Sequential algorithms (old and new)

Pierre-Louis Curien

(CNRS — Paris 7 — INRIA)

LAP 2015, 21-25/9/2015, Dubrovnik

8/5/2015, Ruanjiansuo, Beijing, 7/5/2015, Jiaoda, Shanghai,
and 11/4/2015, Galop workshop, London

Prologue : denotational and operational semantics

Given a a (piece of) typed program M written in some programming lan-
guage, we want to understand its meaning.

e The denotational approach associates some mathematical structure to
the type of M, and a suitable morphism [[AM] to M. [Typically, continuous
functions between complete partial orders (cpo’s).]

e The operational approach specifies formal rules of execution (a machine,
a rewriting system,. . .) leading to observable results, which one can see as
experiments.

e The two approaches induce each a notion of equivalence :

M =,, N iff [M] =|[NI]
C[M] —* v
M =, N iff there is no context C[] s.t. ¢ C[N] —* w
and v = w

When these two equalities are the same, the (denotational) model is called
fully abstract (FA).

Complete partial orders through a key (even the founding) example

Consider the set N of natural numbers, and the set PF' of partial functions
from N to N.

e PI' has the structure of a partial order : f < g iff whenever f is defined
(notation f), g is also defined and has the same value. [Information order]

e There is a minimum element L : the nowhere defined partial function.
[Diverging computation]

e Every increasing chain has a least upper bound [Useful to give meaning
to programs defined by general recursive equations]

A few dates : the old days

e Triggered by the full abstraction problem for PCF (a typed A-calculus with
arithmetical functions, conditionals and recursion), and building on Kahn-
Plotkin’s notion of sequential functions between (domains generated by)
concrete data structures (called information matrices in their original work),
Berry and Curien proposed a cartesian closed category of

sequential algorithms (1979) (SA in the sequel)

(first category in denotational semantics with morphisms that were not
functions, but programs of some sort).

e This led to the design of the programming language CDS (early 1980’s :
Berry, Curien, Devin, Ressouche, Montagnac). The development of this
language did not survive the 1980’s...

e The model SA was shown not to be amenable to a FA model of PCF.
Counter-examples to definability were exhibited in my These d’Etat (1983).
But...

4

A few dates : revisitations

e The model SA was shown to be FA for PCF plus a form of control operator
(catch) (Curien, Cartwright, Felleisen 1992).
As part of this work, SA’s were recovered as observably sequential functions.

e The functions spaces of SA (for its full subcategory of sequential data structures) was
shown to be decomposable as S — S’ = (1S5) — S’ (Lamarche 1992, Curien 1994).
[This exponential is to the one of McCusker (1996) for HO games what the set-based
exponential of coherence spaces is to its multiset version.]

e The last revisitation was the link with Laird’s bistability (Curien 2009).

e Related works : Bucciarelli and Ehrhard’s strong stability, Kleene’s unimonotone func-

tions, Longley’s sequentially realisable functionals,. ..

This talk

Old : I shall recall the sequential algorithms “of the old days” (self-contained).
| shall introduce a category

e Whose objects are concrete data structures, which are kits for assembling
atoms to build data,

e and whose morphisms will be pairs of an ordinary function + a computa-
tion strategy for it.

Old and new : I'll exhibit an abstract machine describing the composition
of sequential algorithms presented as programs. The machine is inspired
by the operational semantics underpining the language CDS.

New : As an application, I'll give a new proof of the utlimate obstinacy
theorem (Colson 1989) (my proof follows very much the lines of David’s proof, who
had constructed an ad hoc quite “SA”-like setting for this purpose).

Concrete data structures

A concrete data structure (or cds) M = (C, V, E,+) is given by three sets
C,V,and E C CxV of cells, values, and events, and a relation - between
finite parts of E and elements of C, called the enabling relation. We write
simply e1,...,en - cfor {eq1,...,en} - c. A cell ¢ such that - c is called
initial.

Proofs of cells ¢ are sets of events defined recursively as follows : If ¢
is initial, then it has an empty proof. If (¢1,v1),...,(cn,vn) F ¢, and
if p1,...,pn are proofs of cq,...,cp, then p; U {(c1,v1)} U --- Upp U
{(cn,vn)} is a proof of c.

