
Sequential algorithms (old and new)

Pierre-Louis Curien

(CNRS – Paris 7 – INRIA)

LAP 2015, 21-25/9/2015, Dubrovnik
8/5/2015, Ruanjiansuo, Beijing, 7/5/2015, Jiaoda, Shanghai,

and 11/4/2015, Galop workshop, London

1

Prologue : denotational and operational semantics

Given a a (piece of) typed program M written in some programming lan-
guage, we want to understand its meaning.
• The denotational approach associates some mathematical structure to
the type of M , and a suitable morphism [[M]] to M . [Typically, continuous
functions between complete partial orders (cpo’s).]
• The operational approach specifies formal rules of execution (a machine,
a rewriting system,. . .) leading to observable results, which one can see as
experiments.
• The two approaches induce each a notion of equivalence :

M =den N iff [[M]] = [[N]]

M =op N iff there is no context C[] s.t.


C[M] −→∗ v
C[N] −→∗ w
and v 6= w

When these two equalities are the same, the (denotational) model is called
fully abstract (FA).

2

Complete partial orders through a key (even the founding) example

Consider the set N of natural numbers, and the set PF of partial functions
from N to N.

• PF has the structure of a partial order : f ≤ g iff whenever f is defined
(notation f ↓), g is also defined and has the same value. [Information order]

• There is a minimum element ⊥ : the nowhere defined partial function.
[Diverging computation]

• Every increasing chain has a least upper bound [Useful to give meaning
to programs defined by general recursive equations]

3

A few dates : the old days

• Triggered by the full abstraction problem for PCF (a typed λ-calculus with
arithmetical functions, conditionals and recursion), and building on Kahn-
Plotkin’s notion of sequential functions between (domains generated by)
concrete data structures (called information matrices in their original work),
Berry and Curien proposed a cartesian closed category of

sequential algorithms (1979) (SA in the sequel)

(first category in denotational semantics with morphisms that were not
functions, but programs of some sort).
• This led to the design of the programming language CDS (early 1980’s :
Berry, Curien, Devin, Ressouche, Montagnac). The development of this
language did not survive the 1980’s...
• The model SA was shown not to be amenable to a FA model of PCF.
Counter-examples to definability were exhibited in my Thèse d’Etat (1983).
But...

4

A few dates : revisitations

• The model SA was shown to be FA for PCF plus a form of control operator
(catch) (Curien, Cartwright, Felleisen 1992).
As part of this work, SA’s were recovered as observably sequential functions.

• The functions spaces of SA (for its full subcategory of sequential data structures) was
shown to be decomposable as S → S′ = (!S) (S′ (Lamarche 1992, Curien 1994).
[This exponential is to the one of McCusker (1996) for HO games what the set-based
exponential of coherence spaces is to its multiset version.]

• The last revisitation was the link with Laird’s bistability (Curien 2009).

• Related works : Bucciarelli and Ehrhard’s strong stability, Kleene’s unimonotone func-

tions, Longley’s sequentially realisable functionals,. . .

5

This talk

Old : I shall recall the sequential algorithms “of the old days” (self-contained).
I shall introduce a category
• whose objects are concrete data structures, which are kits for assembling
atoms to build data,
• and whose morphisms will be pairs of an ordinary function + a computa-
tion strategy for it.

Old and new : I’ll exhibit an abstract machine describing the composition
of sequential algorithms presented as programs. The machine is inspired
by the operational semantics underpining the language CDS.

New : As an application, I’ll give a new proof of the utlimate obstinacy
theorem (Colson 1989) (my proof follows very much the lines of David’s proof, who

had constructed an ad hoc quite “SA”-like setting for this purpose).
6

Concrete data structures

A concrete data structure (or cds) M = (C, V,E,`) is given by three sets
C, V , andE ⊆ C×V of cells, values, and events, and a relation ` between
finite parts of E and elements of C, called the enabling relation. We write
simply e1, . . . , en ` c for {e1, . . . , en} ` c. A cell c such that ` c is called
initial.

