On the various definitions of cyclic operads

Logic and Applications 2015, Dubrovnik

Pierre-Louis Curien and Jovana Obradović* πr^2 team, PPS Laboratory, CNRS, Université Paris Diderot and Inria, France *Joint PhD studies with University of Novi Sad, Serbia

September 22, 2015

Overview: different definitions of (cyclic) operads

Symmetric operad = operations

- + (associative) compositions
- + permutation of variables (+ identities)

Overview: different definitions of (cyclic) operads

Symmetric operad = operations

- + (associative) compositions
- + permutation of variables (+ identities)

	Biased (individual compositions)		Unbiased	Algebraic	
-	Classical	Partial	(monad of trees)	(microcosm principle)	
Symmetric	Symmetric Boardman, Markl Operads Vogt, May Markl	Smirnov, May,	Classical	Partial	
		Markl	Getzler, Jones	May, Smirnov, Kelly	Fiore
Cyclic Operads	Getzler, Kapranov	Exchangeable Entries output only	Getzler, Kapranov	Exchangeable output	Entries only
		Markl Markl		??	??

+ Two flavours: skeletal and non-skeletal

Overview: different definitions of (cyclic) operads

Symmetric operad = operations

- + (associative) compositions
- + permutation of variables (+ identities)

	Biased (individual compositions)		Unbiased	Algebraic	
-	Classical	Partial	(monad of trees)	(microcosm principle)	
Symmetric Operads	Boardman, Vogt, May		Smirnov, May, Getzler, Jones	Classical	Partial
		Markl		May, Smirnov, Kelly	Fiore
Cyclic Operads	Getzler, Kapranov	Exchangeable Entries output only	Getzler, Kapranov	Exchangeable output	Entries only
		Markl Markl		??	??

+ Two flavours: skeletal and non-skeletal

Plan

- Examine these definitions
 - Introduce a λ -calculus-style syntax: the μ -syntax
 - Fill in the question marks

Symmetric operads

Classical + Skeletal

- $\mathfrak{P}: \mathbf{\Sigma}^{op} \to \mathbf{C}$
- $\gamma: \mathcal{P}(n) \otimes \mathcal{P}(k_1) \otimes \cdots \otimes \mathcal{P}(k_n)$ $\rightarrow \mathcal{P}(k_1 + \cdots + k_n)$
- $\eta: \mathbf{1} \to \mathcal{P}(1)$

Partial + Non-skeletal

- $S: Bij^{op} \to C$
- $\circ_{\mathsf{x}} : \mathbb{S}(X) \times \mathbb{S}(Y) \to \mathbb{S}((X \cup Y) \setminus \{x\})$
- $id_x \in S(\{x\})$

Unbiased

An operad is an algebra over the monad of rooted, decorated, labeled trees (which constitute the category \mathbf{Tree}_n).

Exchangeable output: from ordinary to cyclic operads

Ordinary operads → of relabeling the leaves

an action of relabeling the leaves of a rooted tree

→ Cyclic operads

an action of interchanging the labels of all leaves of a rooted tree, including the label given to the root

Exchangeable output: from ordinary to cyclic operads

Ordinary operads

an action of relabeling the leaves of a rooted tree

Cyclic operads

an action of interchanging the labels of all leaves of a rooted tree, including the label given to the root

This is achieved by enriching the operad structure with the action of the cycle $\tau_n = (0, 1, ..., n)$:

The distinction between inputs and the output of an operation is no longer visible...

Cyclic operads: entries only

Definition 1 (Partial + non-skeletal)

A *cyclic operad* is a functor $\mathcal{C}: \mathbf{Bij}^{op} \to \mathbf{Set}$, together with a distinguished element $id_{x,y} \in \mathcal{C}(\{x,y\})$ for each two-element set $\{x,y\}$, and a partial composition operation

$$_{\mathsf{X}} \circ_{\mathsf{V}} : \mathcal{C}(X) \times \mathcal{C}(Y) \to \mathcal{C}((X \cup Y) \setminus \{x,y\}).$$

These data are required to satisfy the associativity, equivariance, unitality and commutativity equations.