States (or strategies, in the game semantics terminology)

A state is a subset = of F such that :

(1) (c,v1),(c,v2) € x = v1 = vo.
(2) If (¢,v) € x, then z contains a proof of c.

The conditions (1) and (2) are called consistency and safety, respectively.

The set of states of a cds M, ordered by set inclusion, is a partial order
denoted by (D(M), <) (or (D(M), ©)). If D is isomorphic to D(M), we
say that M generates D.

[D(M) is a Scott domain with additional properties — Kahn-Plotkin’s representation
theorem.]

Some terminology

Let = be a set of events of a cds. A cell cis called :

o filled (with v) in z iff (¢, v) € z,

e ecnabled in x iff x contains an enabling of ¢,

e accessible from zx iff it is enabled, but not filled in x.

We denote by F'(x), E(x), and A(x) the sets of cells which are filled,
enabled, and accessible in or from x, respectively. We write :

x<cy If ceA(zx)andz U {(c,v)} =1y

Some conditions on cds’s

Let M = (C,V, E,-) be a cds. We define three properties defining sub-
classes of cds’s

(A) M is well-founded : no infinite proofs.

Well-foundedness allows us to reformulate the safety condition as a local condition :
(2") If (¢,v) € x, then x contains an enabling {e1,...,e,} of c.

(B) M is stable, i.e., for any state and any cell ¢, ¢ has at most one
enabling in .

(C) M is filiform. Every enabling contains at most one event.

We shall always assume that M is well-founded (for convenience) and
stable (essential to make sure that our morphisms induce well-defined
domain-theoretic function). We shall see that the filiform assumption, while
not necessary, allows us to simplify matters greatly.

10

Some examples of cds’s

(1) Flat cpo’s : for any set X we have a cds
X1 ={7hHX {7 xX,{F7}) with D(X) = {0}u{(?,z) | z € X}
Typically, we have the flat cpo N | of natural numbers.

(2) A-calculus (cells as occurrences) :

C ={0,1,2} V={}u{z,e|xze€ Var} E=CxV
- € (u, Ax) F 10 (u,-) Ful,u2

(3) Pairs of booleans : we have two cells 7.1 and 7.2 (both initial) and
two values T', F', and all possible events. Then

(T,F) = {(?.1,7),(?.2,F)} (F,1)={(?.1,F)} (L, 1)=0

(4) A non-stable cds : NS = ({61,62,03}, {1,2},E, ‘—), with £ = {61,62,(33} X {1,2},

-, F e, (), 1) Fds,and (), 1) F <.
11

Key example for this talk : lazy natural numbers

This (filiform) cds has cells cg, ..., cn,... and values O or S, with events
(¢;,0) and (¢;, S), and enablings given by

= co

(i, S) Fcigq

We have

D(Np) ={5"(L) [n € w} U{5"(0) [n € w} U{S¥(L)}

which as a partial order is organised as the following tree :

0 or
CO ¢ S cq SCQ{O
\

\

i

0

S {

S(0)

S(S(L)) { S(S(0))

12

Product of two cds’s

Let M and M’ be two cds’s. We define the product M x M’ = (C,V, E,I-)
of M and M’ by :

e C={cl|ceCpq}U{d.2]|d e},
o V="V U Vi,
o £E={(c1,v)]| (c,v) € Epjt U{(c.2,v") | (,v) € Eppl,

e (c1.1,v1),...,cn.1,vp) F c.1 & (c1,v1),...(cn,vn) F ¢ (and simi-
larly for M).

Fact : M x M’ generates D(M) x D(M/).

13

Sequential algorithms (preview)

We shall build a category whose objects are cds’s and whose morphisms
are programs of some sort (that can also be equivalently described in a
number of ways). Here is a prototypical sequential algorithm from N ;| x N |
to N | (we decorate the output cell as ?/) :

i

addy = request?’ (from{})valof?.1is { m + valof 7.21is { n+—m+n

This program specifies a left-to-right algorithm for addition. By interchan-
ging 7.1 and 7.2, we get the right-to-left sequential algorithm for addition.
Both compute the same underlying function.