Proofs of cells c are sets of events defined recursively as follows : If c
is initial, then it has an empty proof. If (c1, v1), . . . , (cn, vn) ` c, and
if p1, . . . , pn are proofs of c1, . . . , cn, then p1 ∪ {(c1, v1)} ∪ · · · ∪ pn ∪
{(cn, vn)} is a proof of c.

7

States (or strategies, in the game semantics terminology)

A state is a subset x of E such that :

(1) (c, v1), (c, v2) ∈ x⇒ v1 = v2.

(2) If (c, v) ∈ x, then x contains a proof of c.

The conditions (1) and (2) are called consistency and safety, respectively.

The set of states of a cds M, ordered by set inclusion, is a partial order
denoted by (D(M),≤) (or (D(M),⊆)). If D is isomorphic to D(M), we
say that M generates D.

[D(M) is a Scott domain with additional properties→ Kahn-Plotkin’s representation

theorem.]
8

Some terminology

Let x be a set of events of a cds. A cell c is called :

• filled (with v) in x iff (c, v) ∈ x,

• enabled in x iff x contains an enabling of c,

• accessible from x iff it is enabled, but not filled in x.

We denote by F (x), E(x), and A(x) the sets of cells which are filled,
enabled, and accessible in or from x, respectively. We write :

x ≺c y if c ∈ A(x) and x ∪ {(c, v)} = y

9

Some conditions on cds’s

Let M = (C, V,E,`) be a cds. We define three properties defining sub-
classes of cds’s

(A) M is well-founded : no infinite proofs.

Well-foundedness allows us to reformulate the safety condition as a local condition :
(2′) If (c, v) ∈ x, then x contains an enabling {e1, . . . , en} of c.

(B) M is stable, i.e., for any state x and any cell c, c has at most one
enabling in x.

(C) M is filiform. Every enabling contains at most one event.

We shall always assume that M is well-founded (for convenience) and
stable (essential to make sure that our morphisms induce well-defined
domain-theoretic function). We shall see that the filiform assumption, while
not necessary, allows us to simplify matters greatly.

10

Some examples of cds’s

(1) Flat cpo’s : for any set X we have a cds

X⊥ = ({?},X, {?}×X, {`?}) with D(X⊥) = {∅}∪{(?, x) | x ∈ X}
Typically, we have the flat cpo N⊥ of natural numbers.

(2) λ-calculus (cells as occurrences) :

C = {0,1,2}∗ V = {·} ∪ {x, λx | x ∈ Var} E = C × V
` ε (u, λx) ` u0 (u, ·) ` u1, u2

(3) Pairs of booleans : we have two cells ?.1 and ?.2 (both initial) and
two values T, F , and all possible events. Then

(T, F) = {(?.1, T), (?.2, F)} (F,⊥) = {(?.1, F)} (⊥,⊥) = ∅

(4) A non-stable cds : NS = ({c1, c2, c3}, {1,2}, E, |−), with E = {c1, c2, c3}×{1,2},
` c′1, ` c′2, (c′1,1) ` c′3, and (c′2,1) ` c′3.

11

Key example for this talk : lazy natural numbers

This (filiform) cds has cells c0, . . . , cn, . . . and values 0 or S, with events
(ci,0) and (ci, S), and enablings given by

` c0
(ci, S) ` ci+1

We have

D(NL) = {Sn(⊥) | n ∈ ω} ∪ {Sn(0) | n ∈ ω} ∪ {Sω(⊥)}

which as a partial order is organised as the following tree :

c0


0

S c1


0

S c2

{
0
. . .

or


0

S(⊥)


S(0)

S(S(⊥))
{
S(S(0))
. . .

