A Logic with Upper and Lower Probability Operators(LUPP)

Nenad Savić¹, Dragan Doder², Zoran Ognjanović³

1: University of Novi Sad

2 : University of Luxembourg

3: Mathematical Institute of SASA

LAP 2015, Dubrovnik, Croatia.

Outline of the talk

Outline of the talk

- Example;
- Syntax and Semantics;
- Axioms and inference rules;
- Construction of the canonical model and strong completeness theorem;
- Decidability;
- $LUPP^{Fr(n)}$.

P – a set of probability measures $P^{\star}(X) = \sup\{\mu(X) \mid \mu \in P\}, \quad P_{\star}(X) = \inf\{\mu(X) \mid \mu \in P\}$

Syntax

Syntax

Let S be the set of rational numbers from [0,1] and let $\mathcal{L} = \{p,q,r,\ldots\}$ be a countable set of propositional letters. The language of logic LUPP consists of the elements of:

- set \mathcal{L} .
- classical propositional connectives \neg and \land ,
- the lists of upper probability operators $U_{>s}$ and $L_{>s}$, for every $s \in S$.

$$L_{=0}R, L_{=0}B;$$

$$L_{=0}R, L_{=0}B; U_{=0.7}R, U_{=0.7}B$$

$$L_{=0}R, L_{=0}B; \qquad U_{=0.7}R, U_{=0.7}B$$

$$((U_{\leq 0.3}G \land L_{\geq 0.3}G) \land U_{\leq 0.2}R) \Rightarrow L_{\geq 0.5}B.$$

Definition (LUPP-structure)

Any tuple $M = \langle W, H, P, v \rangle$, where:

- W is a nonempty set of worlds.
- H is an algebra of subsets of W.
- P is a set of finitely additive probability measures defined on H.
- $v: W \times \mathcal{L} \longrightarrow \{true, false\}$ evaluations of the primitive propositions.

Definition (LUPP-structure)

Any tuple $M = \langle W, H, P, v \rangle$, where:

- W is a nonempty set of worlds.
- H is an algebra of subsets of W.
- P is a set of finitely additive probability measures defined on H.
- $v: W \times \mathcal{L} \longrightarrow \{true, false\}$ evaluations of the primitive propositions.

Definition (Satisfiability relation)

- $M \models \alpha$ iff $v(w)(\alpha) = true$, for all $w \in W$,
- $M \models U_{\geq s}\alpha$ iff $P^*([\alpha]) \geq s$,
- $M \models L_{>s}\alpha$ iff $P_{\star}([\alpha]) \geq s$,
- $M \models \neg \phi$ iff it is not the case that $M \models \phi$,
- $M \models \phi \land \psi$ iff $M \models \phi$ and $M \models \psi$.

Definition (LUPP-structure)

Any tuple $M = \langle W, H, P, v \rangle$, where:

- W is a nonempty set of worlds.
- H is an algebra of subsets of W.
- P is a set of finitely additive probability measures defined on H.
- $v: W \times \mathcal{L} \longrightarrow \{true, false\}$ evaluations of the primitive propositions.

Definition (Satisfiability relation)

- $M \models \alpha$ iff $v(w)(\alpha) = true$, for all $w \in W$,
- $M \models U_{\geq s}\alpha$ iff $P^*([\alpha]) \geq s$,
- $M \models L_{>s}\alpha$ iff $P_{\star}([\alpha]) \geq s$,
- $M \models \neg \phi$ iff it is not the case that $M \models \phi$,
- $M \models \phi \land \psi$ iff $M \models \phi$ and $M \models \psi$.

