'Logic and Applications' September 21-25, 2015, Dubrovnik, Croatia

A calculus of sequents with probability

Marija Boričić
Faculty of Organizational Sciences, University of Belgrade
marija.boricic@fon.bg.ac.rs

§0. Introduction.

Sequents in **LKprob** are of the form $\Gamma \vdash_a^b \Delta$, meaning that 'the probability of provability of $\Gamma \vdash \Delta$ belongs to the interval $[a,b] \cap I$ ', where I is a finite subset of reals [0,1]. The system **LKprob**, an extension of Gentzen's sequent calculus for classical propositional logic, is sound and complete with respect to a kind of Carnap-Popper-Leblanc-type probability logic semantics.

§1. The probabilistic sequent calculus LKprob.

The sequent $\Gamma \vdash \Delta$, as introduced by Gentzen, consists of two finite (possibly empty) sequences (or words) of formulae Γ — the antecedent, and Δ — the consequent, with the main interpretation as $\bigwedge \Gamma \to \bigvee \Delta$, where $\bigwedge \Gamma$ denotes the conjunction of all formulae appearing in Γ , and $\bigvee \Delta$ denotes the disjunction of all formulae appearing in Δ ; particularly, if Γ or Δ is an empty sequence, then $\vdash \Delta$ is interpreted as $\bigvee \Delta$, $\Gamma \vdash$ as $\neg \bigwedge \Gamma$, and \vdash can be understood as a pure contradiction. Propositional formulae are defined over propositional language consisting of a denumerable set of propositional letters: $\{p_1, p_2, ...\}$, logical connectives: \neg , \wedge , \vee and \rightarrow , and two auxiliary symbols:) and (. The set of formulae is the smallest set containing propositional letters closed under the following formation rule: if Λ and B are formulae, then $(\neg A)$, $(A \land B)$, $(A \lor B)$ and $(A \to B)$ are formulae as well.

The axioms of LKprob are the following three sequents:

$$\Gamma \vdash_0^1 \Delta \\
\vdash^0 \\
A \vdash_1 A$$

for any words Γ and Δ , and any formula A.

The structural rules of LKprob are as follows:

$$permutation: \frac{\Gamma AB\Pi \vdash_a^b \Delta}{\Gamma BA\Pi \vdash_a^b \Delta} (P \vdash_a^b) \frac{\Gamma \vdash_a^b \Delta AB\Lambda}{\Gamma \vdash_a^b \Delta BA\Lambda} (\vdash_a^b P)$$

$$contraction: \frac{\Gamma AA \vdash_a^b \Delta}{\Gamma A \vdash_a^b \Delta} (C \vdash_a^b) \frac{\Gamma \vdash_a^b AA\Delta}{\Gamma \vdash_a^b A\Delta} (\vdash_a^b C)$$

for any $a, b \in I$, the cut rule:

$$\frac{\Gamma \vdash_a^b A\Delta \qquad \Pi A \vdash_c^d \Lambda}{\Gamma \Pi \vdash_{\max(0,a+c-1)}^{\min(b+d,1)} \Delta \Lambda} (\operatorname{cut}^{[a,b][c,d]})$$

for any $a, b, c, d \in I$

Specific structural rules:

$$weakening: \quad \frac{\Gamma \vdash_a^b \Delta \vdash_c^d A}{\Gamma A \vdash_{\max(a,1-d)}^{\min(1,b+1-c)} \Delta} (W \vdash_a^b) \qquad \frac{\Gamma \vdash_a^b \Delta \vdash_c^d A}{\Gamma \vdash_{\max(a,c)}^{\min(1,b+d)} A \Delta} (\vdash_a^b W)$$

for any $a, b, c, d \in I$,

monotonicity:
$$\frac{\Gamma \vdash_a^b \Delta}{\Gamma \vdash_c^d \Delta}(M \uparrow) \qquad \frac{\Gamma \vdash_a^b \Delta}{\Gamma \vdash_{mov(a,c)}^{\min(b,d)} \Delta}(M \downarrow)$$

for any $[a, b] \subseteq [c, d]$, and any $a \le b$ and $c \le d$, respectively, for $(M \uparrow)$ and $(M \downarrow)$, and the following specific rule regarding additivity:

$$\frac{AB \vdash_{1} \vdash_{a}^{b} A \vdash_{c}^{d} B}{\vdash_{a+c}^{\min(1,b+d)} AB} (ADD)$$

The following rule, regarding *inconsistency*:

$$\frac{\Gamma \vdash^{\emptyset} \Delta}{\prod \vdash^{\emptyset} \Lambda} (\bot)$$

