

THE ARX STRUCTURE OF π -CIPHER

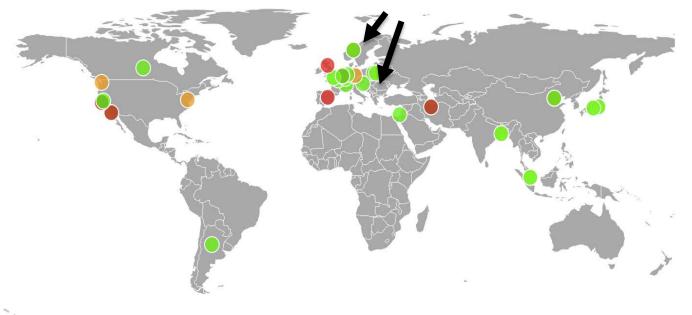
Hristina Mihajloska FCSE, UKIM, Macedonia Danilo Gligoroski ITEM, NTNU, Norway <u>Simona Samardjiska</u> FCSE, UKIM, Macedonia

simona.samardjiska@finki.ukim.mk

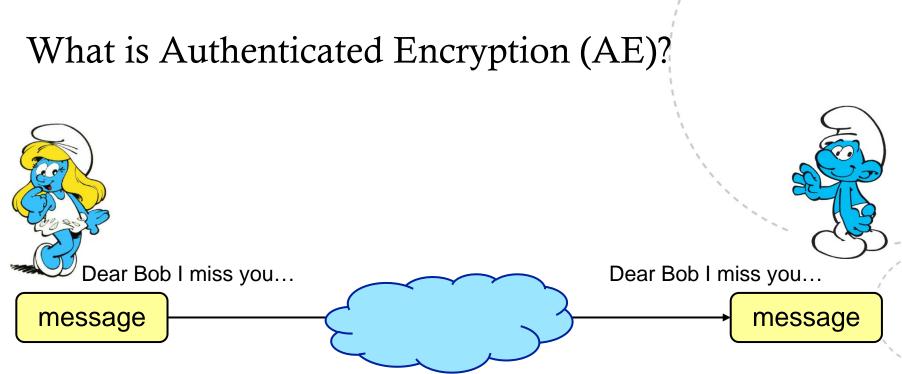
CAESAR = Competition for Authenticated Encryption: *Security Applicability* and *Robustness*

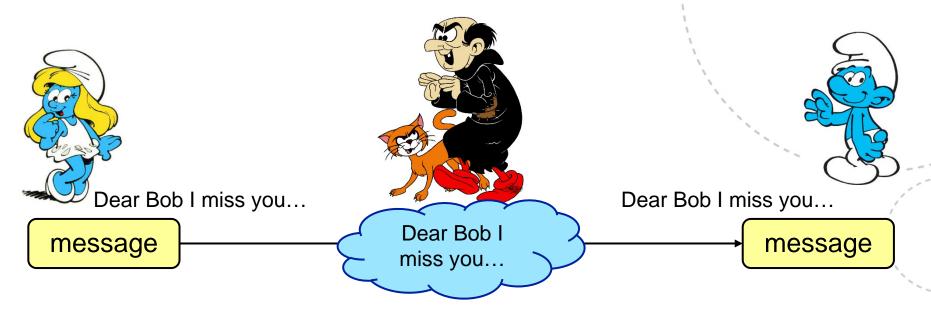
- Will identify a portfolio of authenticated ciphers that
 - offer advantages over AES-GCM
 - are suitable for widespread adoption

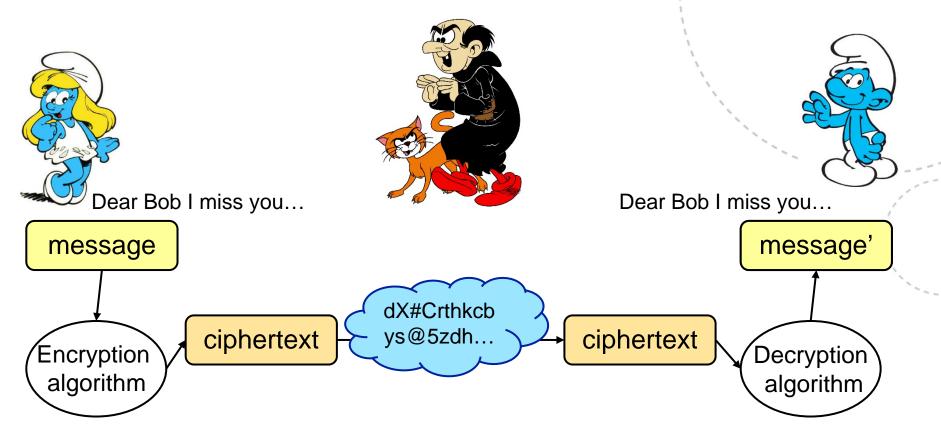
- Follows a long tradition of focused competitions in symmetric-key cryptography
- Currently 2 round
 - 29 candidates remaining