Associativity. $(f_{x} \circ_{y} g)_{u} \circ_{z} h = f_{x} \circ_{y} (g_{u} \circ_{z} h)$ $(f_{x} \circ_{y} g)_{u} \circ_{z} h = (f_{u} \circ_{z} h)_{x} \circ_{y} g$ Equivariance. $f^{\sigma_{1}} \circ_{y} g^{\sigma_{2}} = (f_{\sigma_{1}(x)} \circ_{\sigma_{2}(y)} g)^{\sigma}$

Unitality. $f_{x} \circ_{y} id_{y,z} = f^{\sigma}$ $id_{y,z} _{y} \circ_{x} f = f^{\sigma}$ Commutativity. $f_{x} \circ_{y} g = g_{y} \circ_{x} f$.

This definition induces a natural combinator syntax.

Cyclic operads: exchangeable output

Definition 2 (Partial + non-skeletal)

A cyclic operad is an ordinary operad S, augmented with actions

$$D_{xy}: S(X) \to S((X \setminus \{x\}) \cup \{y\}),$$

indexed by variables $x \in X$ and $y \notin X \setminus \{x\}$, and subject to the following list of axioms:

Identity.

$$D_{xx}(f) = f$$

Coherence.

$$D_{zx}(D_{xy}(f))=D_{zy}(f)$$

 α -conversion.

$$D_{xa}(f) = D_{x'a}(f^{\sigma}),$$

where
$$\sigma(x) = x'$$
, and $\sigma = id$ elsewhere

Equivariance.

$$D_{\sigma(x)\sigma(y)}(f^{\sigma}) = D_{xy}(f)^{\sigma}$$

Compatibility with compositions.

$$D_{xz}(f \circ_{y} g) = D_{xu}(g) \circ_{u} D_{yz}(f)$$

$$D_{xz}(f \circ_{y} g) = D_{xz}(f) \circ_{y} g$$

Cyclic operads: unbiased definition

The *entries-only* characterization of cyclic operads reflects the ability to carry out the (partial) composition of two operations along *any* edge.

The pasting shemes for cyclic operads are unrooted, decorated, labeled trees.

Cyclic operads: unbiased definition

The *entries-only* characterization of cyclic operads reflects the ability to carry out the (partial) composition of two operations along *any* edge.

The pasting shemes for cyclic operads are unrooted, decorated, labeled trees.

Given a functor $\mathcal{P}: \mathbf{Bij}^{op} \to \mathbf{C}$, we build the *free operad* $F(\mathcal{P})$ by grafting of such trees. The free operad functor F and the forgetiful functor U constitute a monad $\Gamma = UF$ in $\mathbf{C^{Bij}}^{op}$, called the *monad of unrooted trees*.

Cyclic operads: unbiased definition

The *entries-only* characterization of cyclic operads reflects the ability to carry out the (partial) composition of two operations along *any* edge.

The pasting shemes for cyclic operads are unrooted, decorated, labeled trees.

Given a functor $\mathcal{P}: \mathbf{Bij}^{op} \to \mathbf{C}$, we build the *free operad* $F(\mathcal{P})$ by grafting of such trees. The free operad functor F and the forgetiful functor U constitute a monad $\Gamma = UF$ in $\mathbf{C^{Bij}}^{op}$, called the *monad of unrooted trees*.

Definition 3

A cyclic operad is an algebra over this monad.

