
On Compensation Primitives as

Adaptable Processes

Jovana Dedeić
University of Novi Sad

Jovanka Pantović (Novi Sad) and
Jorge A. Pérez (Groningen)

LAP 2015 - Dubrovnik, September 24, 2015

Outline

1 Context
Introduction
Compensable Processes
Adaptable Processes

2 The Encoding
Basic Intuition
Formal definition of the encoding
The Encoding: By Example

Introduction

• Many distributed software applications exploit long-running
transactions (LRTs).

• One particularly delicate aspect of LRTs management is
handling (partial) failures

• The last decade has seen the emergence of specialized
constructs, such as exceptions and compensations.

• In this work, we study process calculi with constructs for
compensations.

Introduction

• Many distributed software applications exploit long-running
transactions (LRTs).

• One particularly delicate aspect of LRTs management is
handling (partial) failures

• The last decade has seen the emergence of specialized
constructs, such as exceptions and compensations.

• In this work, we study process calculi with constructs for
compensations.

Compensable Processes (CPs)

• Several calculi with compensations have been proposed.
The calculus of Lanese et al (ESOP’10) extends the
π-calculus with:

t[P ,Q] 〈Q〉 instbλX.Rc.P
transaction scopes protected blocks compensation updates

Also, output prefixes t represent abortion signals.

• Several Labeled Transition Systems (LTS) define semantics.
Example: given process

P = t[t1[P1 ,Q1] | R | 〈P2〉 ,Q2] | t

In the discarding semantics, we have P
τ−−→D 〈P2〉 | 〈Q2〉.

Compensable Processes (CPs)

• Several calculi with compensations have been proposed.
The calculus of Lanese et al (ESOP’10) extends the
π-calculus with:

t[P ,Q] 〈Q〉 instbλX.Rc.P
transaction scopes protected blocks compensation updates

Also, output prefixes t represent abortion signals.

• Several Labeled Transition Systems (LTS) define semantics.
Example: given process

P = t[t1[P1 ,Q1] | R | 〈P2〉 ,Q2] | t

In the discarding semantics, we have P
τ−−→D 〈P2〉 | 〈Q2〉.

Adaptable Processes (APs)

• A process calculi approach to evolvability, in a broad sense.
Proposed by Bravetti et al (FORTE’11, LMCS’12).

• Studied from several perspectives, e.g., expressiveness,
decidability/verification, session types (SAC’13, WSFM’14).

• Runtime modifications to (located) process behaviors, upon
exceptional circumstances – not necessarily negative.

• Simple formulation: higher-order process passing.

Adaptable Processes (APs)

• The calculus extends CCS with locations l, l′, . . . and

l{(X).Q} l[P]
update prefix located process

These two constructs are meant to synchronize.

• Located processes are transparent and can be arbitrarily
nested. This is useful to structure processes into hierarchies.

• Simple reduction semantics (C,D and E are evaluation
contexts):

E
[
C
[
a.P
]
| D
[
a.Q
]]
→ E

[
C
[
P
]
| D
[
Q
]]

E
[
C
[
l[P]

]
| D
[
l{(X).Q}.R

]]
→ E

[
C
[
Q{P/X}

]
| D
[
R
]]

Adaptable Processes (APs)

• The calculus extends CCS with locations l, l′, . . . and

l{(X).Q} l[P]
update prefix located process

These two constructs are meant to synchronize.

• Located processes are transparent and can be arbitrarily
nested. This is useful to structure processes into hierarchies.

• Simple reduction semantics (C,D and E are evaluation
contexts):

E
[
C
[
a.P
]
| D
[
a.Q
]]
→ E

[
C
[
P
]
| D
[
Q
]]

E
[
C
[
l[P]

]
| D
[
l{(X).Q}.R

]]
→ E

[
C
[
Q{P/X}

]
| D
[
R
]]

Adaptable Processes (APs)

• The calculus extends CCS with locations l, l′, . . . and

l{(X).Q} l[P]
update prefix located process

These two constructs are meant to synchronize.