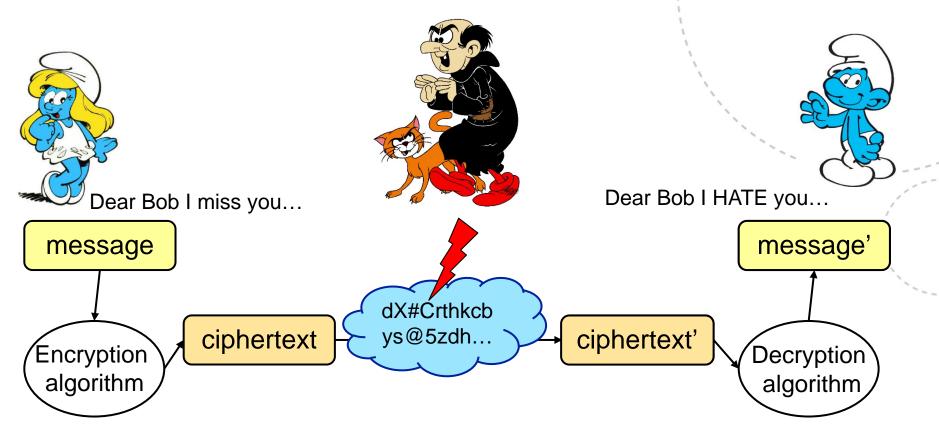


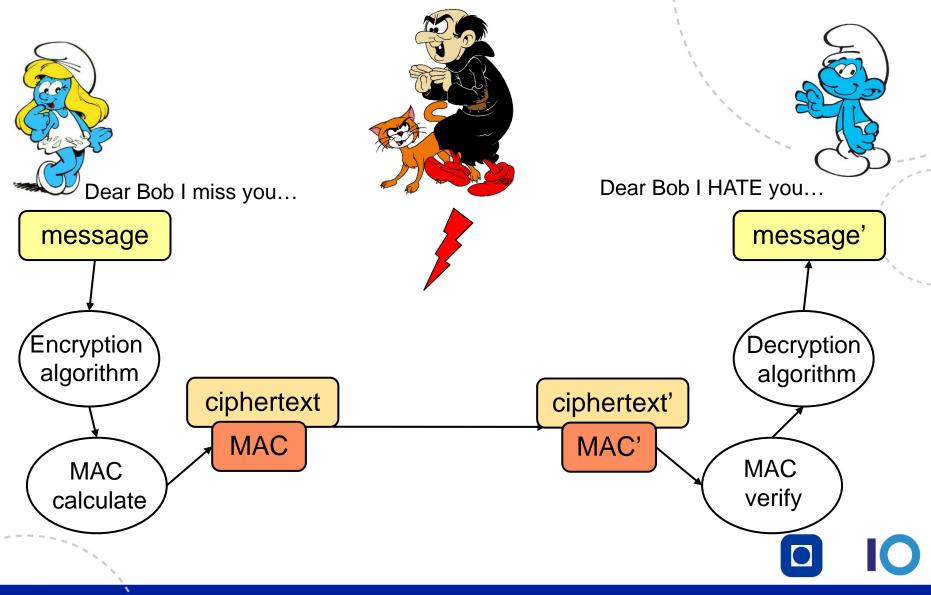
Authenticated Encryption Zoo: https://aezoo.compute.dtu.dk