14

Exponent of two cds’s

If M, M’ are two cds’s, the cds M — M’ is defined as follows :
e If zis afinite state of M and ¢’ € Cyy, then ¢’ is a cell of M — M.
e The values and the events are of two types :

— If cis a cell of M, then valof cis a value of M — M/, and (zc’, valof ¢)
is an event of M — M iff ¢ is accessible from « ;
— if v' is a value of M/, then output v’ is a value of M — M/, and

(zc, output v") is an event of M — M iff (¢/,v’) is an event of M.

e The enablings are also of two types :

(yc', valof ¢) + zc iff y<cx
ooy (zid, output v)), ... ad iff x=Uzyand ..., (c,v)),. .. F

15

The need for the stability condition on cds’s
A state of M — M’ should define a function from D(M) to D(M’), i.e.
from states to states:

z— acx = {(,V) | Ty <z (yc, output v) € a}

Consider the following state a in X — NS (with X = {x}) :

a = {(Lcy,output 1), (L, valof 7), ({(7,%)}ch, output 1),
(Lcg, output 1), ({(?7, %)}, output 2)}

Then ae{(7?,x)} is not a state of NS, as it contains (¢, 1) and (5, 2).
If M’ is stable, then indeed = > aex : D(M) — D(M).

[Moreover, x — aex is a sequential function, and any sequential function
can be computed by at least one such a.]

16

Example : left addition as a sequential algorithm in state form

add;, = {((L, L)? valof ?2.1)} U
{((m, L)?", valof ?7.2) | m € N} U
{((m,n)?, output m +n) | m,n € N}

But we would like to say that add;, at (L,n) = {(7.2,n)}, still wants to
call 7.1. Similarly, for

constantg = request 7' output 0 = {(L7?', output 0}) (from N | to N |)

we woud like to say that constantq, at {(7, m)}, still wants to output O.

This leads to a more abstract view of sequential algorithms that is sui-
table for a crisp “mathematical”’ definition of composition of sequential al-
gorithms.

17

Equivalent definitions of sequential algorithms

From the pioneering days, we have 3 equivalent definitions of sequential
algorithms :

1. as states of M — M’

2. (coming next) as abstract algorithms (or as pairs of a function and a
computation strategy for it)

3. (cf. preview) as programs (cf. language CDS)

[For the record, other equivalent definitions :

4. as observably sequential functions (idea due to Cartwright and Felleisen : use
errors to detect how the algorithm explores the data)

5. as bistable and extensionally monotonic functions (Laird)

6. (in the affine case) as a symmetric pair (f, g), where f is function from input
strategies to output strategies and g is a function from output counter-strategies
to input counter-strategies (Curien 1994)]

18

Abstract algorithms

Let M and M’ be cds’s. An abstract algorithm from M to M’ is a partial
function f : D(M) x Cppy — Vym_mr Satisfying the following axioms :

N if u = valof cthen c € A(x)
(A1) I f(2c’) = u, then { if u = output v’ then (d',v') € Emp

(A2) If f(zd) = u, x <yand (y,u) € Enmr, then f(yd) = w.

(Asz) Let foy = {(d,v") | f(ycd) = output v'}. Then :
flyd) L = (€ E(fey) and (2 <yand ¢ € E(fez) = f(zc) |)).

Abstract algorithms are ordered by the usual order of extension on partial
functions.

19

Correspondence Sequential algorithms as states
<
abstract algorithms

Easy : by extension / shrinking of the domain of definition.
Let M and M’ be cds’s. The following define inverse order-isomorphisms :

Let a be a state of M — M. Let a™ : Cpy_ar — Vi b€ given by

at(zd) =w iff 3y <z (yd,u) € aand (zc,u) € ISV ERNE

Let f be an abstract algorithm from M to M’. We set :
fm =A@, u) | f(z) =uand (y <z = f(yc) # u)}.

20

Sequential algorithms as programs
A sequential algorithm as program is a forest ' whose trees T" are declared
by the following syntax

T .
U ::

request ¢’ (from) U
valof cis [...v+— Uy...] | output v’

typed as follows :

ce A(x) ...(xU{(c,v)},) U,...