12

Product of two cds’s

Let M and M′ be two cds’s. We define the product M×M′ = (C, V,E,`)
of M and M′ by :

• C = {c.1 | c ∈ CM} ∪ {c′.2 | c′ ∈ CM′},

• V = VM ∪ VM′,

• E = {(c.1, v) | (c, v) ∈ EM} ∪ {(c′.2, v′) | (c′, v′) ∈ EM′},

• (c1.1, v1), . . . , cn.1, vn) ` c.1 ⇔ (c1, v1), . . . (cn, vn) ` c (and simi-
larly for M′).

Fact : M×M′ generates D(M)×D(M′).
13

Sequential algorithms (preview)

We shall build a category whose objects are cds’s and whose morphisms
are programs of some sort (that can also be equivalently described in a
number of ways). Here is a prototypical sequential algorithm from N⊥×N⊥
to N⊥ (we decorate the output cell as ?′) :

addL = request?′ (from{})valof ?.1is



...

m 7→ valof ?.2 is


...
n 7→ m+ n
...

...

This program specifies a left-to-right algorithm for addition. By interchan-
ging ?.1 and ?.2, we get the right-to-left sequential algorithm for addition.
Both compute the same underlying function.

14

Exponent of two cds’s

If M, M′ are two cds’s, the cds M→M′ is defined as follows :

• If x is a finite state of M and c′ ∈ CM′, then xc′ is a cell of M→M′.

• The values and the events are of two types :

− If c is a cell of M, then valof c is a value of M→M′, and (xc′, valof c)
is an event of M→M′ iff c is accessible from x ;
− if v′ is a value of M′, then output v′ is a value of M → M′, and
(xc′, output v′) is an event of M→M′ iff (c′, v′) is an event of M′.

• The enablings are also of two types :

(yc′, valof c) ` xc′ iff y ≺c x
. . . , (xic

′
i, output v

′
i), . . . ` xc

′ iff x =
⋃
xi and . . . , (c′i, v

′
i), . . . ` c

′

15

The need for the stability condition on cds’s

A state of M → M′ should define a function from D(M) to D(M′), i.e.
from states to states :

x 7→ a•x = {(c′, v′) | ∃ y ≤ x (yc′, output v′) ∈ a}

Consider the following state a in X⊥ → NS (with X = {?}) :

a = {(⊥c′1, output 1), (⊥c′2, valof ?), ({(?, ?)}c′2, output 1),
(⊥c′3, output 1), ({(?, ?)}c′3, output 2)}

Then a•{(?, ?)} is not a state of NS, as it contains (c′3,1) and (c′3,2).

If M′ is stable, then indeed x 7→ a•x : D(M)→ D(M′).

[Moreover, x 7→ a•x is a sequential function, and any sequential function
can be computed by at least one such a.]

16

Example : left addition as a sequential algorithm in state form

addL = {((⊥,⊥)?′, valof ?.1)} ∪
{((m,⊥)?′, valof ?.2) | m ∈ N} ∪
{((m,n)?′, output m+ n) | m,n ∈ N}

But we would like to say that addL, at (⊥, n) = {(?.2, n)}, still wants to
call ?.1. Similarly, for

constant0 = request ?′ output 0 = {(⊥?′, output 0}) (from N⊥ to N⊥)

we woud like to say that constant0, at {(?,m)}, still wants to output 0.

This leads to a more abstract view of sequential algorithms that is sui-
table for a crisp “mathematical” definition of composition of sequential al-
gorithms.

17

Equivalent definitions of sequential algorithms

From the pioneering days, we have 3 equivalent definitions of sequential
algorithms :

1. as states of M→M′

2. (coming next) as abstract algorithms (or as pairs of a function and a
computation strategy for it)

3. (cf. preview) as programs (cf. language CDS)

[For the record, other equivalent definitions :

4. as observably sequential functions (idea due to Cartwright and Felleisen : use
errors to detect how the algorithm explores the data)

5. as bistable and extensionally monotonic functions (Laird)

6. (in the affine case) as a symmetric pair (f, g), where f is function from input
strategies to output strategies and g is a function from output counter-strategies
to input counter-strategies (Curien 1994)]

18

Abstract algorithms

Let M and M′ be cds’s. An abstract algorithm from M to M′ is a partial
function f : D(M)× CM′ ⇀ VM→M′ satisfying the following axioms :

(A1) If f(xc′) = u, then
{

if u = valof c then c ∈ A(x)
if u = output v′ then (c′, v′) ∈ EM′

(A2) If f(xc′) = u, x ≤ y and (yc′, u) ∈ EM→M′, then f(yc′) = u.