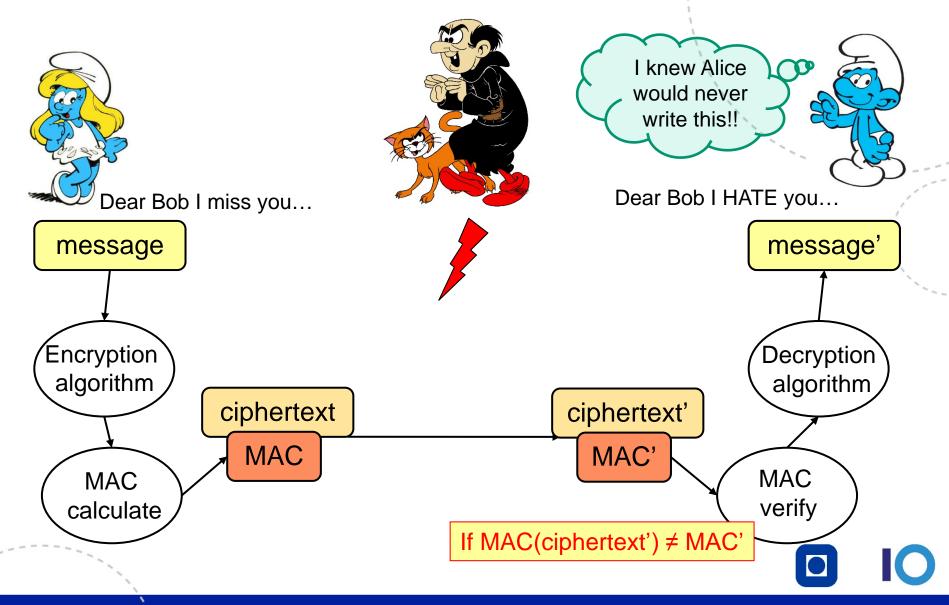


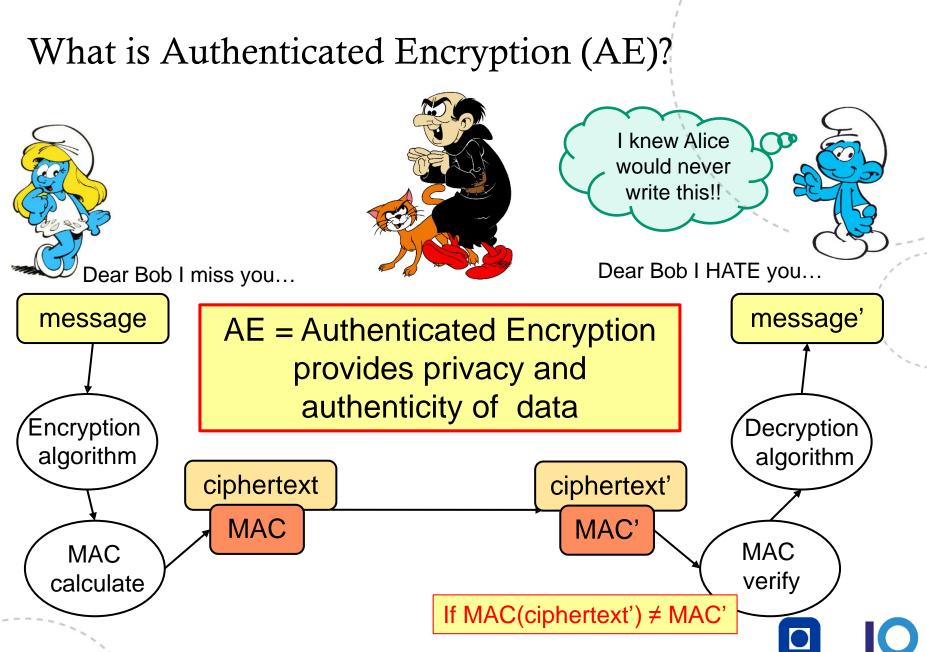








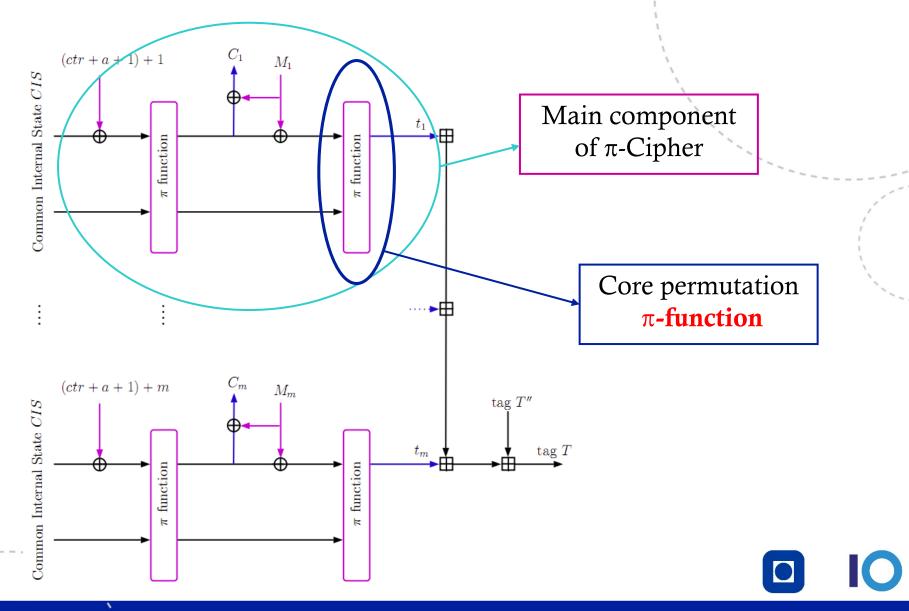




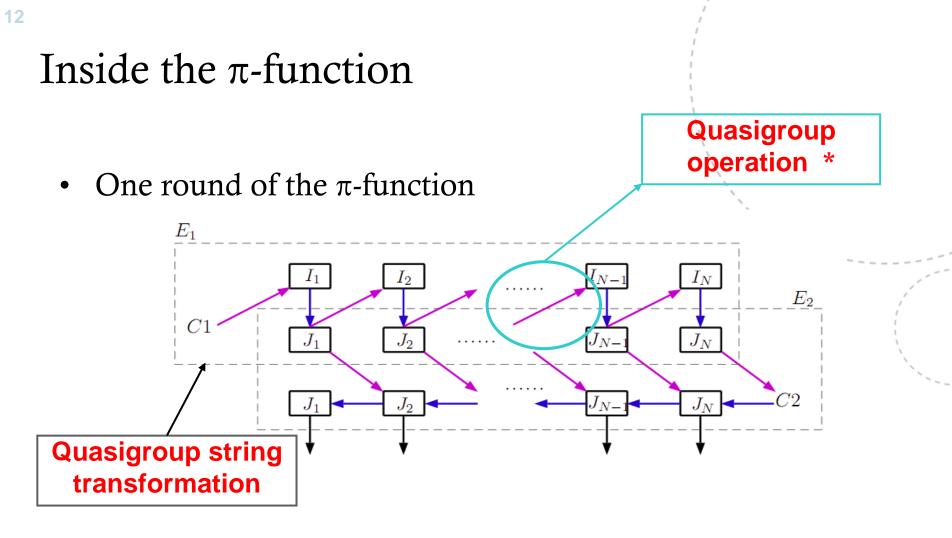
π -Cipher: one of the candidates of the CAESAR competition