	Biased (indi	Unbiased		
-	Classical	Partial	(monad of trees)	
Symmetric Operads	Boardman, Vogt, May	Markl	Smirnov, May, Getzler, Jones	
Cyclic Operads	Getzler, Kapranov	Exchangable output only Markl Markl	Getzler, Kapranov	
		μ -syntax		

μ -syntax for cyclic operads

The μ -syntax consists of two kinds of expressions:

$$\begin{array}{c} \textit{commands } c: X \text{ (no entry selected)} & \textit{terms } X \mid s \text{ (one entry selected)} \\ c::= \langle s \mid t \rangle \mid \underline{f}\{t_x \mid x \in X\} & s,t::= x \mid \mu x.c \end{array}$$

The typing rules are as follows:

$$\frac{f \in \mathcal{S}(X) \quad \dots Y_x \mid t_x \dots}{\underline{f}\{t_x \mid x \in X\} : \bigcup Y_x} \quad \frac{X \mid s \quad Y \mid t}{\langle s \mid t \rangle : X \cup Y} \quad \frac{c : X}{X \setminus \{x\} \mid \mu x.c}$$

The **equations** are $\langle s | t \rangle = \langle t | s \rangle$ and (oriented from left to right):

$$\langle \mu x.c \mid s \rangle = c[s/x]$$
 (μ -reduction)

μ -syntax: intuition

 $\langle \mu x.c \mid s \rangle$ and c[s/x] describe two ways to build the same underlying tree!

$$\begin{array}{ll} \langle \mu y.\underline{f}\{\mu a.\underline{g}\{a,b,c,d\},y,z,w\}\,|\,\mu p.\underline{h}\{p,q\}\rangle &=& \underline{f}\{\mu a.\underline{g}\{a,b,c,d\},y,z,w\}[\mu p.\underline{h}\{p,q\}/y]\\ &=& \underline{f}\{\mu a.\underline{g}\{a,b,c,d\},\mu p.\underline{h}\{p,q\},z,w\} \end{array}$$

μ -syntax as a rewriting system

Non-confluent - critical pairs arise from the second equation viewed as a rewriting rule:

$$c_2[\mu x.c_1/y] \longleftarrow \langle \mu x.c_1 | \mu y.c_2 \rangle \longrightarrow c_1[\mu y.c_2/x]$$

Terminating (modulo the commutativity of $\langle s \mid t \rangle$) - the set *NF* of normal forms consists of terms produced only with the following rules:

 $x \in NF$ if $f \in \mathcal{C}(X)$ and $t_x \in NF$ for all $x \in X$, then $\underline{f}\{t_x \mid x \in X\} \in NF$ if $c \in NF$, then $\mu x.c \in NF$

μ -syntax as a rewriting system

Non-confluent - critical pairs arise from the second equation viewed as a rewriting rule:

$$c_2[\mu x.c_1/y] \longleftarrow \langle \mu x.c_1 | \mu y.c_2 \rangle \longrightarrow c_1[\mu y.c_2/x]$$

Terminating (modulo the commutativity of $\langle s \mid t \rangle$) - the set NF of normal forms consists of terms produced only with the following rules:

 $x \in NF$ if $f \in \mathcal{C}(X)$ and $t_x \in NF$ for all $x \in X$, then $\underline{f}\{t_x \mid x \in X\} \in NF$ if $c \in NF$, then $\mu x.c \in NF$

μ -syntax as a rewriting system

Non-confluent - critical pairs arise from the second equation viewed as a rewriting rule:

$$c_2[\mu x.c_1/y] \longleftarrow \langle \mu x.c_1 | \mu y.c_2 \rangle \longrightarrow c_1[\mu y.c_2/x]$$

Terminating (modulo the commutativity of $\langle s \mid t \rangle$) - the set *NF* of normal forms consists of terms produced only with the following rules:

 $x \in NF$ if $f \in \mathcal{C}(X)$ and $t_x \in NF$ for all $x \in X$, then $\underline{f}\{t_x \mid x \in X\} \in NF$ if $c \in NF$, then $\mu x.c \in NF$

 $\begin{array}{l} \underline{f}\{\mu a.\underline{g}\{a,b,c,d\},\mu p.\underline{h}\{p,q\},z,w\} \\ \underline{g}\{\mu x.\underline{f}\{x,\mu p.\underline{h}\{p,q\},z,w\},b,c,d\} \\ \underline{g}\{\mu x.\underline{h}\{\mu y.\underline{f}\{x,y,z,w\},q\},b,c,d\} \\ \underline{h}\{\mu y.\underline{f}\{\mu a.\underline{g}\{a,b,c,d\},y,z,w\},p\} \\ \underline{h}\{\mu y.g\{\mu x.\underline{f}\{x,y,z,w\},b,c,d\},p\} \end{array}$

The list shows different **parallel tree traversals** of the tree.