(A3) Let f•y = {(c′, v′) | f(yc′) = output v′}. Then :

f(yc′) ↓ ⇒ (c′ ∈ E(f•y) and (z ≤ y and c′ ∈ E(f•z)⇒ f(zc′) ↓)).

Abstract algorithms are ordered by the usual order of extension on partial
functions.

19

Correspondence Sequential algorithms as states
↔

abstract algorithms

Easy : by extension / shrinking of the domain of definition.

Let M and M′ be cds’s. The following define inverse order-isomorphisms :

Let a be a state of M→M′. Let a+ : CM→M′ ⇀ VM→M′ be given by :

a+(xc′) = u iff ∃ y ≤ x (yc′, u) ∈ a and (xc′, u) ∈ EM→M′.

Let f be an abstract algorithm from M to M′. We set :

f− = {(xc′, u) | f(xc′) = u and (y < x⇒ f(yc′) 6= u)}.

20

Sequential algorithms as programs

A sequential algorithm as program is a forest F whose trees T are declared
by the following syntax

T ::= request c′ (from x) U
U ::= valof c is [. . . v 7→ Uv . . .] | output v′

typed as follows :

c ∈ A(x) . . . (x ∪ {(c, v)}, c′) ` Uv . . .

(x, c′) ` valof c is [. . . v 7→ Uv . . .]

(c′, v′) ∈ EM′

(x, c′) ` output v′

We require that each tree request c′ (from x)U ∈ F is such that (x, c′) ` U , that there is
at most one tree beginning with request c′ (from x) in F and that

— if ` c′ then x = ∅ ;
— otherwise there exists an enabling (c′1, v

′
1), . . . , (c

′
n, v
′
n) of c′ and programs requestc′i(fromyi)Ui ∈

F with for each one a leaf (xi, c′i) ` output v′i and x =
⋃
xi.

21

Sequential algorithms as programs : the filiform case

When the output cds is filiform, we can directly graft a tree starting with
request d′, where (c′, v′) ` d′ at the appropriate leaf output v′ of the appro-
priate tree starting with request c′, and doing this systematically results in a
single tree.

22

An example of a sequential algorithm as forest

From pairs of booleans to EX, which has cells c0, c1, c2, values 0,1, and enablings ` c0,
` c1, (c0,1) ` c2 and (c0,0), (c1,0) ` c2) :

request c0 (from {})valof ?.1 is

{
T 7→output 1
F 7→valof ?.2 is

{
F 7→output 0

request c1 (from {}) valof ?.2 is

{
T 7→ output 0
F 7→ output 0

request c2 : (from {(?.1, T)}) valof ?.2 is

{
T 7→ output 0
F 7→ output 0

request c2 : (from {(?.1, F), (?.2, F)}) output 0

23

From state form to program form

This is consequence of (1) in the following

Lemma. The following properties hold (a ∈ D(M→M′), M′ stable) :

(1) If (xc′, u), (zc′, w) ∈ a and x ↑ z, then x ≤ z or z ≤ x ; if x < z, there
exists a chain

x = y0 ≺c0 y1 · · · yn−1 ≺cn−1 yn = z

such that ∀ i < n (yic
′, valof ci) ∈ a. If u and w are of type ‘output’, then

x = z.

(2) The set a•x is a state of M′, for all x ∈ D(M).