- An authenticated encryption cipher with associated data
- Second round candidate
- Norwegian-Macedonian-German collaboration
 - Danilo Gligoroski, NTNU
 - Hristina Mihajloska, FINKI
 - Simona Samardjiska, FINKI
 - Håkon Jacobsen, NTNU
 - Mohamed El-Hadedy, NTNU
 - Rune Erlend Jensen, NTNU
 - Daniel Otte, RUB

Inside π -Cipher: Processing the message

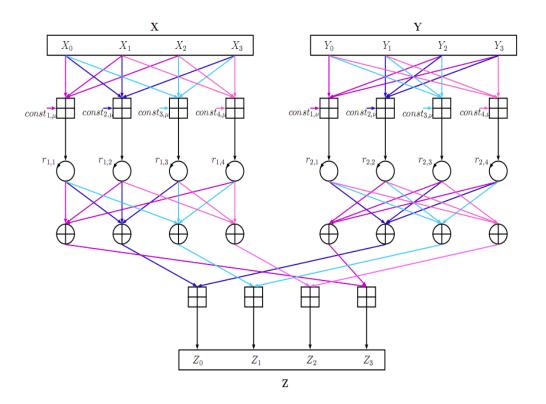


The ARX structure of π -Cipher LAP '15



- The number of rounds R is a tweakable parameter
- V.2 recommendation R = 3

Inside the quasigroup operation *

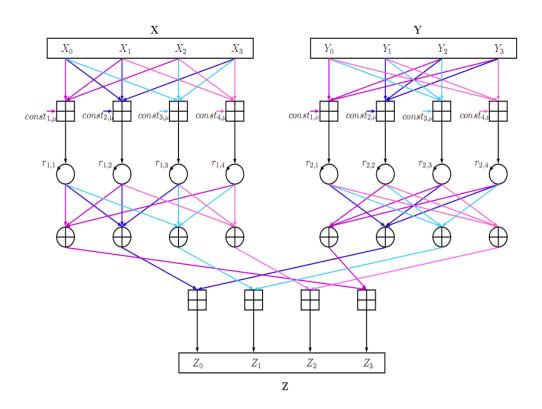


X, Y and Z - 4-tuples of ω -bit words ($\omega = 16, 32, 64$)

ARX design

- Addition \boxplus modulo 2^{ω}
- Rotation to the left ROTL^r(X)
- **XOR** \oplus on ω -bit words

Inside the quasigroup operation *



14

The quasigroup operation *: $Z = X * Y \equiv \partial(\mu(X) \boxplus_{\omega} \nu(Y))$ Isotopic

15
Algorithmic view of *

$$T_0 \leftarrow RotTL^{1}(0xP682 + X_0 + X_1 + X_2);$$

 $T_0 \leftarrow RotTL^{1}(0xP682 + X_0 + X_1 + X_2);$
 $T_1 \leftarrow RotTL^{1}(0xP622 + X_0 + X_1 + X_2);$
 $T_2 \leftarrow RotTL^{1}(0xP622 + X_1 + X_2 + X_3);$
 $T_3 \leftarrow RotTL^{1}(0xP622 + X_1 + X_2 + X_3);$
 $T_4 \leftarrow T_0 \oplus T_1 \oplus T_3;$
 $T_5 \leftarrow T_1 \oplus T_2 \oplus T_3;$
 $T_6 \leftarrow T_0 \oplus T_2 \oplus T_3;$
 $T_1 \leftarrow RotTL^{2}(0xC62 + Y_0 + Y_2 + T_3);$
 $T_1 \leftarrow RotTL^{2}(0xC62 + Y_1 + Y_2 + Y_3);$
 $T_2 \leftarrow RotTL^{1}(0xC628 + Y_0 + Y_1 + Y_2);$
 $T_3 \leftarrow RotTL^{1}(0xC628 + Y_0 + Y_1 + Y_3);$
 $T_5 \leftarrow T_1 \oplus T_2 \oplus T_3;$
 $T_1 \leftarrow T_0 \oplus T_1 \oplus T_2;$
 $T_1 \leftarrow T_0 \oplus T_1 \oplus T_2;$
 $T_1 \leftarrow T_0 \oplus T_1 \oplus T_2;$
 $T_2 \leftarrow RotTL^{1}(0xC628 + Y_0 + Y_1 + Y_3);$
 $T_2 \leftarrow RotTL^{1}(0xC628 + Y_0 + Y_1 + Y_3);$
 $T_3 \leftarrow RotTL^{1}(0xC628 + Y_0 + Y_1 + Y_3);$
 $T_4 \leftarrow T_0 \oplus T_1 \oplus T_2;$
 $T_5 \leftarrow T_0 \oplus T_1 \oplus T_2;$
 $T_6 \leftarrow T_0 \oplus T_1 \oplus T_2;$
 $T_6 \leftarrow T_0 \oplus T_1 \oplus T_2;$
 $T_6 \leftarrow T_0 \oplus T_1 \oplus T_2;$
 $T_1 \leftarrow T_0 \oplus T_1 \oplus T_2;$
 $T_2 \leftarrow T_1 + T_1;$
 $T_1 \leftarrow T_0 \oplus T_1 \oplus T_2;$
 $T_1 \oplus T_0 \oplus T_1 \oplus T_2;$
 $T_1 \oplus T_0 \oplus T_1 \oplus T_0 \oplus T_0$