μ -syntax does the job!

A cyclic operad can equivalently be characterised via the monad of trees with half-edges (Markl) T(a) Vernon trees T(b) μ -syntax

μ -syntax does the job!

A cyclic operad can equivalently be characterised via the monad of trees with half-edges (Markl) $\stackrel{T(a)}{\longleftarrow}$ Vernon trees $\stackrel{T(b)}{\longleftarrow}$ μ -syntax


```
T = (\{a, b, c, d, p, q, r, s, u, v\}, \lambda, \sigma),
\lambda = \{\{a, b, c, d\}, \{p, q, r, s\}, \{u, v\}\}, \sigma = (a p)(b u)
+ \text{ labeling } I : Leaves(T) \to X
+ f \in \mathcal{C}(\{a, b, c, d\}), g \in \mathcal{C}(\{p, q, r, s\}), h \in \mathcal{C}(\{u, v\})
\mathfrak{T} = (f(a, b, x_1, x_2), g(p, x_4, x_5, x_6), h(u, x_3); \sigma),
\sigma = (a p)(b u)
f\{\mu u.h\{u, x_3\}, \mu p.g\{p, x_4, x_5, x_6\}, x_1, x_2\}
```

μ -syntax does the job!

A cyclic operad can equivalently be characterised via the monad of trees with half-edges (Markl) $\stackrel{T(a)}{\longleftarrow}$ Vernon trees $\stackrel{T(b)}{\longleftarrow}$ μ -syntax


```
T = (\{a, b, c, d, p, q, r, s, u, v\}, \lambda, \sigma),
\lambda = \{\{a, b, c, d\}, \{p, q, r, s\}, \{u, v\}\}, \sigma = (a p)(b u)
+ \text{ labeling } I : Leaves(T) \to X
+ f \in \mathcal{C}(\{a, b, c, d\}), g \in \mathcal{C}(\{p, q, r, s\}), h \in \mathcal{C}(\{u, v\})
\mathfrak{T} = (f(a, b, x_1, x_2), g(p, x_4, x_5, x_6), h(u, x_3); \sigma),
\sigma = (a p)(b u)
\underline{f}\{\mu u.\underline{h}\{u, x_3\}, \mu p.g\{p, x_4, x_5, x_6\}, x_1, x_2\}
```

Theorem

- a) $\mathrm{Tree}^{\mathrm{he}}_{\mathfrak{C}}(X)/_{\sim} \simeq \mathrm{VT}_{\mathfrak{C}}(X)/_{lpha}$
- b) $\operatorname{Comm}_{\mu}(X)/_{=_{\mu}} \simeq \operatorname{VT}_{\mathcal{C}}(X)/_{\alpha} \leftarrow \operatorname{discussed}$ in the next slide

An insight in the proof of $Comm_{\mu}(X)/_{=_{\mu}} \simeq VT_{\mathcal{C}}(X)/_{\alpha}$

After defining an interpretation [[_]]: $\operatorname{Exp}_{\mu} \to \operatorname{Term}_{c}$ of the μ -syntax into an arbitrary cyclic operad, and exibiting the cyclic operad structure of Vernon trees, we associate with every command c a Vernon tree VT(c), as an instance of this interpretation.