(3) For all xc′ ∈ F (a), xc′ has only one enabling in a ; hence M→M′ is
stable.

24

From program form to state form

This is the easy direction (forgetful).

Formally, we can describe the conversion by following the typing rules.

If U appears as a subtree in the forest, with type (x, c′) ` U , then (xc′, u) is an event of

the state associated to the forest, where U = u

25

Where are we ?

We have defined :

• our mathematical structures : concrete data structures

• our morphisms sequential algorithms (presented under three different,
equivalent disguises)

We have done little : we need to say how we compose them to make a
category ! Concentrate !

26

Composing sequential algorithms

The format of states is not appropriate for defining composition.

• In my PhD work (1979), I described a (function-like) composition using
the presentation as abstract algorithms (next slide).

• I’ll present also the composition of sequential algorithms as programs in
the form of an abstract machine (inspired by the operational semantics for
CDS which I had designed in 1981).

27

Composing abstract algorithms

Let M, M′ and M′′ be cds’s, and let f and f ′ be two abstract algorithms
from M to M′ and from M′ to M′′, respectively. The function g, defined as
follows, is an abstract algorithm from M to M′′ :

g(xc′′) =


output v′′ if f ′((f•x)c′′) = output v′′

valof c if
{
f ′((f•x)c′′) = valof c′ and
f(xc′) = valof c .

28

Composing sequential algorithms as programs : preparations

For simplicity, we restrict ourselves to filiform cds’s.

Let F and F ′ be sequential algorithms as programs (and hence in tree form
by the filiform assumption) from M to M′ and from M′ to M′′.

The abstract machine builds any branch of the composition F ′ ◦ F , by
• exploring a branch of F ′

• and interactively interrogating F upon need, through its abstract algo-
rithm version (for which a small abstract machine on the side can be used – see slide
30 for details).

Machine states are triples

(q′′, q′, y) where


q′′ is the branch of F ′ ◦ F being constructed
q′ is the branch induced in F ′

y is the knowledge about the input in M
acquired as computation proceeds

29

Abstract machine for composition (filiform case)

q′ valof c′ ∈ F ′ F+(y, c′) = valof c (c, v) ∈ EM

(q′′, q′, y)
valof c−→ (q′′ valof c is v, q′, y ∪ {(c, v)})

q′ valof c′ ∈ F ′ F+(y, c′) = output v′

(q′′, q′, y) −→ (q′′, q′ valof c′ is v′, y)

q′ output v′′ ∈ F ′ [d′′ ∈ A(q′′ output v′′)]

(q′′, q′, y)
output v′′−→ [(q′′ output v′′ request d′′, q′ output v′′ request d′′, y)]

• The notation A (accessible), E, F , is easily tailored to be applied to branches.
• In the last rule, [. . .] means optional : the machine could stop right after outputing v” if
there is no more accessible cell d” for which to issue a further request.

30

The general non filiform case : some preparations

We need to do some book-keeping in order to forward new requests request d′′ to the
appropriate tree of the forest F ′, updating appropriately our knowledge of the input in M.

Machine states are of two forms : (σ′′, σ′), and (q′′, σ′′, q′, σ′, y), (σ′′ (resp. σ′) is a partial
function recording a state of M′ (resp. M) associated to a path of F ′′ (resp. F ′).

If q′ is an odd-length path of F ′, then val (q′) is defined as follows

val (request c′′ (from x′)) = x′ val (q′ valof c′ is v′) = val (q′) ∪ {(c′, v′)}
The following is an algorithmic analogue of a+. We set F+(x, c′) = u if the following
device outputs u :

request c′ (from y) U ∈ F y ≤ x
−→ U

U = output v′

U
output v′−→

U = valof c is [. . . v 7→ Uv . . .] (c, v) ∈ x
U −→ Uv

U = valof c is [. . . v 7→ Uv . . .] c ∈ A(x)

U
valof c−→

31

Abstract machine (for general stable cds’s)

(c′′1, v
′′
1), . . . (c

′′
n, v
′′
n) ` c′′

. . . (request c′′i (from yi) . . . output v′′i , z
′
i) ∈ σ′′ (with (xi, c′′) ` output v′′i) . . .