The logical rules of **LKprob** are as follows:

$$\frac{\Gamma \vdash_a^b A\Delta}{\Gamma \vdash_a^b A \vdash_b A} (\neg \vdash_a^b) \qquad \frac{\Gamma A \vdash_a^b}{\Gamma \vdash_a^b}$$

$$\Gamma \vdash^b A \Lambda$$
 . $\Gamma A \vdash$

$$\frac{\Gamma \vdash_a^b A\Delta}{\Gamma \lnot A \vdash_a^b \Delta} (\lnot \vdash_a^b) \qquad \frac{\Gamma A \vdash_a^b \Delta}{\Gamma \vdash_a^b \lnot A\Delta} (\vdash_a^b \lnot)$$

$$\frac{\Gamma \vdash_a^b A\Delta}{\Gamma \vdash_a A \vdash_b \Delta} (\neg \vdash_a^b) \qquad \frac{\Gamma A \vdash_a \Box}{\Gamma \vdash_a \Box}$$

$$\Gamma \vdash^b A \Lambda$$
 . $\Gamma A \vdash$

$$\nabla A + b$$

 $\frac{\Gamma A \vdash_a^b \Delta}{\Gamma A \vee B \vdash_{\max(0,a+c-1)}^{\min(b,d)} \Delta} (\vee \vdash_a^b) \quad \frac{\Gamma \vdash_a^b AB\Delta}{\Gamma \vdash_a^b A \vee B\Delta} (\vdash_a^b \vee)$

 $\frac{\Gamma \vdash_a^b A\Delta \quad \Gamma B \vdash_c^d \Delta}{\Gamma A \to B \vdash_{\max(0,a+c-1)}^{\min(b,d)} \Delta} (\to \vdash_a^b) \qquad \frac{\Gamma A \vdash_a^b B\Delta}{\Gamma \vdash_a^b A \to B\Delta} (\vdash_a^b \to)$

$$\frac{\Gamma A \vdash_a^b \Delta}{\Gamma \vdash_a^b \neg A \Delta} (\vdash_a^b \neg)$$

$$\frac{1 \land \vdash_a \Delta}{\Gamma \vdash_a^b \neg A\Delta} (\vdash_a^b \neg)$$

$$\frac{\Gamma \Gamma \vdash_a \Delta}{\Gamma \vdash_a \neg A\Delta} (\vdash_a \neg)$$

$$\frac{\Gamma \neg A \vdash_a^b \Delta}{\Gamma A \land B \vdash_a^b \Delta} (\land \vdash_a^b) \qquad \frac{\Gamma \vdash_a^b \neg A \Delta}{\Gamma \vdash_a^b A \Delta} (\land \vdash_a^b) \qquad \frac{\Gamma \vdash_a^b A \Delta}{\Gamma \vdash_a^{\min(b,d)} A \land B \Delta} (\vdash_a^b \land)$$

$$\frac{1}{\Gamma \vdash_a^b \neg A\Delta} \stackrel{(\vdash a \vdash)}{\neg A\Delta}$$

$$\Gamma A \vdash^b \Lambda$$

Example 1. Let the formulas A, B, C, D and E have the following interpretation: A—the person is a female, B—has a Bachelor's degree, C—has Master's degree or doctorate, D—has a high salary, E—owns at least one property. The results of a questionnaire are: (i) the probability of having a high salary, if you are a female who has a Bachelor's degree is 0.873, (ii) the probability of owning at least one property, if you are a female who has a Bachelor's degree is 0.794 and (iii) the probability of not having master's or doctoral degree if you are a female is 0.951. That means that in our system **LKprob**, with $I = \{10^{-3}k|k=0,1,\ldots,10^3\}$, the additional axioms are of the form (i) $AB \vdash_{0.873}^{0.873} D$, (ii) $AB \vdash_{0.794}^{0.794} E$ and (iii) $A \vdash_{0.951}^{0.951} \neg C$. Using the following proof

$$\frac{AB \vdash_{0.873}^{0.873} D \quad AB \vdash_{0.794}^{0.794} E}{AB \vdash_{0.667}^{0.794} D \land E} (\vdash \land) \quad \frac{\frac{A \vdash_{0.951}^{0.951} \neg C}{AC \vdash_{0.951}^{0.951}} (\neg \vdash) \vdash_{0}^{1} D \land E}{AC \vdash_{0.951}^{1} D \land E} (\vdash W)}{A(B \lor C) \vdash_{0.618}^{0.794} D \land E} (\lor \vdash)$$

we can conclude that, if you are a female with Bachelor's, master's or doctoral degree, then the probability of having a high salary and owning at least one property belongs to the interval [0.618, 0.794].