• Located processes are transparent and can be arbitrarily
nested. This is useful to structure processes into hierarchies.

• Simple reduction semantics (C,D and E are evaluation
contexts):

E
[
C
[
a.P
]
| D
[
a.Q
]]
→ E

[
C
[
P
]
| D
[
Q
]]

E
[
C
[
l[P]

]
| D
[
l{(X).Q}.R

]]
→ E

[
C
[
Q{P/X}

]
| D
[
R
]]

CPs and APs: Similarities and Differences

• A transaction scope reacts to an abortion signal (an output)
by removing the default behavior and running its
compensation. Assuming no protected blocks in P we have:

t | t[P ,Q]
τ−−→D 〈Q〉

• Similarly, a process located at l reacts to a synchronization
with an update prefix for l. Assuming X 6∈ fv(Q), we have:

l[P] | l{(X).Q} → Q

Some differences:

1. In CPs, a transaction scope couples a default behavior and
its associated compensation. In APs, update prefixes and
located processes are defined separately.

2. In APs, there is no notion of protected block.

CPs and APs: Similarities and Differences

• A transaction scope reacts to an abortion signal (an output)
by removing the default behavior and running its
compensation. Assuming no protected blocks in P we have:

t | t[P ,Q]
τ−−→D 〈Q〉

• Similarly, a process located at l reacts to a synchronization
with an update prefix for l. Assuming X 6∈ fv(Q), we have:

l[P] | l{(X).Q} → Q

Some differences:

1. In CPs, a transaction scope couples a default behavior and
its associated compensation. In APs, update prefixes and
located processes are defined separately.

2. In APs, there is no notion of protected block.

Our Contribution: Encoding CPs into APs

• We have encoded CPs (with different semantics for failure)
into APs.

• Our encodings not only are a non trivial application of
process mobility. They shed light on the intricate semantics
of compensable processes.

• The main challenge to encodability is in representing the
different failure semantics using adaptable process.

Our Contribution: Motivation

Our motivation is twofold.

First

Understanding how different semantics for compensable
processes can be uniformly implemented as adaptable
processes.

Second

Our encodings could enable the transference of, e.g.,
decidability results or type systems from adaptable processes
to calculi with compensations.

Compensable Processes end Adaptable Processes

Both CPs and APs are defined as variants of CCS.

• The syntax of the calculus of compensable processes.

π ::= a | a
P,Q ::= 0 | π.P | !P | (νa)P | P | Q | t[P ,Q] | 〈Q〉

| X | instbλX.Rc.P
• The syntax of the calculus of adaptable processes.

π ::= a | a | l{(X).Q}

P ::= 0 | π.P | !P | P | Q | (νa)P | l[P] | X

The Encoding: Basic Intuition

We roughly encode protected blocks and transactions as:

J〈R〉Kt,ρ = pt,ρ
[
JRKε

]
Jt[P ,Q]Kρ = t

[
JP Kt,ρ

]︸ ︷︷ ︸
(a)

| lt.π1. · · · .πk.pt
[
JQKt,ρ

]︸ ︷︷ ︸
(b)

| t.lt.K︸ ︷︷ ︸
(c)

• Paths ρ describe the structure of nested transactions

• Protected blocks are placed in designated locations pt.

• Part (a) is a located process encoding the default activity

• Part (b) represents the compensation activity and is
protected by special prefixes (π1. · · · .πk).

• Part (c) handles abortion signals, collecting protected
blocks.
It is meant to consume prefixes π1, · · · , πk.

The Encoding: Discarding Semantics

Let P be a compensable process and let ρ be a path.
The encoding DJ·Kρ of compensable processes into adaptable
processes is defined as follows:

DJ〈P 〉Kρ = pρ
[
DJP Kε

]
DJt[P ,Q]Kρ = t

[
DJP Kt,ρ

]
| D‖Q‖npbD(P)

t,ρ | t.lt.kt.0

DJ0Kρ = 0

DJP1 | P2Kρ = DJP1Kρ | DJP2Kρ
DJπ.P Kρ = π.DJP Kρ
DJ!P Kρ = ! DJP Kρ

DJ(νa)P Kρ = (νa)DJP Kρ

The Encoding: By Example

Let P0 = t[R | 〈P 〉 ,Q] | t be a CP with npbD(R) = 0.