An insight in the proof of $Comm_{\mu}(X)/_{=_{\mu}} \simeq VT_{\mathfrak{C}}(X)/_{\alpha}$

After defining an interpretation [[_]]: $\operatorname{Exp}_{\mu} \to \operatorname{Term}_{c}$ of the μ -syntax into an arbitrary cyclic operad, and exibiting the cyclic operad structure of Vernon trees, we associate with every command c a Vernon tree VT(c), as an instance of this interpretation.

inj If for normal forms c_1 and c_2 we have $VT(c_1) = VT(c_2)$, then $c_1 =_{\mu} c_2$.

An insight in the proof of $Comm_{\mu}(X)/_{=\mu} \simeq VT_{\mathcal{C}}(X)/_{\alpha}$

After defining an interpretation [[_]]: $\text{Exp}_{\mu} \to \text{Term}_{c}$ of the μ -syntax into an arbitrary cyclic operad, and exibiting the cyclic operad structure of Vernon trees, we associate with every command c a Vernon tree VT(c), as an instance of this interpretation.

inj If for normal forms c_1 and c_2 we have $VT(c_1) = VT(c_2)$, then $c_1 =_{\mu} c_2$.

The equality relation $=_{\mu}$ lives in the set of *all* commands. We introduce an equality =' that relates normal forms only:

if
$$\sigma(x) = \mu y.c$$
, then $f\{\sigma\} = c[\mu x.f\{\sigma[x/x]\}/y]$

$$\underline{f}\{\mu y.g\{y, p, q, r, s\}, a, b, c\} = g\{\mu x.\underline{f}\{x, a, b, c\}, p, q, r, s\}$$

$$=' g\{\mu x.\underline{f}\{x, a, b, c\}, p, q, r, s\}$$

An insight in the proof of $\mathrm{Comm}_{\mu}(X)/_{=_{\mu}} \simeq \mathrm{VT}_{\mathfrak{C}}(X)/_{\alpha}$

After defining an interpretation [[_]]: $\operatorname{Exp}_{\mu} \to \operatorname{Term}_{c}$ of the μ -syntax into an arbitrary cyclic operad, and exibiting the cyclic operad structure of Vernon trees, we associate with every command c a Vernon tree VT(c), as an instance of this interpretation.

inj If for normal forms c_1 and c_2 we have $VT(c_1) = VT(c_2)$, then $c_1 =_{\mu} c_2$.

The equality relation $=_{\mu}$ lives in the set of *all* commands. We introduce an equality =' that relates *normal forms only*:

if
$$\sigma(x) = \mu y.c$$
, then $f\{\sigma\} = c[\mu x.f\{\sigma[x/x]\}/y]$

 $\underline{\mathbf{f}}\{\mu y.\underline{\mathbf{g}}\{y,p,q,r,s\},a,b,c\} = \underline{\mathbf{g}}\{\mu x.\underline{\mathbf{f}}\{x,a,b,c\},p,q,r,s\}$

$$c_1 =_{\mu} c_2 \Rightarrow VT(c_1) = VT(c_2) \Rightarrow c_1 =' c_2 \Rightarrow c_1 =_{\mu} c_2$$

Algebraic

(microcosm principle)

,	
Partial	
Fiore	
Entries only	
??	

 $\mathbb{S}: \mathbf{Bij}^{op} \to \mathbf{Set}$ is a contravariant version of Joyal's species of structures! The category of species $\mathbf{Spec} := \mathbf{Set}^{\mathbf{Bij}^{op}}$

The operadic composition in this context is recognized by examining the properties of basic operations on species:

 $S: \mathbf{Bij}^{op} \to \mathbf{Set}$ is a contravariant version of Joyal's species of structures! The category of species $\mathbf{Spec} := \mathbf{Set}^{\mathbf{Bij}^{op}}$

The operadic composition in this context is recognized by examining the properties of basic operations on species:

The sum of species
$$S$$
 and T :
 $(S+T)(X) := S(X) + T(X)$

 $S: \mathbf{Bij}^{op} \to \mathbf{Set}$ is a contravariant version of Joyal's species of structures! The category of species $\mathbf{Spec} := \mathbf{Set}^{\mathbf{Bij}^{op}}$