§2. Models for Probabilized Sequents.

Let Seq be the set of all unlabelled sequents, i.e. of sequents of the form $\Gamma \vdash \Delta$, and I a finite subset of reals [0,1] closed under addition. Then a mapping $p: \mathrm{Seq} \to I$ will be a model, if it satisfies the following conditions:

(i)
$$p(A \vdash A) = 1$$
, for any formula A;

(ii) if
$$p(AB \vdash) = 1$$
, then $p(\vdash AB) = p(\vdash A) + p(\vdash B)$, for any formulas A and B;

(iii) if sequents $\Gamma \vdash \Delta$ and $\Pi \vdash \Lambda$ are equivalent in **LK**, in sense that there are proofs for both sequents $\bigwedge \Gamma \to \bigvee \Delta \vdash \bigwedge \Pi \to \bigvee \Lambda$ and $\bigwedge \Pi \to \bigvee \Lambda \vdash \bigwedge \Gamma \to \bigvee \Delta$ in **LK**, then $p(\Gamma \vdash \Delta) = p(\Pi \vdash \Lambda)$.

Satisfiability in a model for the probabilized sequents is defined by clause:

$$\models_p \Gamma \vdash_a^b \Delta \text{ iff } a \leq p(\Gamma \vdash \Delta) \leq b$$

and we say that the probabilized sequent $\Gamma \vdash_a^b \Delta$ is satisfied in a model p. A sequent $\Gamma \vdash_a^b \Delta$ is valid iff it is satisfied in each model, and this is denoted by $\models \Gamma \vdash_a^b \Delta$.

Lemma. For any formulas A and B, the following equalities hold:

(a) $p(\vdash \neg A) = 1 - p(\vdash A)$;

(b) $p(\vdash AB) = p(\vdash A) + p(\vdash B) - p(\vdash A \land B)$;

(c) $p(\vdash AB) \ge p(\vdash A)$;

(d) $p(A \vdash B) \leq p(A \vdash) + p(\vdash B)$;

(e) $p(A \vdash A) = p(A \vdash) + p(\vdash A)$.

Lemma. For any formula A and each sequent $\Gamma \vdash \Delta$, we have:

 $(a) \models \Gamma \vdash_0^1 \Delta;$ $(b) \models \vdash^0$;

 $(c) \models A \vdash_{1} A$.

(a) if $a \leq p(\Gamma \vdash \Delta) \leq b$ and $c \leq p(\vdash A) \leq d$, then

$$m_{\alpha} = m(\alpha + 1) < m(\Gamma A + A) < m_{\alpha} = m(1 + 1)$$

$$\max(a, 1 - d) \le p(\Gamma A \vdash \Delta) \le \min(1, b)$$

$$\max(a, 1 - d) \le p(\Gamma A \vdash \Delta) \le \min(1, b)$$

(c) if $a < p(\Gamma \vdash A\Delta) < b$ and $c < p(\Gamma \vdash B\Delta) < d$, then

(d) if $a < p(\Gamma A \vdash \Delta) < b$ and $c < p(\Gamma B \vdash \Delta) < d$, then

(e) if $a < p(\Gamma \vdash A\Delta) \le b$ and $c \le p(\Gamma B \vdash \Delta) \le d$, then

$$\max(a, 1 - d) \le p(\Gamma A \vdash \Delta) \le \min(1, b)$$

Lemma. For any formulas A and B, and each words Γ , Δ , Π and Λ , we have:

(b) if $a < p(\Gamma \vdash \Delta) < b$ and $c < p(\vdash A) < d$, then

 $\max(a, c) \le p(\Gamma \vdash A\Delta) \le \min(1, b + d);$

 $\max(0, a+c-1) < p(\Gamma \vdash A \land B\Delta) < \min(b, d);$

 $\max(0, a+c-1) < p(\Gamma A \vee B \vdash \Delta) < \min(b, d):$

 $\max(0, a+c-1) < p(\Gamma A \to B \vdash \Delta) \le \min(b, d).$

 $\max(a, 1-d) < p(\Gamma A \vdash \Delta) < \min(1, b+1-c)$:

