" \rightarrow (Propositional) Modal Logic

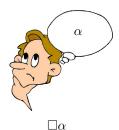
Modal Logic



From Classical Logic to Justification Logic

c.p.l. + "
$$\square \alpha$$
" \rightarrow (Propositional) Modal Logic

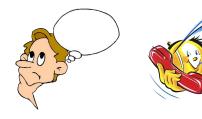
Modal Logic

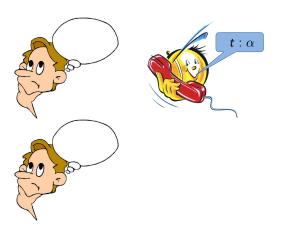


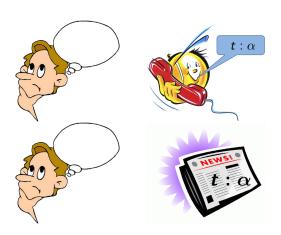
Justification Logic

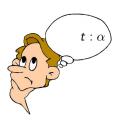
 $t:\alpha$

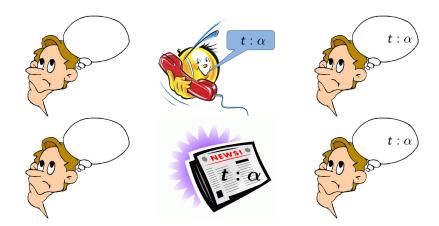
 $t:\alpha$



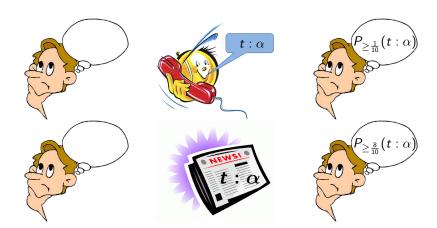








Probabilistic Justification Logic



- Introduction
 - Motivation
 - The Justification Logic J
- Probabilistic Justification Logic
 - The Logics PJ and PPJ
 - Formalization of the Lottery Paradox
- 3 Epilogue

Justification Terms and Formulas

Definition (Justification Terms)

$$t ::= c | x | (t \cdot t) | (t + t) | !t$$

Definition (Justification Formulas-Language L_J)

$$\alpha ::= p \mid \neg \alpha \mid \alpha \wedge \alpha \mid t : \alpha$$

where t is a term and p is an atomic proposition.

Axiomatization for J

Axioms of J:

finitely many axiom schemes for c.p.l. in the language L_J

(J)
$$\vdash u : (\alpha \to \beta) \to (v : \alpha \to u \cdot v : \beta)$$

(+) $\vdash (u : \alpha \lor v : \alpha) \to u + v : \alpha$

$$(+) \vdash (u : \alpha \lor v : \alpha) \rightarrow u + v : \alpha$$

Axiomatization for J

Axioms of J:

- finitely many axiom schemes for c.p.l. in the language L_J
- (J) $\vdash u : (\alpha \to \beta) \to (v : \alpha \to u \cdot v : \beta)$ (+) $\vdash (u : \alpha \lor v : \alpha) \to u + v : \alpha$

 $\mathsf{CS} \subseteq \{(c, \alpha) \mid c \text{ is a constant and } \alpha \text{ is an instance of some axiom of J}\}$

Axiomatization for J

Axioms of J:

- (P) finitely many axiom schemes for c.p.l. in the language L_J
- (J) $\vdash u : (\alpha \to \beta) \to (v : \alpha \to u \cdot v : \beta)$
- $(+) \vdash (u : \alpha \lor v : \alpha) \rightarrow u + v : \alpha$