(Clavl) € Ewr
(z,d) Fwalof cis[...v—U,...]

(z,d) F output v’

We require that each tree request ¢’ (from x) U € F'is such that (z,) - U, that there is
at most one tree beginning with request ¢’ (from x) in F' and that
— ifFcthenz =0;
— otherwise there exists an enabling (¢}, v}), ..., (c,,v)

/., v;,) of ¢ and programs requestc; (fromy;
F with for each one a leaf (x;, ¢}) - output v, and x = | z.

21

Sequential algorithms as programs : the filiform case

When the output cds is filiform, we can directly graft a tree starting with
request d’, where (c’,v") + d’ at the appropriate leaf output v’ of the appro-
priate tree starting with request ¢/, and doing this systematically results in a
single tree.

22

An example of a sequential algorithm as forest

From pairs of booleans to EX, which has cells cg, c1, ¢, values 0, 1, and enablings F co,
- C1, (COa 1) - Cc2 and (COa 0)7 (Cla O) = 02) .

, T — output 1
?
request co (from {})valof 7.1 is { F s valof 7.2 is { F > output O
. T — output O
?
request c1 (from {}) valof 7.2 is F — output O
T — output O

request cp : (from {(?.1,T)}) valof 7.2 is F > output O
request cp : (from {(?.1, F), (7.2, F)}) output O

23

From state form to program form

This is consequence of (1) in the following

Lemma. The following properties hold (e € D(M — M'), M’ stable) :

(1) If (xc,u),(zcd,w) €aandxz t 2z, thenz < zorz < z;ifx < z, there
exists a chain

T =190 <co Y1 " Yn—1 <cp_1 Yn = 2

such that Vi < n (y;c, valof ¢;) € a. If w and w are of type ‘output’, then
T = z.

(2) The set aez is a state of M/, for all z € D(M).

(3) Forall z¢' € F(a), zc' has only one enabling in a ; hence M — M’ is
stable.

24

From program form to state form

This is the easy direction (forgetful).

Formally, we can describe the conversion by following the typing rules.

If U appears as a subtree in the forest, with type (x,) - U, then (xc’, u) is an event of
the state associated to the forest, where U = u

25

Where are we ?

We have defined :

e our mathematical structures : concrete data structures

e our morphisms sequential algorithms (presented under three different,
equivalent disguises)

We have done little : we need to say how we compose them to make a
category ! Concentrate !

26

Composing sequential algorithms
The format of states is not appropriate for defining composition.

e In my PhD work (1979), | described a (function-like) composition using
the presentation as abstract algorithms (next slide).

e |'ll present also the composition of sequential algorithms as programs in
the form of an abstract machine (inspired by the operational semantics for
CDS which | had designed in 1981).

27

Composing abstract algorithms

Let M, M’ and M” be cds’s, and let f and f’ be two abstract algorithms
from M to M’ and from M’ to M, respectively. The function g, defined as
follows, is an abstract algorithm from M to M" :

p

output "' if f/((fex)") = output v

o) = valof c { f'((fex)d") = walof ¢’ and
f(zc") = wvalof c.

28

Composing sequential algorithms as programs : preparations
For simplicity, we restrict ourselves to filiform cds’s.

Let I" and F’ be sequential algorithms as programs (and hence in tree form
by the filiform assumption) from M to M’ and from M’ to M"”.

The abstract machine builds any branch of the composition F’ o F', by

e exploring a branch of F’

e and interactively interrogating F' upon need, through its abstract algo-
rithm version (for which a small abstract machine on the side can be used — see slide
30 for details).

Machine states are triples

(¢"" is the branch of F’ o ' being constructed

q' is the branch induced in F’

y is the knowledge about the input in M
acquired as computation proceeds

(¢",q',y) where [

\

29

Abstract machine for composition (filiform case)

¢ valof ¢ € F'' Ft(y,d) = valof ¢ (c,v) € En

[
valof ¢

(¢",d,v) (¢" valof cisv, ¢,y U{(c,v)})

q valof ¢ € F’ Ft(y,d) = output v’
(q",d,y) — (¢",q" valof c"is v, y)

q output " € F' [d" € A(q" output v'")]

output v'’

(d". 4, v) — [(q" output v" request d", q' output v" request d”,vy)]

e The notation A (accessible), E, F, is easily tailored to be applied to branches.
e In the last rule, [...] means optional : the machine could stop right after outputing v” if
there is no more accessible cell d” for which to issue a further request.