Proof. (d) Suppose that $p(\Gamma A \vdash \Delta) \in [a,b]$ and $p(\Gamma B \vdash \Delta) \in [c,d]$. We have that

$$\begin{split} p(\Gamma(A \vee B) \vdash \Delta) &= p(\vdash (\neg A \wedge \neg B) \Delta \neg (\bigwedge \Gamma)) \\ &= p(\vdash (\neg A \vee \Delta \vee \neg (\bigwedge \Gamma)) \wedge (\neg B \vee \Delta \vee \neg (\bigwedge \Gamma))) \\ &= p(\vdash \neg A \Delta \neg (\bigwedge \Gamma)) + p(\vdash \neg B \Delta \neg (\bigwedge \Gamma)) - p(\vdash \neg A \neg B \Delta \neg (\bigwedge \Gamma)) \\ &= p(\Gamma A \vdash \Delta) + p(\Gamma B \vdash \Delta) - p(\vdash \neg A \neg B \Delta \neg (\bigwedge \Gamma)) \end{split}$$

Therefore, $p(\Gamma(A \vee B) \vdash \Delta) \in [max(0, a + c - 1), min(b, d)].$

Lemma. Let $p(\vdash A) = a$, $p(\vdash B) = b$, $p(\vdash C) = c$, $p(A \vdash B) = r$ and $p(B \vdash C) = s$, with $a + r \ge 1$. Then:

$$a + r - 1 \le p(\vdash B) \le r$$

$$\max(1 - a, b) + \max(1 - b, c) - 1 \le p(A \vdash C) \le 2 - a - b + c$$

 $r - b < p(A \vdash) < r$

$$\max(r - a, r + s - 1) < p(A \vdash C) < \min(s + 1 - a, r + c)$$

The bounds in (a), (b), (c) and (d) are the best possible.

Corollary. If
$$a \leq p(\Gamma \vdash A\Delta) \leq b$$
 and $c \leq p(\Pi A \vdash \Lambda) \leq d$, then

$$\max(0, a+c-1) < p(\Gamma\Pi \vdash \Delta\Lambda) < \min(b+d, 1).$$

§3. Consistent LKprob—theories.

Let σ_i $(1 \leq i \leq n)$ be a finite list of sequents of the form $\Gamma_i \vdash_{a_i}^{b_i} \Delta_i$, for $a_i, b_i \in I$ $(1 \leq i \leq n)$. Then, by $\mathbf{LKprob}(\sigma_1, \ldots, \sigma_n)$, we denote an extension of \mathbf{LKprob} by sequents $\sigma_1, \ldots, \sigma_n$ as additional axioms and call it an \mathbf{LKprob} —theory over $\sigma_1, \ldots, \sigma_n$. We say that a theory $\mathbf{LKprob}(\sigma_1, \ldots, \sigma_n)$ is inconsistent if there are two sequents $\Gamma \vdash_a^b \Delta$ and $\Gamma \vdash_c^d \Delta$, both provable in $\mathbf{LKprob}(\sigma_1, \ldots, \sigma_n)$ such that $[a, b] \cap [c, d] = \emptyset$; otherwise, $\mathbf{LKprob}(\sigma_1, \ldots, \sigma_n)$ is consistent. A sequent $\Gamma \vdash_a^b \Delta$ is said to be consistent with respect to $\mathbf{LKprob}(\sigma_1, \ldots, \sigma_n)$ if there is no sequent $\Gamma \vdash_c^d \Delta$ provable in $\mathbf{LKprob}(\sigma_1, \ldots, \sigma_n)$, for $[a, b] \cap [c, d] = \emptyset$. A finite set of sequents

is said to be consistent with respect to $\mathbf{LKprob}(\sigma_1, \ldots, \sigma_n)$ if there is no sequent $\Gamma \vdash_c^d \Delta$ provable in $\mathbf{LKprob}(\sigma_1, \ldots, \sigma_n)$, for $[a, b] \cap [c, d] = \emptyset$. A finite set of sequents $\{\tau_1, \ldots, \tau_k\}$ is consistent with respect to $\mathbf{LKprob}(\sigma_1, \ldots, \sigma_n)$ if, for each $i \ (1 \le i \le k), \tau_i$ is consistent with respect to $\mathbf{LKprob}(\sigma_1, \ldots, \sigma_n, \tau_1, \ldots, \tau_{i-1}, \tau_{i+1}, \ldots, \tau_k)$. A denumerable set of sequents is consistent with respect to $\mathbf{LKprob}(\sigma_1, \ldots, \sigma_n)$ if each of its finite subsets is consistent with respect to $\mathbf{LKprob}(\sigma_1, \ldots, \sigma_n)$. A consistent theory is called a maximal consistent theory if each of its proper extensions is inconsistent.