 $\mathsf{CS} \subseteq \{(c, \alpha) \mid c \text{ is a constant and } \alpha \text{ is an instance of some axiom of J} \}$ For some CS the system J_CS is:

```
\begin{array}{ccc} & \text{axioms of J} \\ & + \\ \text{(AN!)} & \vdash \underbrace{!! \cdots !!}_{n \text{ times}} c : \cdots : !c : c : \alpha \text{, where } (c, \alpha) \in \mathsf{CS} \text{ and } n \in \mathbb{N} \\ \text{(MP)} & \text{if } T \vdash \alpha \text{ and } T \vdash \alpha \to \beta \text{ then } T \vdash \beta \end{array}
```

Semantics for J

For a given CS, we define the function * (basic CS-evaluation):

$$\begin{array}{ll} *: \mathsf{Prop} \to \{\mathsf{T}, \mathsf{F}\} & \qquad [\mathsf{T} = \mathsf{true} \; \mathsf{and} \; \mathsf{F} = \mathsf{false}] \\ *: \mathsf{Tm} \to \mathcal{P}(\mathsf{L}_\mathsf{J}) & \qquad [\mathcal{P} \; \mathsf{stands} \; \mathsf{for} \; \mathsf{powerset}] \end{array}$$

such that:

$$u^* \cup v^* \subseteq (u+v)^*$$

$$\bullet$$
 for $(c, \alpha) \in CS$:

$$\alpha \in c^*$$

$$c : \alpha \in (!c)^*$$

$$!c : c : \alpha \in (!!c)^*$$

$$\vdots$$

Truth under a Basic CS-Evaluation

Let * be a basic CS-evaluation. We have:

- $* \Vdash p \iff p^* = \mathsf{T}$
- $\bullet * \Vdash t : \alpha \Longleftrightarrow \alpha \in t^*$
- $\bullet \ * \Vdash \neg \alpha \Longleftrightarrow * \nVdash \alpha$
- $\bullet * \Vdash \alpha \land \beta \Longleftrightarrow \left(* \Vdash \alpha \text{ and } * \Vdash \beta \right)$

- Introduction
 - Motivation
 - The Justification Logic J
- Probabilistic Justification Logic
 - The Logics PJ and PPJ
 - Formalization of the Lottery Paradox
- 3 Epilogue

- Introduction
 - Motivation
 - The Justification Logic J
- Probabilistic Justification Logic
 - The Logics PJ and PPJ
 - Formalization of the Lottery Paradox
- 3 Epilogue

Probabilistic Formulas

Definition (Probabilistic Formulas-Language L_P)

$$A ::= P_{>s} \alpha \mid \neg A \mid A \wedge A$$

for $s \in \mathbb{Q} \cap [0,1]$ and $\alpha \in L_J$.

Probabilistic Formulas

Definition (Probabilistic Formulas-Language L_P)

$$A ::= P_{>s} \alpha \mid \neg A \mid A \wedge A$$

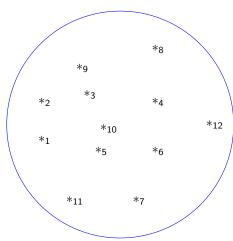
for $s \in \mathbb{Q} \cap [0,1]$ and $\alpha \in L_J$.

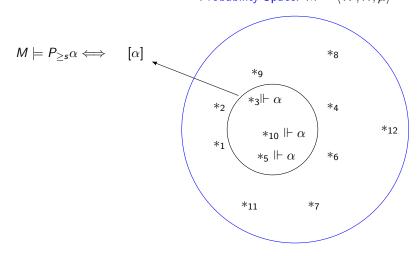
$$\begin{split} P_{s}\alpha &\equiv \neg P_{\leq s}\alpha \\ P_{=s}\alpha &\equiv P_{>s}\alpha \land P_{$$

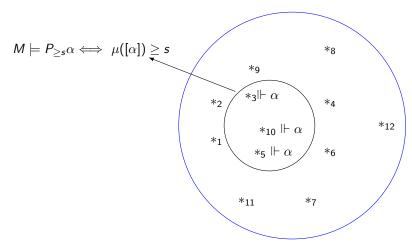
$$\models P_{\geq s}\alpha \Longleftrightarrow ?$$