The ARX structure of π -Cipher LAP '15

Algorithmic view of *

 $\mu\text{-}\mathrm{transformation}$ for X:

$$\begin{array}{c} T_{0} \leftarrow ROTL^{1}(0xF0E8 + X_{0} + X_{1} + X_{2}); \\ 1. \ T_{1} \leftarrow ROTL^{0}(0xE1D8 + X_{0} + X_{1} + X_{3}); \\ T_{3} \leftarrow ROTL^{0}(0xE1D8 + X_{0} + X_{2} + X_{3}); \\ T_{3} \leftarrow ROTL^{11}(0xD4D2 + X_{1} + X_{2} + X_{3}); \\ T_{3} \leftarrow ROTL^{11}(0xD4D2 + X_{1} + X_{2} + X_{3}); \\ 2. \ T_{5} \leftarrow T_{1} \oplus T_{1} \oplus T_{2}; \\ T_{7} \leftarrow T_{1} \oplus T_{1} \oplus T_{2} \oplus T_{3}; \\ T_{7} \leftarrow T_{1} \oplus T_{2} \oplus T_{3}; \\ T_{7} \leftarrow ROTL^{2}(0xC1CC + Y_{1} + Y_{2} + Y_{3}); \\ 1. \ T_{1} \leftarrow ROTL^{5}(0xCAC9 + Y_{1} + Y_{2} + Y_{3}); \\ T_{3} \leftarrow ROTL^{10}(0xC3B8 + Y_{0} + Y_{1} + Y_{2}); \\ T_{3} \leftarrow ROTL^{10}(0xC3B8 + Y_{0} + Y_{1} + Y_{2}); \\ T_{3} \leftarrow ROTL^{10}(0xC3B8 + Y_{0} + Y_{1} + Y_{3}); \\ 2. \ T_{1} \leftarrow T_{0} \oplus T_{2} \oplus T_{3}; \\ T_{1} \leftarrow T_{0} \oplus T_{1} \oplus T_{2} \oplus T_{3}; \\ T_{1} \leftarrow T_{0} \oplus T_{1} \oplus T_{2} \oplus T_{3}; \\ T_{1} \leftarrow T_{0} \oplus T_{1} \oplus T_{2} \oplus T_{3}; \\ T_{1} \leftarrow T_{0} \oplus T_{1} \oplus T_{2} \oplus T_{3}; \\ T_{1} \leftarrow T_{0} \oplus T_{1} \oplus T_{2} \oplus T_{3}; \\ 1. \ Z_{2} \leftarrow T_{5} + T_{1}; \\ 1. \ Z_{2} \leftarrow T_{6} + T_{1} \oplus T_{1} \oplus T_{2}; \\ \sigma-transformation \end{array}$$

The ARX structure of π -Cipher LAP '15

Algorithmic view of *

 $\mu\text{-}\mathrm{transformation}$ for X:

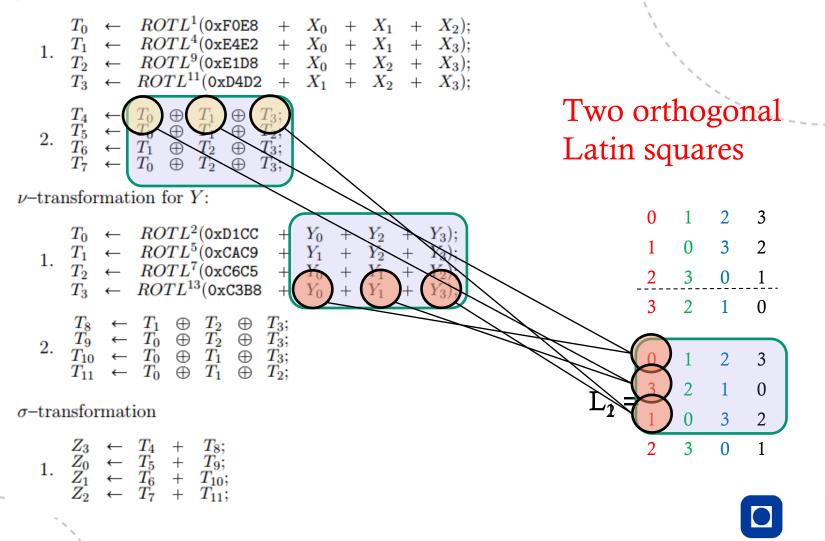
 $\sigma\text{-}\mathrm{transformation}$

17

Algorithmic view of * μ -transformation for X: $\begin{array}{c} X_0 \\ X_0 \\ X_0 \\ X_1 \end{array}$ ++ Two orthogonal Latin squares ν -transformation for Y: 2 3 3 2 0 1 0 2 2. $\begin{array}{c} T_8 \\ T_9 \\ T_{10} \\ T_{11} \end{array}$ $\begin{array}{ccccc} T_1 & \oplus & T_2 & \oplus & T_3; \\ T_0 & \oplus & T_2 & \oplus & T_3; \\ \end{array}$ 1 2 3 $L_2 = \frac{3}{1} \quad \begin{array}{ccc} 2 & 1 & 0 \\ 1 & 0 & 3 & 2 \end{array}$ σ -transformation 3 0 1 2