Lemma. Each consistent theory can be extended to a maximal consistent theory.

Proof. Let \mathcal{T} be a consistent theory, and let $\alpha_1, \alpha_2, \ldots, \alpha_n, \ldots$ be the sequence of all unlabelled sequents i.e. α_n is $\Gamma_n \vdash \Delta_n$, and for each $c \in I$, let $\alpha_1^c, \alpha_2^c, \ldots, \alpha_n^c, \ldots$ be the sequence of the corresponding labelled sequents, i.e. α_n^c is $\Gamma_n \vdash_c^c \Delta_n$. Let the sequence (\mathcal{T}_n) of theories be defined inductively as follows: $\mathcal{T}_0 = \mathcal{T}$, and $\mathcal{T}_{n+1} = \mathcal{T}_n \cup \{\alpha_n^{c_1}\}$, if $\alpha_n^{c_1}$ is consistent with respect to \mathcal{T}_n , but if it is not consistent, then: $\mathcal{T}_{n+1} = \mathcal{T}_n \cup \{\alpha_n^{c_2}\}$, if $\alpha_n^{c_2}$ is consistent with respect to \mathcal{T}_n , but if it is not, then ... $\mathcal{T}_{n+1} = \mathcal{T}_n \cup \{\alpha_n^{c_{m-1}}\}$, if $\alpha_n^{c_{m-1}}$ is consistent with respect to \mathcal{T}_n , and finally, $\mathcal{T}_{n+1} = \mathcal{T}_n \cup \{\alpha_n^{c_m}\}$, otherwise; where $\{c_1, c_2, \ldots, c_m\} = I$. Let us note that the final result of this construction depends on the order of points c_1, c_2, \ldots, c_m of the set I. Let

$$\mathcal{T}' = \bigcup_{n \in \omega} \mathcal{T}_n$$

Then, by induction on n we will prove that \mathcal{T}' is a maximal consistent extension of \mathcal{T} . First, we prove that if \mathcal{T}_n is consistent, then \mathcal{T}_{n+1} is consistent. The only interesting case is when $\mathcal{T}_{n+1} = \mathcal{T}_n \cup \{\alpha_n^{c_m}\}$. Suppose that \mathcal{T}_{n+1} is inconsistent, i.e. that the sequent $\alpha_n^{c_m}$ is not consistent with respect to \mathcal{T}_n . Then there exists an interval $[a,b] \subset [0,1]$ such that $c_m \notin [a,b]$ and $\Gamma_n \vdash_a^b \Delta_n$ is provable in \mathcal{T}_n , which is impossible because the theory $\mathcal{T}_n \cup \{\alpha_n^{c_j}\}$ is inconsistent for each j $(1 \leq j \leq m-1)$. In order to prove that \mathcal{T}' is a maximal consistent extension of \mathcal{T} we extend \mathcal{T}' by the sequent $\Gamma_k \vdash_a^b \Delta_k$. In case that this is a proper extension, we already have that the theory $\mathcal{T}_{k+1} \subset \mathcal{T}'$ contains $\Gamma_k \vdash_c^c \Delta_k$ for some $c \notin [a,b]$, and, consequently, this extension will be inconsistent. \square

§4. Soundness and Completeness.

Soundness Theorem. If an **LKprob**-theory has a model, then it is consistent.

In order to prove the completeness part, we define the notion of canonical model. Let $\operatorname{Cn}(\mathbf{LKprob}(\sigma_1,\ldots,\sigma_n))$ be the set of all $\mathbf{LKprob}(\sigma_1,\ldots,\sigma_n)$ -provable sequents and $\operatorname{ConExt}(\operatorname{Cn}(\mathbf{LKprob}(\sigma_1,\ldots,\sigma_n)))$ the class of all its maximal consistent extensions. Then, for any $X \in \operatorname{ConExt}(\operatorname{Cn}(\mathbf{LKprob}(\sigma_1,\ldots,\sigma_n)))$ we define $\models_{p^X} \Gamma \vdash_a^b \Delta$ iff $a \leq \max\{c \mid \Gamma \vdash_c^1 \Delta \in X\}$ and $b \geq \min\{c \mid \Gamma \vdash_0^c \Delta \in X\}$. Obviously, such a definition provides that the mapping p^X , depending on X, has the adequate values. In that case we have that:

Lemma. $\models_{p^X} \Gamma \vdash_a^b \Delta \text{ iff } \Gamma \vdash_a^b \Delta \in X.$

Completeness Theorem. Each consistent LKprob-theory has a model.