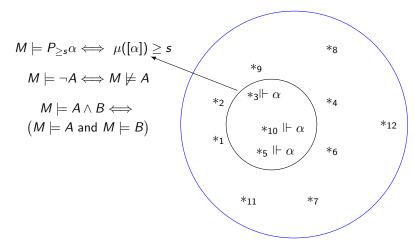
$$\models P_{\geq s}\alpha \Longleftrightarrow ?$$

Probability Space: $M = \langle W, H, \mu \rangle$









Axiomatization

Axioms of PJ:

- (P) finitely many axiom schemes for c.p.l. in the language L_P
- (PI) $\vdash P_{\geq 0}\alpha$
- (WE) $\vdash P_{\leq r}\alpha \rightarrow P_{\leq s}\alpha$, where s > r
- (LE) $\vdash P_{\lt s}\alpha \rightarrow P_{\lt s}\alpha$
- (DIS) $\vdash P_{\geq r}\alpha \wedge P_{\geq s}\beta \wedge P_{\geq 1}\neg(\alpha \wedge \beta) \rightarrow P_{>\min(1,r+s)}(\alpha \vee \beta)$
- (UN) $\vdash P_{\leq r} \alpha \wedge P_{\leq s} \beta \rightarrow P_{\leq r+s} (\alpha \vee \beta)$, where $r+s \leq 1$

For some CS the system $\mathsf{PJ}_{\mathsf{CS}}$ is:

Axioms of PJ +

- (MP) if $T \vdash A$ and $T \vdash A \rightarrow B$ then $T \vdash B$
- (CE) if $\vdash_{\mathsf{JCS}} \alpha$ then $\vdash_{\mathsf{PJCS}} P_{\geq 1} \alpha$
- (ST) if $T \vdash A \to P_{\geq s \frac{1}{k}} \alpha$ for every integer $k \geq \frac{1}{s}$ and s > 0then $T \vdash A \to P_{>s} \alpha$

Soundness and Strong Completeness

Theorem

Any PJ_CS is sound and strongly complete with respect to PJ_CS -models, i.e.:

$$T \vdash_{\mathsf{PJ}_\mathsf{CS}} A \Longleftrightarrow T \Vdash_{\mathsf{PJ}_\mathsf{CS}} A$$

Complexity

It has been proved that, under some restrictions on the CS, the J_{CS} -satisfiability problem belongs to Σ_2^p .

We can prove that, under the same restrictions on the CS, the PJ_{CS}-satisfiability problem belongs to the same complexity class.

Thus, probability operators do not increase the complexity of the justification logic J.

Iterations of the Probability Operator

Can we have formulas like $P_{\geq s}P_{\geq r}\alpha$ or $t: P_{\geq r}\alpha$?

Iterations of the Probability Operator

Can we have formulas like $P_{\geq s}P_{\geq r}\alpha$ or $t: P_{\geq r}\alpha$? The logic PPJ is defined over the following language:

$$\alpha ::= p \mid \alpha \wedge \alpha \mid \neg \alpha \mid t : \alpha \mid P_{\geq s} \alpha$$

Iterations of the Probability Operator

Can we have formulas like $P_{\geq s}P_{\geq r}\alpha$ or $t: P_{\geq r}\alpha$?

The logic PPJ is defined over the following language:

$$\alpha ::= p \mid \alpha \wedge \alpha \mid \neg \alpha \mid t : \alpha \mid P_{\geq s} \alpha$$

$$J + PJ \rightarrow PPJ$$

- soundness: 1
- completeness: 🗸
- decidability : 🗸
- complexity: open

Overview

- Introduction
 - Motivation
 - The Justification Logic J
- Probabilistic Justification Logic
 - The Logics PJ and PPJ
 - Formalization of the Lottery Paradox
- 3 Epilogue

Fair Lottery:

- with 1000 tickets
- exactly 1 winning ticket

Fair Lottery:

- with 1000 tickets
- exactly 1 winning ticket

```
w_i = "ticket i wins" Bel(\alpha) = "it is rational to believe \alpha" Deg<sub>bel</sub>(\alpha) = "degree of belief of \alpha"
```

Fair Lottery:

- with 1000 tickets
- exactly 1 winning ticket

 w_i = "ticket i wins" Bel(α) = "it is rational to believe α " Deg_{bel}(α) = "degree of belief of α "

Postulates of Rational Belief:

- $(Bel(\alpha) \text{ and } Bel(\beta)) \Longrightarrow Bel(\alpha \wedge \beta)$

Fair Lottery:

- with 1000 tickets
- exactly 1 winning ticket

 w_i = "ticket i wins" Bel(α) = "it is rational to believe α " Deg_{bel}(α) = "degree of belief of α "

Postulates of Rational Belief:

Paradox:

• $(\forall 1 \le i \le 1000)[\mathsf{Deg_{bel}}(\neg w_i) = 0.999]$

Fair Lottery:

- with 1000 tickets
- exactly 1 winning ticket

```
w_i = "ticket i wins" Bel(\alpha) = "it is rational to believe \alpha" Deg<sub>bel</sub>(\alpha) = "degree of belief of \alpha"
```

Postulates of Rational Belief:

•
$$(\forall 1 \le i \le 1000)[\mathsf{Deg}_{\mathsf{bel}}(\neg w_i) = 0.999] \Longrightarrow (\forall 1 \le i \le 1000)[\mathsf{Bel}(\neg w_i)]$$

Fair Lottery:

- with 1000 tickets
- exactly 1 winning ticket

```
w_i = "ticket i wins" Bel(\alpha) = "it is rational to believe \alpha" Deg<sub>bel</sub>(\alpha) = "degree of belief of \alpha"
```

Postulates of Rational Belief:

•
$$(\forall 1 \leq i \leq 1000)[\mathsf{Deg}_{\mathsf{bel}}(\neg w_i) = 0.999] \Longrightarrow (\forall 1 \leq i \leq 1000)[\mathsf{Bel}(\neg w_i)] \Longrightarrow \mathsf{Bel}(\neg w_1 \land \ldots \land \neg w_{1000})$$

Fair Lottery:

- with 1000 tickets
- exactly 1 winning ticket

```
w_i = "ticket i wins" Bel(\alpha) = "it is rational to believe \alpha" Deg<sub>bel</sub>(\alpha) = "degree of belief of \alpha"
```

Postulates of Rational Belief:

- $(\forall 1 \leq i \leq 1000)[\mathsf{Deg}_{\mathsf{bel}}(\neg w_i) = 0.999] \Longrightarrow (\forall 1 \leq i \leq 1000)[\mathsf{Bel}(\neg w_i)] \Longrightarrow \mathsf{Bel}(\neg w_1 \land \ldots \land \neg w_{1000})$
- $Deg_{bel}(w_1 \vee ... \vee w_{1000}) = 1$

Fair Lottery:

- with 1000 tickets
- exactly 1 winning ticket

```
w_i = "ticket i wins" Bel(\alpha) = "it is rational to believe \alpha" Deg<sub>bel</sub>(\alpha) = "degree of belief of \alpha"
```

Postulates of Rational Belief:

- Deg_{bel} $(\alpha) > 0.99 \iff Bel(\alpha)$ [The Lockean Thesis]

- $(\forall 1 \leq i \leq 1000)[\mathsf{Deg}_{\mathsf{bel}}(\neg w_i) = 0.999] \Longrightarrow (\forall 1 \leq i \leq 1000)[\mathsf{Bel}(\neg w_i)] \Longrightarrow \mathsf{Bel}(\neg w_1 \land \ldots \land \neg w_{1000})$
- $\mathsf{Deg}_{\mathsf{bel}}(w_1 \vee \ldots \vee w_{1000}) = 1 \Longrightarrow \mathsf{Bel}(w_1 \vee \ldots \vee w_{1000})$