The operadic composition in this context is recognized by examining the properties of basic operations on species:

The sum of species
$$S$$
 and T :
 $(S+T)(X) := S(X) + T(X)$
The product of species S and T :
 $(S \cdot T)(X) := \sum_{(X_1, X_2)} S(X_1) \times T(X_2)$

 $S: \mathbf{Bij}^{op} \to \mathbf{Set}$ is a contravariant version of Joyal's species of structures! The category of species $\mathbf{Spec} := \mathbf{Set}^{\mathbf{Bij}^{op}}$

The operadic composition in this context is recognized by examining the properties of basic operations on species:

The sum of species
$$S$$
 and T :
 $(S+T)(X) := S(X) + T(X)$

The product of species S and T:

$$(S\cdot T)(X):=\sum_{(X_1,X_2)}S(X_1)\times T(X_2)$$

The substitution product of species S and T (with $S(\emptyset) = \emptyset$):

$$(S \circ T)(X) = \sum_{\pi \in P(X)} S(\pi) \times \prod_{p \in \pi} T(p)$$

 $S: \mathbf{Bij}^{op} \to \mathbf{Set}$ is a contravariant version of Joyal's species of structures!

The category of species $Spec := Set^{Bij^{op}}$

The operadic composition in this context is recognized by examining the properties of basic operations on species:

The sum of species
$$S$$
 and T :
 $(S+T)(X) := S(X) + T(X)$

The product of species S and T:

$$(S\cdot T)(X):=\sum_{(X_1,X_2)}S(X_1)\times T(X_2)$$

The substitution product of species S and T (with $S(\emptyset) = \emptyset$):

$$(S \circ T)(X) = \sum_{\pi \in P(X)} S(\pi) \times \prod_{p \in \pi} T(p)$$

The derivative of a species S:

$$\partial S(X) = S(X + \{*\})$$

How does an element of $(T \circ S)(X)$ look like?

$$\underline{g}\{\underline{f_y}\{x\,|\,x\in X_y\}\,|\,y\in Y\}$$

How does an element of $(T \circ S)(X)$ look like?

$$\underline{g}\{f_y\{x\,|\,x\in X_y\}\,|\,y\in Y\}$$

And what are the properties of the substitution product?

- It is associative (up to isomorphism of species)
- It has the species of singletons I as neutral element.
- \longrightarrow (**Spec**, \circ) is a monoidal category (with unit I).

How does an element of $(T \circ S)(X)$ look like?

$$\underline{g}\{f_y\{x\,|\,x\in X_y\}\,|\,y\in Y\}$$

And what are the properties of the substitution product?

- It is associative (up to isomorphism of species)
- It has the species of singletons I as neutral element.
- \longrightarrow (Spec, \circ) is a monoidal category (with unit 1).

Definition 1

An operad is a monoid $(S, \mu : S \circ S \to S)$ in the category of species.

$$(S \circ S) \circ S \xrightarrow{\alpha} S \circ (S \circ S)$$

$$\mu \circ id \downarrow \qquad \qquad \downarrow id \circ \mu$$

$$S \circ S \xrightarrow{\mu_1} \qquad \mu_2 \qquad S \circ S$$

How does an element of $(T \circ S)(X)$ look like?

$$\underline{g}\{f_y\{x\,|\,x\in X_y\}\,|\,y\in Y\}$$

And what are the properties of the substitution product?

- It is associative (up to isomorphism of species)
- It has the species of singletons I as neutral element.
- \longrightarrow (Spec, \circ) is a monoidal category (with unit 1).

Definition 1

An operad is a monoid $(S, \mu : S \circ S \to S)$ in the category of species.

$$(S \circ S) \circ S \xrightarrow{\alpha} S \circ (S \circ S)$$

$$\mu \circ id \downarrow \qquad \qquad \downarrow id \circ \mu$$

$$S \circ S \xrightarrow{\mu_1} \qquad \mu_2 \qquad S \circ S$$

Specifying a monoid in a monoidal category is a typical instance of the microcosm principle of higher algebra (Baez-Dolan).