30

The general non filiform case : some preparations

We need to do some book-keeping in order to forward new requests request d” to the
appropriate tree of the forest I, updating appropriately our knowledge of the input in M.

Machine states are of two forms : (¢, ¢’), and (¢”, o, 4, o', vy), (¢” (resp. o’) is a partial
function recording a state of M’ (resp. M) associated to a path of F (resp. F").

If ¢’ is an odd-length path of F’, then val (¢’) is defined as follows
val (request ¢’ (from z')) = val (¢' valof ¢ isv") = val (¢') U {(c,v)}

The following is an algorithmic analogue of a™. We set F™(x,c) = wu if the following
device outputs u :

request ¢ (fromy) U € FF y<cx U = output v/
U [y ouu v
U =valof cis[...v—U,...] (¢,v) € U=walof cis[...v—U,...] c€ A(x)
U—s U, Rl

31

Abstract machine (for general stable cds’s)

(], o)), ... (L, vl) ="

(request c! (fromy;) ... output v/, z)) € o’ (with (z;, ") F output v’) . ..

z’z

. (request ¢! (fromy!) ... output v/ y;) € o’ (with i <)2}, (zf, ") F output v)) ...
2 1 1 1] 1 1

o, 0"y — (request " (from | Jx;),c”, request " (from |)z!), o', | Jy:)
1
q output v" € F’

T eunyty (" U{(q" output v",val (¢')}, 0" U{(q output v",y)})

q valof ¢ € F' F*(y,c) = valof ¢

(¢",0",4,0',y)

"val :
(", 0", d, o' y) "L (¢ walof cisv, ", ¢, 0"y U{(c,v)})

q valof ¢ € F' FT(y,c) = output v’

(q”7 OJ,? q/7 0-/7 y) —> (q//7 OJ,? q/ /UGJZOf C/ /I:S ,U/7 0-/7 y)

32

Primitive recursive program schemes (p.r.s.)

Primitive recursive program schemes are defined as formal terms genera-
ted as follows :

(¢) AZ.0 is a p.r.s. of arity n (where n is the length of &) ;
(is) Sisap.rs.ofarity 1;
(737) 7V isap.r.s.of arity n (foralli,n s.t. 1 < i < n);

1

(v) if fis a p.r.s. of arity n and if g1, ..., gn are p.r.s’s of arity m then
h = fo(g)isap.r.s. of arity m;

(v) if g, h are p.r.s’s of arities n,n + 2, respectively, then rec(g, h) is a
p.r.s. of arity n 4 1.

33

Function associated with a p.r.s.
Every p.r.s. f of arity m defines a function [f] from N™ to N.

All cases but rec are pretty obvious (constant O, successor, projection, tu-
pling and composition). The meaning of rec(g, h) is given as follows (pri-
mitive recursion!) :

rec(g, h)(0,%) = g(¥)
7’66(9, h)(SQZ‘, g) — h($7 T@C(g, h)(il?, g)a g)

34

Sequential algorithm associated with a p.r.s.

Proposition. Every p.r.s. f of arity m gives rise to a sequential algorithm
/1 from (IN;)™ to N, in such a way that we always have

[f1+(5"1(0),...,8"(0)) = [fl(n1,...,nm)

As before, we label the output (resp. i-th input) cells as ¢, (resp. cp.1).

We define [f]] by induction. For the case (iv), we use composition of se-
quential algorithms, and tupling (easy, omitted). We detail all other cases
in the next two slides :

- We define [AZ.0]], [[S] and [[=;]] as programs.

- We give the definition of [[rec(f, g)]], using abstract algorithms. [Exten-
ding the abstract machine to cover primitive recursion is work in progress.]