Formalization of the Postulates of Rational Belief in PPJ:

• For every term t we add to our assumptions:

$$t: P_{>0.99}(\alpha) \to pb(t): \alpha$$
 [The Lockean Thesis]

For some CS we have:

$$\vdash_{\mathsf{PPJ_{CS}}} \mathsf{s}_1 : \alpha \land \mathsf{s}_2 : \beta \to \mathsf{con}(\mathsf{s}_1, \mathsf{s}_2) : \alpha \land \beta$$

Formalization of the Postulates of Rational Belief in PPJ:

• For every term t we add to our assumptions:

$$t: P_{>0.99}(\alpha) \to pb(t): \alpha$$
 [The Lockean Thesis]

For some CS we have:

$$\vdash_{\mathsf{PPJ_{CS}}} s_1 : \alpha \land s_2 : \beta \to \mathsf{con}(s_1, s_2) : \alpha \land \beta$$

Let $1 \le i \le 1000$. There is a term t_i :

$$t_i: (P_{=\frac{999}{1000}} \neg w_i)$$

and by the Lockean Thesis:

$$pb(t_i) : \neg w_i$$

Thus there is a term t:

$$t: (\neg w_1 \wedge \ldots \wedge \neg w_{1000})$$

Thus there is a term *t*:

$$t: (\neg w_1 \wedge \ldots \wedge \neg w_{1000})$$

But there also exists a term u such that:

$$u:(P_{=1}(w_1\vee\ldots\vee w_{1000}))$$

thus, by the Lockean Thesis:

$$\mathsf{pb}(u):(w_1\vee\ldots\vee w_{1000})$$

Thus there is a term *t*:

$$t: (\neg w_1 \wedge \ldots \wedge \neg w_{1000})$$

But there also exists a term u such that:

$$u:(P_{=1}(w_1\vee\ldots\vee w_{1000}))$$

thus, by the Lockean Thesis:

$$pb(u) : (w_1 \vee ... \vee w_{1000})$$

Avoiding the paradox in PPJ:

Restrict the CS such that:

$$\vdash_{\mathsf{PPJ}_{\mathsf{CS}}} \mathsf{s}_1 : \alpha \land \mathsf{s}_2 : \beta \to \mathsf{con}(\mathsf{s}_1, \mathsf{s}_2) : \alpha \land \beta$$

holds only if $con(s_1, s_2)$ does not contain two different subterms of the form pb(t). [Formalization of an idea by Leitgeb (2014)]

Overview

- Introduction
 - Motivation
 - The Justification Logic J
- Probabilistic Justification Logic
 - The Logics PJ and PPJ
 - Formalization of the Lottery Paradox
- 3 Epilogue

Further Work: Statistical Evidence

Obtain justifications from formulas?

$$\alpha \mapsto h(\alpha)$$

Further Work: Statistical Evidence

Obtain justifications from formulas?

$$\alpha \mapsto h(\alpha)$$

$$CP(\beta \mid \alpha) \geq s$$

interprets to something like:

$$P_{\geq s}(h(\alpha):\beta)$$

Summary

- ullet Probabilistic justification logic can be used to model the idea different kinds of evidence for lpha lead to different degrees of belief in lpha
- $PJ = P_{>s} + J$
- PJ is sound and strongly complete
- complexity of PJ is no worse than the complexity of J
- sound, complete and decidable PPJ
- Complexity of PPJ? Statistical evidence?

Summary

- ullet Probabilistic justification logic can be used to model the idea different kinds of evidence for lpha lead to different degrees of belief in lpha
- $PJ = P_{>s} + J$
- PJ is sound and strongly complete
- complexity of PJ is no worse than the complexity of J
- sound, complete and decidable PPJ
- Complexity of PPJ? Statistical evidence?

Thank you for your attention!