. . . (request c′′i (from y′i) . . . output v
′′
i , yi) ∈ σ′ (with y′i ≤

⋃
z′j, (x

′
i, c
′′) ` output v′′i) . . .

(σ′′, σ′) −→ (request c′′ (from
⋃
xi), σ′′, request c′′ (from

⋃
x′i), σ

′,
⋃
yi)

q′ output v′′ ∈ F ′

(q′′, σ′′, q′, σ′, y)
q′′ output v′′−→ (σ′′ ∪ {(q′′ output v′′, val (q′)}, σ′ ∪ {(q′output v′′, y)})

q′ valof c′ ∈ F ′ F+(y, c′) = valof c

(q′′, σ′′, q′, σ′, y)
q′′valof c−→ (q′′ valof c is v, σ′′, q′, σ′, y ∪ {(c, v)})

q′ valof c′ ∈ F ′ F+(y, c′) = output v′

(q′′, σ′′, q′, σ′, y) −→ (q′′, σ′′, q′ valof c′ is v′, σ′, y)

32

Primitive recursive program schemes (p.r.s.)

Primitive recursive program schemes are defined as formal terms genera-
ted as follows :

(i) λ~x.0 is a p.r.s. of arity n (where n is the length of ~x) ;

(ii) S is a p.r.s. of arity 1 ;

(iii) πni is a p.r.s. of arity n (for all i, n s.t. 1 ≤ i ≤ n) ;

(iv) if f is a p.r.s. of arity n and if g1, . . . , gn are p.r.s.’s of arity m then
h = f ◦ 〈~g〉 is a p.r.s. of arity m ;

(v) if g, h are p.r.s.’s of arities n, n+ 2, respectively, then rec(g, h) is a
p.r.s. of arity n+1.

33

Function associated with a p.r.s.

Every p.r.s. f of arity m defines a function [f] from Nm to N.

All cases but rec are pretty obvious (constant 0, successor, projection, tu-
pling and composition). The meaning of rec(g, h) is given as follows (pri-
mitive recursion !) :

rec(g, h)(0, ~y) = g(~y)
rec(g, h)(Sx, ~y) = h(x, rec(g, h)(x, ~y), ~y)

34

Sequential algorithm associated with a p.r.s.

Proposition. Every p.r.s. f of arity m gives rise to a sequential algorithm
[[f]] from (NL)

m to NL, in such a way that we always have

[[f]]•(Sn1(0), . . . , Snm(0)) = [f](n1, . . . , nm)

As before, we label the output (resp. i-th input) cells as c′n (resp. cn.i).

We define [[f]] by induction. For the case (iv), we use composition of se-
quential algorithms, and tupling (easy, omitted). We detail all other cases
in the next two slides :

- We define [[λ~x.0]], [[S]] and [[πi]] as programs.

- We give the definition of [[rec(f, g)]], using abstract algorithms. [Exten-
ding the abstract machine to cover primitive recursion is work in progress.]

35

The s.a.’s for constant 0, successor, and projections

[[λ~x.0]] = request c′0 output 0

[[S]] = request c′0 output S request c′1 valof c0 is
0 7→ output 0

S 7→ output S request c′2 valof c1 is

{
0 7→ output 0
. . .

[[πi]] = request c′0 valof c0.i is

{
0 7→ output 0
S 7→ output S request c′1 valof c1.i . . .

Preparation for the primitive recursion :
• Since in a finite state x of D(NL) at most one cell is enabled, we can
dispense with the c′ component in [[rec(f, g)]](xc′).
•We shall write f(x, ~y) for [[f]]•(x, ~y).