Axiomatization issues

Axiomatization issues

- 1) Non-compactness of LUPP-logic
 - consequence: there is no finitary axiomatization

Axiomatization issues

- 1) Non-compactness of LUPP-logic
 - consequence: there is no finitary axiomatization

- 2) Expressiveness of our propositional language
 - the representation theorem (Anger, Lembcke 1985)

Representation Theorem

Representation Theorem

Theorem (Anger and Lembcke, 1985)

Let W be a set, H an algebra of subsets of W, and f a function $f: H \longrightarrow [0,1]$. There exists a set P of probability measures such that $f = P^*$ iff f satisfies the following three properties:

- (1) $f(\emptyset) = 0$,
- (2) f(W) = 1,
- (3) for all natural numbers m, n, k and all subsets A_1, \ldots, A_m in H, if $\{\{A_1, \ldots, A_m\}\}$ is an (n, k)-cover of (A, W), then $k + nf(A) \leq \sum_{i=1}^m f(A_i)$.

Axiom schemes

Axiom schemes

- (1) all instances of the classical propositional tautologies
- (2) $U_{<1}\alpha \wedge L_{<1}\alpha$
- (3) $U_{\leq r}\alpha \rightarrow U_{\leq s}\alpha$, s > r
- (4) $U_{\leq s}\alpha \rightarrow U_{\leq s}\alpha$
- (5) $(U_{\leq r_1}\alpha_1 \wedge \cdots \wedge U_{\leq r_m}\alpha_m) \to U_{\leq r}\alpha$, if $\alpha \to \bigvee_{J\subseteq \{1,\dots,m\},|J|=k+n} \bigwedge_{j\in J}\alpha_j$ and $\bigvee_{J\subseteq \{1,\dots,m\},|J|=k} \bigwedge_{j\in J}\alpha_j$ are propositional tautologies, where $r=\frac{\sum_{i=1}^m r_i-k}{n},\ n\neq 0$
- (6) $\neg (U_{\leq r_1}\alpha_1 \wedge \cdots \wedge U_{\leq r_m}\alpha_m)$, if $\bigvee_{J\subseteq \{1,\dots,m\}, |J|=k} \bigwedge_{j\in J} \alpha_j$ is a propositional tautology and $\sum_{i=1}^m r_i < k$
- (7) $L_{=1}(\alpha \to \beta) \to (U_{\geq s}\alpha \to U_{\geq s}\beta)$

Inference Rules

Inference Rules

- (1) From ρ and $\rho \to \sigma$ infer σ
- (2) From α infer $L_{>1}\alpha$
- (3) From the set of premises

$$\{\phi \to U_{\geq s-\frac{1}{k}}\alpha \mid k \geq \frac{1}{s}\}$$

infer $\phi \to U_{\geq s}\alpha$

(4) From the set of premises

$$\{\phi \to L_{\geq s-\frac{1}{k}}\alpha \mid k \geq \frac{1}{s}\}$$

infer $\phi \to L_{>s}\alpha$.

Construction of the canonical model

Construction of the canonical model

Theorem

Every consistent set can be extended to a maximal consistent set.

Sketch of the proof:

Construction of the canonical model

Theorem

Every consistent set can be extended to a maximal consistent set.

Sketch of the proof:Let T be a consistent set of formulas. We define a sequence of sets T_i , as follows:

- (1) $T_0 = T \cup Cn_C(T) \cup \{L_{\geq 1}\alpha \mid \alpha \in Cn_C(T)\}$
- (2) for every $i \geq 0$,
 - (a) if $T_i \cup \{\phi_i\}$ is consistent, then $T_{i+1} = T_i \cup \{\phi_i\}$, otherwise
 - (b) if ϕ_i is of the form $\psi \to U_{\geq s}\beta$, then $T_{i+1} = T_i \cup \{\neg \phi_i, \psi \to \neg U_{\geq s \frac{1}{n}}\beta\}$, for some positive integer n, so that T_{i+1} is consistent, otherwise
 - (c) if ϕ_i is of the form $\psi \to L_{\geq s}\beta$, then $T_{i+1} = T_i \cup \{\neg \phi_i, \psi \to \neg L_{\geq s \frac{1}{n}}\beta\}$, for some positive integer n, so that T_{i+1} is consistent, otherwise
 - (d) $T_{i+1} = T_i \cup \{\neg \phi_i\}.$
- (3) $T^* = \bigcup_{i=0}^{\infty} T_i$.