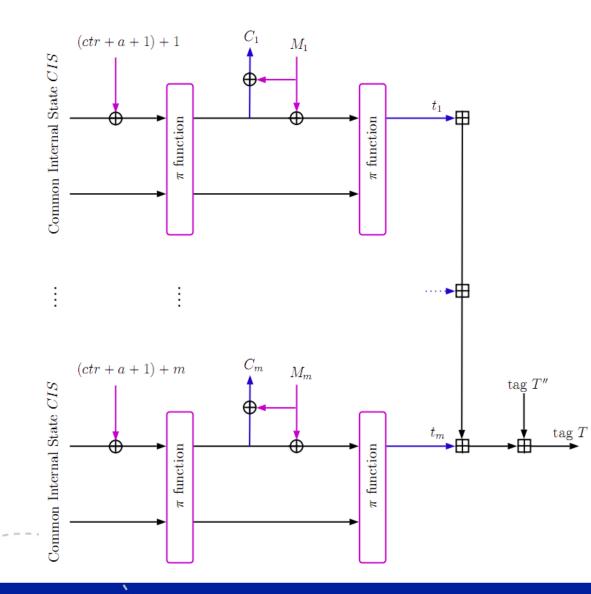
Algorithmic view of *

 μ -transformation for X:



The ARX structure of π -Cipher LAP '15

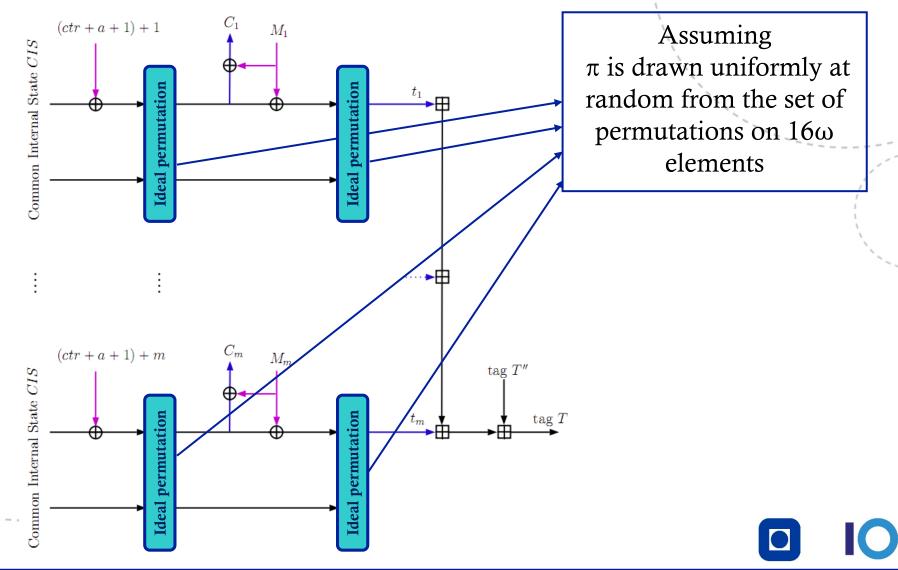
Security of π -Cipher



20

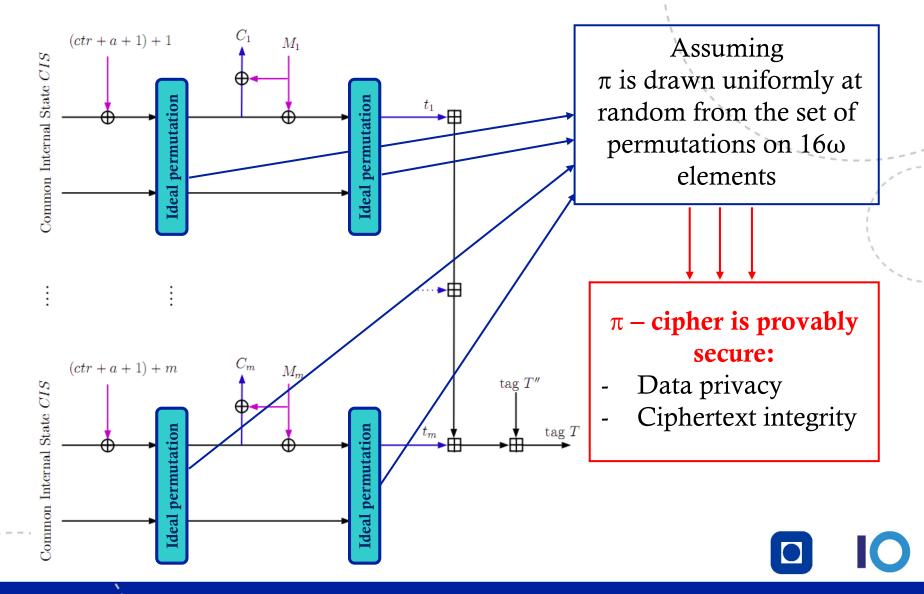
The ARX structure of π -Cipher LAP '15

```
Security of \pi-Cipher
```