36

Primitive recursion as a sequential algorithm (f = rec(g, h))

[[g]](~y) = w

[[f]](0, ~y) = w

[[h]](x, f(x, ~y), ~y) = output v′

[[f]](Sx, ~y) = output v′

[[h]](x, f(x, ~y), ~y) = valof ci.1

[[f]](Sx, ~y) = valof ci+1.1

[[h]](x, f(x, ~y), ~y) = valof ci.n (n ≥ 3)

[[f]](Sx, ~y) = valof ci.(n− 1)

[[h]](x, f(x, ~y), ~y) = valof ci.2 [[f]](x, ~y) = output v′

[[f]](Sx, ~y) = output v′

[[h]](x, f(x, ~y), ~y) = valof ci.2 [[f]](x, ~y) = valof cj.1

[[f]](Sx, ~y) = valof cj+1.1

[[h]](x, f(x, ~y), ~y) = valof ci.2 [[f]](x, ~y) = valof cj.n (n ≥ 2)

[[f]](Sx, ~y) = valof cj.n

37

An algorithm that is not primitive recursive

Consider the following (total) recursive definition for computing the mini-
mum of two natural numbers :

min(Sm,Sn) = min(m,n) + 1
min(0, n) = 0
min(m,0) = 0

Interpreted as a sequential algorithm [[min]] from NL × NL to NL , this
program has the following behaviour : it calls each of its two arguments an
unbounded number of times. This can be made crisp by considering the
infinite branch in [[min]] induced by the computation of

min•(Sω(⊥), Sω(⊥))
This infinite branch contains an infinite numbers of calls to the first argu-
ment of min and an infinite number of calls to its second argument.

Colson’s ultimate obstinacy theorem (next slide) says that such a behaviour
cannot be otained with a p.r.s. .

38

Colson’s ultimate obstinacy theorem

We consider [[f]] in program form.

Theorem. Let f be a r.p.s.. of arity n. Than all infinite branches q in [[f]]

are such that, for i ∈ {1, . . . n} fixed, {n | valof cn.i occurs in q} is finite,
except for a unique i0 (the obstinate sequentiality index !).

In other words, from a certain point on, any infinite branch q is an interlea-
ving of an infinite sequence

valof cp.i0 is vp valof cp+1.i0 . . . valof cp+q.i0 is vp+q . . .

and a finite or infinite sequence

request c′r output v
′
r . . . request c

′
r+s . . .

39

Sketch of proof of ultimate obstinacy (f ◦ 〈~g〉)

Let q′′ be an infinite branch of [[f ◦ 〈~g〉]]. Its construction induces the
construction of a branch q′ of [[f]]. There are two cases :

(1) q′ is finite, and then must end with a valof c′p.i. Then the infiniteness
of q′′ is fed exclusively by a (thus infinite) branch of [[gi]], trying to answer
the request for c′p. Obstinacy follows from that of [[gi]].

(2) q′ is infinite. Then the obstinacy of [[f]] induces an infinite branch in
[[gi0]], whose obstinacy in turn yields the obstinacy of q′′.

40

Sketch of proof of ultimate obstinacy (f = rec(g, h))

Let q′ be an infinite branch of [[f]]. Its construction involves the construction
of branches qh of [[h]] and qg of [[g]] (both possibly empty). There are two
cases :

(1) qh is finite. Then the infiniteness of q′ must be fed ultimately only from
[[g]]. Hence obstinacy follows from that of [[g]].

(2) qh is infinite. By induction, there is an obstinate index i0 in qh.
— If i0 6= 2, then no recursive calls are made anymore and the ulti-

mate obstinacy of q′ follows from that of [[h]].
— If qh is infinite and i0 = 2, then there is an infinite cascade of recur-

sive calls, inducing in lock-step

valof cr.1 is vr valof cr+1.1 . . . valof cr+s.1 is vr+s . . . (in q′)
from
valof cp.2 is vp valof cp+1.2 . . . valof cp+q.2 is vp+q . . . (in qh)

41