Symmetric operads: partial, algebraic (Fiore)

The product on species needed to formulate partial composition algebraically is

$$T * S := (\partial T) \cdot S$$
.

Microcosm principle: What are the properties of this product?

Symmetric operads: partial, algebraic (Fiore)

The product on species needed to formulate partial composition algebraically is

$$T * S := (\partial T) \cdot S$$
.

Microcosm principle: What are the properties of this product? Comparing the species U*(T*S) and (U*T)*S, we conclude that

- The product is not associative
- The product satisfies the pre-Lie equality, given by the isomorphism

$$\beta: ((U*T)*S) + (U*(S*T)) \rightarrow (U*(T*S)) + ((U*S)*T),$$

Symmetric operads: partial, algebraic (Fiore)

The product on species needed to formulate partial composition algebraically is

$$T * S := (\partial T) \cdot S$$
.

Microcosm principle: What are the properties of this product?

Comparing the species U * (T * S) and (U * T) * S, we conclude that

- The product is not associative
- The product satisfies the pre-Lie equality, given by the isomorphism

$$\beta: ((U*T)*S) + (U*(S*T)) \rightarrow (U*(T*S)) + ((U*S)*T),$$

Definition 2

An operad is a pair $(S, \nu : S * S \to S)$, such that $\nu_2 \circ \beta = \nu_1$, where ν_1 and ν_2 are induced by ν .

From ordinary to cyclic operads

Our cornerstone is an ordinary operad $(S, \nu : S * S \rightarrow S)$.

How to enrich this structure, so that it encompasses the actions

$$D_{xz}: S(X) \to S((X \setminus \{x\}) \cup \{z\})$$
?

From ordinary to cyclic operads

Our cornerstone is an ordinary operad $(S, \nu : S * S \rightarrow S)$.

How to enrich this structure, so that it encompasses the actions

$$D_{xz}: S(X) \rightarrow S((X \setminus \{x\}) \cup \{z\})$$
?

In particular, we should translate the compatibility of D_{xz} with the two possible partial compositions subject to it:

 $\nu_3:\partial S\cdot\partial S\to\partial S$

$$\nu_4:\partial(\partial S)\cdot S\to\partial S$$

From ordinary to cyclic operads

Our cornerstone is an ordinary operad $(S, \nu : S * S \rightarrow S)$.

How to enrich this structure, so that it encompasses the actions

$$D_{xz}: S(X) \rightarrow S((X \setminus \{x\}) \cup \{z\})$$
?

In particular, we should translate the compatibility of D_{xz} with the two possible partial compositions subject to it:

and

 $\nu_3:\partial S\cdot\partial S\to\partial S$

 $\nu_{4}:\partial(\partial S)\cdot S\to\partial S$

This suggests to mimick the actions of D_{xz} by a natural transformation $D: \partial S \to \partial S$, which will commute with ν_3 and ν_4 in the appropriate way.

Cyclic operads: exchangeable output

Definition 3

A cyclic operad is a triple $(S, \nu : S * S \rightarrow S, D : \partial S \rightarrow \partial S)$, such that:

- $(S, \nu : S * S \rightarrow S)$ is an operad, and
- the morphism D is satisfies the laws

$$D^2 = id$$
 and $(\partial D \circ ex)^3 = id$,

where $ex: \partial(\partial S) \to \partial(\partial S)$ exchanges the two distinguished elements in $(X + \{*\}) + \{\diamond\}$,

as well as the laws given by the following commuting diagrams:

$$\frac{\partial(\partial S) \cdot S \xrightarrow{(ex \circ \partial D \circ ex) \cdot id}}{\downarrow^{\nu_4}} \partial(\partial S) \cdot S$$

$$\downarrow^{\nu_4} \downarrow^{\nu_4}$$

$$\frac{\partial S}{\partial S} \xrightarrow{D} \partial S$$

Cyclic operads: entries only

The relevant product on species is now

$$S \blacktriangle T = (\partial S) \cdot (\partial T).$$

Cyclic operads: entries only

The relevant product on species is now

$$S \blacktriangle T = (\partial S) \cdot (\partial T).$$

Following the microcosm principle, we examine its properties:

- It is commutative
- It satisfies the identity given by the isomorphism

$$\gamma: (S \blacktriangle T) \blacktriangle U + T \blacktriangle (S \blacktriangle U) + (T \blacktriangle U) \blacktriangle S \to S \blacktriangle (T \blacktriangle U) + (S \blacktriangle U) \blacktriangle T + U \blacktriangle (S \blacktriangle T)$$

Cyclic operads: entries only

The relevant product on species is now

$$S \blacktriangle T = (\partial S) \cdot (\partial T).$$

Following the microcosm principle, we examine its properties:

- It is commutative
- It satisfies the identity given by the isomorphism

$$\gamma: (S \blacktriangle T) \blacktriangle U + T \blacktriangle (S \blacktriangle U) + (T \blacktriangle U) \blacktriangle S \to S \blacktriangle (T \blacktriangle U) + (S \blacktriangle U) \blacktriangle T + U \blacktriangle (S \blacktriangle T)$$

Definition 4

A cyclic operad is a pair $(S, \rho : S \blacktriangle S \to S)$, such that $\rho_2 \circ \gamma = \rho_1$, where ρ_1 and ρ_2 are induced by ρ .

Descent theory for species (Lamarche)

Question:

Can we reconstruct a species T, given ∂T ?

Descent theory for species (Lamarche)

Question:

Can we reconstruct a species T, given ∂T ?

The answer is **no**, but it becomes **yes** if additional data is provided. Lamarche (private communication) defines a descent data as a pair

$$(S, D: \partial S \to \partial S),$$

such that $D^2 = id$ and $(\partial D \circ ex)^3 = id$.

Lamarche has also shown that the functor

$$T \mapsto (\partial T, ex)$$

is an equivalence of categories when restricted to species which are empty on the empty set.

"exchangeable output" ⇔ "entries only"

Theorem 2

This equivalence carries over to an equivalence between the previous two definitions of cyclic operads.

"exchangeable output" ⇔ "entries only"

The μ -syntax

Theorem 2

This equivalence carries over to an equivalence between the previous two definitions of cyclic operads.

The steps of the proof are as follows:

• Given $\rho: T \blacktriangle T \to T$, we define $\nu: \partial T * \partial T \to \partial T$ as follows

$$\nu: \partial \partial T \cdot \partial T \xrightarrow{\mathsf{ex} \cdot \mathsf{id}} \partial \partial T \cdot \partial T \xrightarrow{\mathsf{inj}} \partial (\partial T \cdot \partial T) \xrightarrow{\partial \rho} \partial T$$

• Given $\nu: \partial T * \partial T \to \partial T$, to define $\rho: T \blacktriangle T \to T$ amounts to define $\rho': \partial(\partial T \cdot \partial T) \to \partial T$ (ρ is then uniquely defined via $\partial \rho = \rho'$):

$$\rho'_{1}: \partial \partial T \cdot \partial T \xrightarrow{\text{ex-}id} \partial \partial T \cdot \partial T \xrightarrow{\nu} \partial T
\rho'_{2}: \partial T \cdot \partial \partial T \xrightarrow{\text{Swap}} \partial \partial T \cdot \partial T \xrightarrow{\rho'_{1}} \partial T$$

$$\rho' = [\rho'_{1}, \rho'_{2}]$$

 And then we have to check that everything commutes in the appropriate way...

...for example:

Some directions of investigations:

- Figure out the microcosm principle for modular and wheeled operads
- Study the "up to homotopy" versions of all these (infinity operads, properads, wheeled properads,...)

Hope that you enjoyed the promenade!