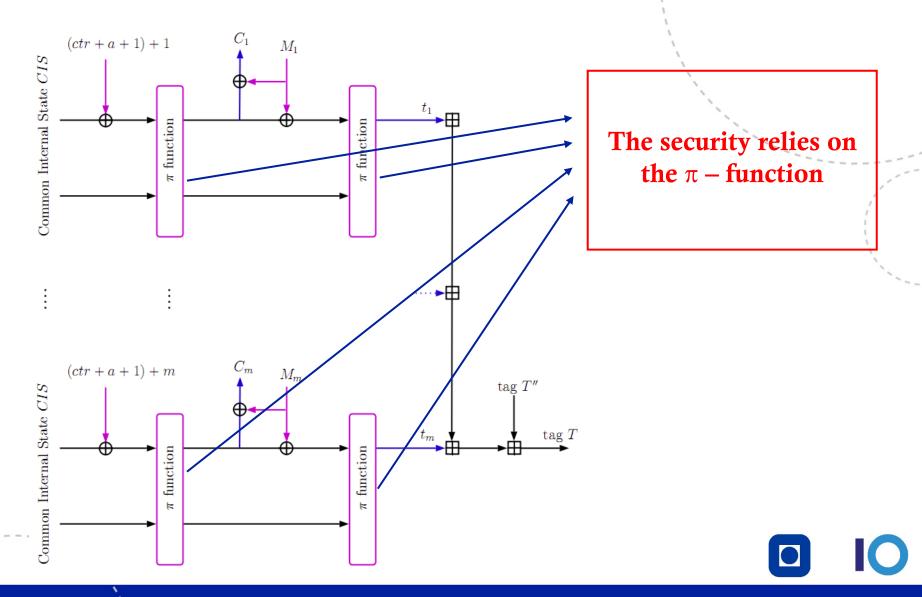


LAP '15

Security of π -Cipher



Security of π -Cipher

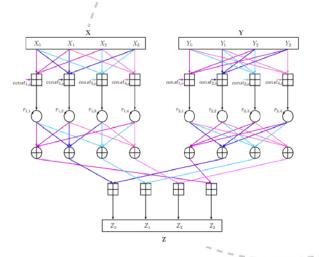


The ARX structure of π -Cipher LAP '15

The structure of π – function

ARX design

Addition \boxplus modulo 2^{ω} Rotation to the left ROTL^r(X) XOR \bigoplus on ω -bit words



Advantages

- Excellent performance
- Easy algorithm and implementation
- Functionally complete (with constant included)

Disadvantages

- Extremely hard to analyze:
 - Security against linear and differential cryptanalysis
 - Security estimate

ARX designs

Block ciphers

• FEAL, Threefish

Stream ciphers

• Salsa20, ChaCha, HC-128

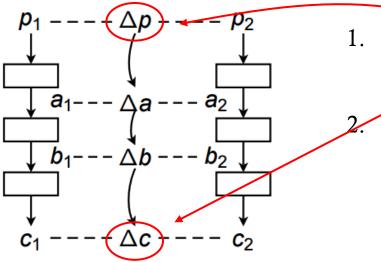
Hash functions

- SHA-3 Finalists: BLAKE, Skein
- SHA-3 Second Round: Blue Midnight Wish, Cubehash
- SHA-3 First Round: EDON-R

Authenticated ciphers

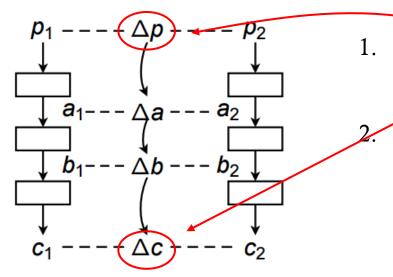
• π –cipher, NORX (LRX), MORUS (LRX)

ARX designs – Differential cryptanalysis



Observe the difference between two ciphertexts as a function of the difference between the plaintexts Find the highest probability differential input (characteristic) which can be traced through several rounds

ARX designs – Differential cryptanalysis



S-box

- Typical size up to 8 × 8 bit
- Difference distribution table:

up to $2^{16} = 65536$ elements

• Easy to calculate: differential probability, number of output differences, output difference with highest probability,...

Observe the difference between two ciphertexts as a function of the difference between the plaintexts Find the highest probability differential input (characteristic) which can be traced through several rounds