Then P0
τ−−→D 〈P 〉 | 〈Q〉. We obtain:

DJP0Kε = t
[
DJR | 〈P 〉Kt,ε

]
| D‖Q‖1t,ε | t.lt.kt | t

= t
[
DJRKt,ε | pt,ε

[
DJP Kε

]]
| lt.pt,ε

{
(X).z

{
pε[X] | mt.pε

[
DJQKε

]}}
.(z[0] | mt.kt.t{†}) | t.lt.kt | t

→∗ t
[
DJRKt,ε | z

{
pε[DJP Kε] | mt.pε

[
DJQKε

]}]
| z[0] | mt.kt.t

{
(Y).0

}
| kt

→∗ pε
[
DJP Kε

]
| pε
[
DJQKε

]
= DJ〈P 〉 | 〈Q〉Kε

The Encoding: By Example

Let P0 = t[R | 〈P 〉 ,Q] | t be a CP with npbD(R) = 0.

Then P0
τ−−→D 〈P 〉 | 〈Q〉. We obtain:

DJP0Kε = t
[
DJR | 〈P 〉Kt,ε

]
| D‖Q‖1t,ε | t.lt.kt | t

= t
[
DJRKt,ε | pt,ε

[
DJP Kε

]]
| lt.pt,ε

{
(X).z

{
pε[X] | mt.pε

[
DJQKε

]}}
.(z[0] | mt.kt.t{†}) | t.lt.kt | t

→∗ t
[
DJRKt,ε | z

{
pε[DJP Kε] | mt.pε

[
DJQKε

]}]
| z[0] | mt.kt.t

{
(Y).0

}
| kt

→∗ pε
[
DJP Kε

]
| pε
[
DJQKε

]
= DJ〈P 〉 | 〈Q〉Kε

The Encoding: By Example

Let P0 = t[R | 〈P 〉 ,Q] | t be a CP with npbD(R) = 0.

Then P0
τ−−→D 〈P 〉 | 〈Q〉. We obtain:

DJP0Kε = t
[
DJR | 〈P 〉Kt,ε

]
| D‖Q‖1t,ε | t.lt.kt | t

= t
[
DJRKt,ε | pt,ε

[
DJP Kε

]]
| lt.pt,ε

{
(X).z

{
pε[X] | mt.pε

[
DJQKε

]}}
.(z[0] | mt.kt.t{†}) | t.lt.kt | t

→∗ t
[
DJRKt,ε | z

{
pε[DJP Kε] | mt.pε

[
DJQKε

]}]
| z[0] | mt.kt.t

{
(Y).0

}
| kt

→∗ pε
[
DJP Kε

]
| pε
[
DJQKε

]
= DJ〈P 〉 | 〈Q〉Kε

The Encoding: By Example

Let P0 = t[R | 〈P 〉 ,Q] | t be a CP with npbD(R) = 0.

Then P0
τ−−→D 〈P 〉 | 〈Q〉. We obtain:

DJP0Kε = t
[
DJR | 〈P 〉Kt,ε

]
| D‖Q‖1t,ε | t.lt.kt | t

= t
[
DJRKt,ε | pt,ε

[
DJP Kε

]]
| lt.pt,ε

{
(X).z

{
pε[X] | mt.pε

[
DJQKε

]}}
.(z[0] | mt.kt.t{†}) | t.lt.kt | t

→∗ t
[
DJRKt,ε | z

{
pε[DJP Kε] | mt.pε

[
DJQKε

]}]
| z[0] | mt.kt.t

{
(Y).0

}
| kt

→∗ pε
[
DJP Kε

]
| pε
[
DJQKε

]
= DJ〈P 〉 | 〈Q〉Kε

The Encoding: Operational Correspondence

Theorem

Let P be a compensable process and let ρ be a path.

a) If P
τ−→D P

′ then DJP Kρ →∗ DJP ′Kρ
b) If DJP Kρ → Q then ∃P ′ s.t. P

τ−→D P
′ and Q→∗ DJP ′Kρ.