A Logic with Upper and Lower Probability Operators (LUPP)

Construction of the canonical model

Theorem (Strong completeness)

A set of formulas T is consistent iff it is $LUPP_{Meas}$ — satisfiable.

Sketch of the proof:

Theorem (Strong completeness)

A set of formulas T is consistent iff it is $LUPP_{Meas}$ – satisfiable.

Sketch of the proof:

- Every consistent set T can be extended to a maximal consistent set T^* .
- **2** We use T^* to construct a canonical model.

Definition

If T^{\star} is the maximally consistent set of formulas, then a tuple $M_{T^{\star}} = \langle W, H, P, v \rangle$ is defined:

- $\bullet W = \{w \mid w \models Cn_{\mathcal{C}}(T)\},\$
- $H = \{ [\alpha] \mid \alpha \in For_C \}$, where $[\alpha] = \{ w \in W \mid w \models \alpha \}$,
- P is any set of probability measures such that $P^*([\alpha]) = \sup\{s \mid U_{\geq s}\alpha \in T^*\},$
- for every world w and every propositional letter p, v(w, p) = true iff $w \models p$.

Theorem (Strong completeness)

A set of formulas T is consistent iff it is $LUPP_{Meas}$ – satisfiable.

Sketch of the proof:

- Every consistent set T can be extended to a maximal consistent set T^* .
- **2** We use T^* to construct a canonical model.

Definition

If T^{\star} is the maximally consistent set of formulas, then a tuple $M_{T^{\star}}=\langle W,H,P,v\rangle$ is defined:

- $\bullet W = \{w \mid w \models Cn_{\mathcal{C}}(T)\},\$
- $H = \{ [\alpha] \mid \alpha \in For_C \}$, where $[\alpha] = \{ w \in W \mid w \models \alpha \}$,
- P is any set of probability measures such that $P^*([\alpha]) = \sup\{s \mid U_{\geq s}\alpha \in T^*\},$
- for every world w and every propositional letter p, v(w, p) = true iff $w \models p$.

Decidability

Decidability

Theorem (Decidability)

A satisfiability problem for LUPP-formulas is NP-complete.

$LUPP^{Fr(n)}$

$LUPP^{Fr(n)}$

Definition ($LUPP^{Fr(n)}$ -structure)

Any tuple $M = \langle W, H, P, v \rangle$, where:

- W is a nonempty set of worlds.
- H is an algebra of subsets of W.
- P is a set of finitely additive probability measures such that for all $\mu \in P$, $\mu: H \to \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}$.
- $v: W \times \mathcal{L} \longrightarrow \{true, false\}$ evaluations of the primitive propositions.

$LUPP^{Fr(n)}$

Definition ($LUPP^{Fr(n)}$ -structure)

Any tuple $M = \langle W, H, P, v \rangle$, where:

- W is a nonempty set of worlds.
- H is an algebra of subsets of W.
- P is a set of finitely additive probability measures such that for all $\mu \in P$, $\mu: H \to \{0, \frac{1}{n}, \dots, \frac{n-1}{n}, 1\}$.
- $v: W \times \mathcal{L} \longrightarrow \{\textit{true}, \textit{false}\}\$ evaluations of the primitive propositions.

Consequence:

- The axiomatization is finite.

Further Work

Further Work

- Iterations of lower and upper probability operators
- First order lower and upper probability logic

References

B. Anger, J. Lembcke, *Infnitely subadditive capacities as upper envelopes of measures*, Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 68: 403–414. 1985.

J. Y. Halpern, R. Pucella, *A Logic for Reasoning about Upper Probabilities*, Journal of Artificial Intelligence Research, 17: 57–81, 2002.