35

The s.a.’s for constant O, successor, and projections

[AZ.0] = request cp output O

[S] = request ch output S request ¢y valof cqg is
0 1 0
0 — output O

S — output S request c5 valof cq is { O — output O

[7;] = request cg valof cq.i is O = oufput O p .
S+ output S request ¢y valof c1.% ...

Preparation for the primitive recursion :
e Since in a finite state x of D(IN;) at most one cell is enabled, we can
dispense with the ¢’ component in [[rec(f, g)] (zc).

e We shall write f(x,v) for [f]*(x,).
36

Primitive recursion as a sequential algorithm (f = rec(g, h))

L9l (¥) = w (Rl (z, f(x,%),5) = output '
[/1(0,9) =w [f1(Sz,v) = output v’
[Pl (z, f(x,%),y) = valof ¢;.1 [R](z, f(z,¥),y) = valof c;n (n > 3)
Lf1(Sz,y) = valof c¢;41.1 Lf1(Sz,%) = valof ¢;.(n — 1)

[G, £,), 5) = valof .2 [f1 (e) = output of
[f1(Sz,v) = output v’

[h](z, £ (., §), §) = valof ;.2 [f1(z,5) = valof ¢j.1
[F1(Sx, §) = valof ¢j41.1

[0 (e, f (e 9).9) = valof ;2 [f)(z.) = valof ¢j.n (n > 2)
[f1(Sz,) = valof cj.n

37

An algorithm that is not primitive recursive

Consider the following (total) recursive definition for computing the mini-
mum of two natural numbers :

min(Sm, Sn) = min(m,n) + 1

min(0,n) =0

min(m,0) =0
Interpreted as a sequential algorithm [min] from N; x N to N , this
program has the following behaviour : it calls each of its two arguments an

unbounded number of times. This can be made crisp by considering the
infinite branch in [min]] induced by the computation of

mine(S“(L), SY(L))

This infinite branch contains an infinite numbers of calls to the first argu-
ment of min and an infinite number of calls to its second argument.

Colson’s ultimate obstinacy theorem (next slide) says that such a behaviour
cannot be otained with a p.r.s. .

38

Colson’s ultimate obstinacy theorem
We consider [[f] in program form.

Theorem. Let f be a r.p.s.. of arity n. Than all infinite branches ¢ in [f]]
are such that, for i € {1,...n} fixed, {n | valof cn.i occursin g} is finite,
except for a unique ig (the obstinate sequentiality index !).

In other words, from a certain point on, any infinite branch q is an interlea-
ving of an infinite sequence

valof cp.ig 18 vp valof cpy1.50 ... valof cpyq.50 18 Vpyq - - -

and a finite or infinite sequence

request c;a output fu,f, ... request c,’r+8 -

39

Sketch of proof of ultimate obstinacy (f o (7))

Let ¢ be an infinite branch of [f o (§)]. Its construction induces the
construction of a branch ¢’ of [f]]. There are two cases :

(1) ¢’ is finite, and then must end with a valof c;.i. Then the infiniteness
of ¢"" is fed exclusively by a (thus infinite) branch of [[g;], trying to answer
the request for ¢;,. Obstinacy follows from that of [g;].

(2) ' is infinite. Then the obstinacy of [f]] induces an infinite branch in
[9:,], whose obstinacy in turn yields the obstinacy of ¢”.

40

Sketch of proof of ultimate obstinacy (f = rec(g, h))

Let ¢’ be an infinite branch of [f]. Its construction involves the construction
of branches g;, of [h] and ¢4 of [g]] (both possibly empty). There are two
cases :

(1) g, is finite. Then the infiniteness of ¢’ must be fed ultimately only from
[g]. Hence obstinacy follows from that of [g].

(2) gy, is infinite. By induction, there is an obstinate index ig in gy,.
— If 29 # 2, then no recursive calls are made anymore and the ulti-

mate obstinacy of ¢’ follows from that of [A].
— If g5, is Infinite and ig = 2, then there is an infinite cascade of recur-
sive calls, inducing in lock-step

valof ¢r.1is vr valof c,41.1 ... valof ¢,y g.1isv.4s ... (ing')
from

valof cp.2 is vp valof cpy 1.2 ... valof cppq-2 5 vp4y ... (iNqp)
41