Further Results in the paper

We have described CPs with static recovery (no compensation
updates instbλX.Rc.P) and discarding semantics.

• In the paper we also consider encodings for CPs with two
further failure semantics: preserving and aborting.

• Example: let P be a CP t[t1[P1 ,Q1] | R | 〈P2〉 ,Q2] | t.
In the preserving and aborting semantics, we have the
internal transitions:

P
τ−−→P t1[P1 ,Q1] | 〈P2〉 | 〈Q2〉

P
τ−−→A 〈Q1〉 | 〈P2〉 | 〈Q2〉

The encodings into APs and proofs follow similar principles.

• We also cover dynamic recovery, which includes
compensation updates instbλX.Rc.P .

Further Results in the paper

We have described CPs with static recovery (no compensation
updates instbλX.Rc.P) and discarding semantics.

• In the paper we also consider encodings for CPs with two
further failure semantics: preserving and aborting.

• Example: let P be a CP t[t1[P1 ,Q1] | R | 〈P2〉 ,Q2] | t.
In the preserving and aborting semantics, we have the
internal transitions:

P
τ−−→P t1[P1 ,Q1] | 〈P2〉 | 〈Q2〉

P
τ−−→A 〈Q1〉 | 〈P2〉 | 〈Q2〉

The encodings into APs and proofs follow similar principles.

• We also cover dynamic recovery, which includes
compensation updates instbλX.Rc.P .

Further Results in the paper

We have described CPs with static recovery (no compensation
updates instbλX.Rc.P) and discarding semantics.

• In the paper we also consider encodings for CPs with two
further failure semantics: preserving and aborting.

• Example: let P be a CP t[t1[P1 ,Q1] | R | 〈P2〉 ,Q2] | t.
In the preserving and aborting semantics, we have the
internal transitions:

P
τ−−→P t1[P1 ,Q1] | 〈P2〉 | 〈Q2〉

P
τ−−→A 〈Q1〉 | 〈P2〉 | 〈Q2〉

The encodings into APs and proofs follow similar principles.

• We also cover dynamic recovery, which includes
compensation updates instbλX.Rc.P .

Further Results in the paper

We have described CPs with static recovery (no compensation
updates instbλX.Rc.P) and discarding semantics.

• In the paper we also consider encodings for CPs with two
further failure semantics: preserving and aborting.

• Example: let P be a CP t[t1[P1 ,Q1] | R | 〈P2〉 ,Q2] | t.
In the preserving and aborting semantics, we have the
internal transitions:

P
τ−−→P t1[P1 ,Q1] | 〈P2〉 | 〈Q2〉

P
τ−−→A 〈Q1〉 | 〈P2〉 | 〈Q2〉

The encodings into APs and proofs follow similar principles.

• We also cover dynamic recovery, which includes
compensation updates instbλX.Rc.P .

The paper

Jovana Dedeic, Jovanka Pantovic, Jorge A. Pérez: On
Compensation Primitives as Adaptable Processes.
EXPRESS/SOS 2015: 16-30

Future Plans

• We plan to consider the reverse direction of encoding.

• Cast our encodability results into a setting with session
types:

• The source language could be the typed calculus with
interactional exceptions (Carbone et al, CONCUR’08)

• The target language could be recently proposed extensions of
adaptable processes with session types (SAC’13, WSFM’14).

On Compensation Primitives as

Adaptable Processes

Jovana Dedeić
University of Novi Sad

Jovanka Pantović (Novi Sad) and
Jorge A. Pérez (Groningen)

LAP 2015 - Dubrovnik, September 24, 2015

	Context
	Introduction
	Compensable Processes
	Adaptable Processes

	The Encoding
	Basic Intuition
	Formal definition of the encoding
	The Encoding: By Example