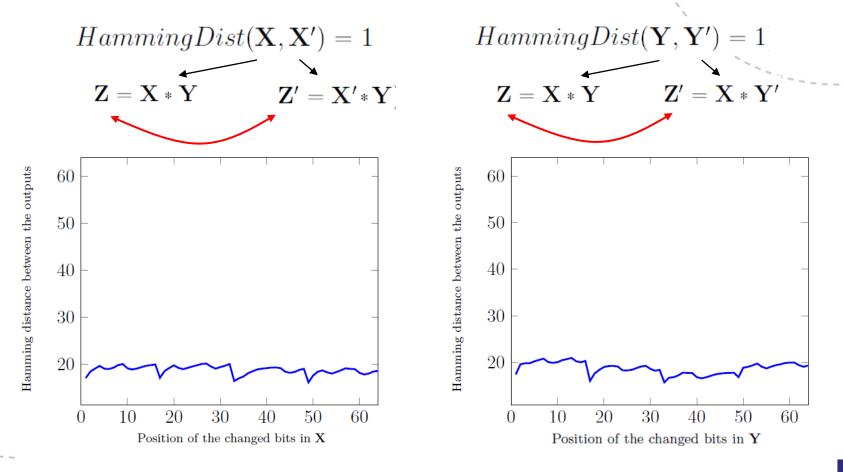
ARX operations

- Typically, n = 32 or n = 64
- Difference distribution table: 2⁶⁴ or 2¹²⁸ elements, too large!
- In π cipher:
- Quasigroup operation $2^{8\omega^{*4\omega}}$

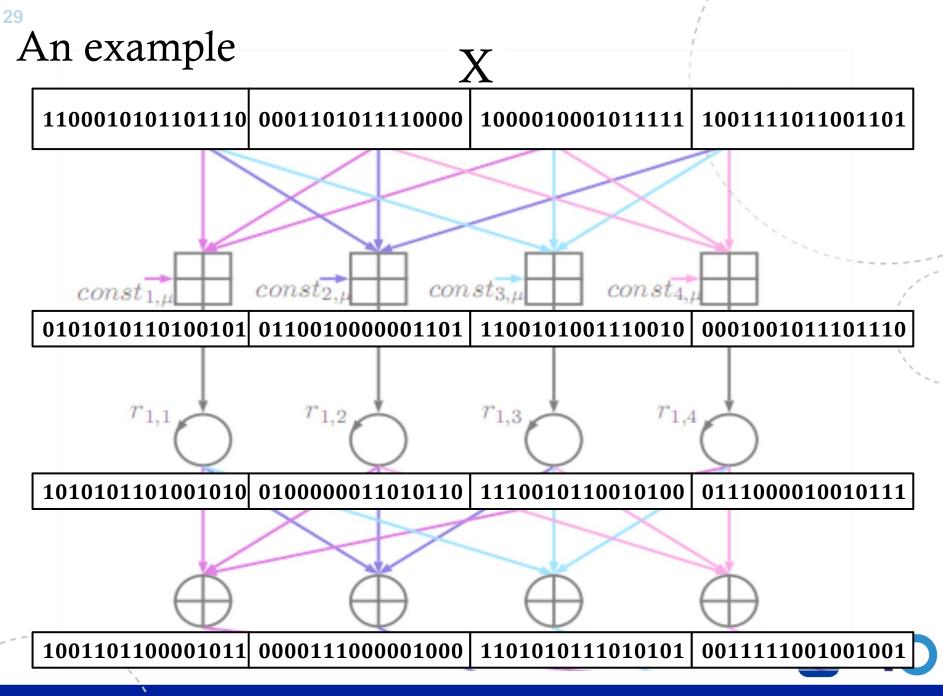
The ARX structure of π-Cipher

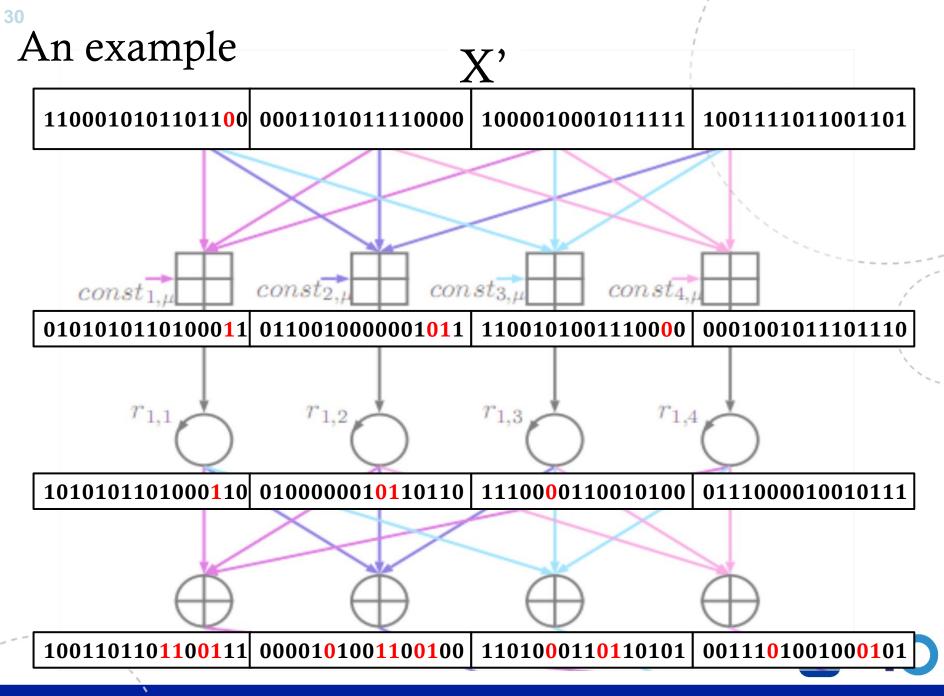
LAP '15

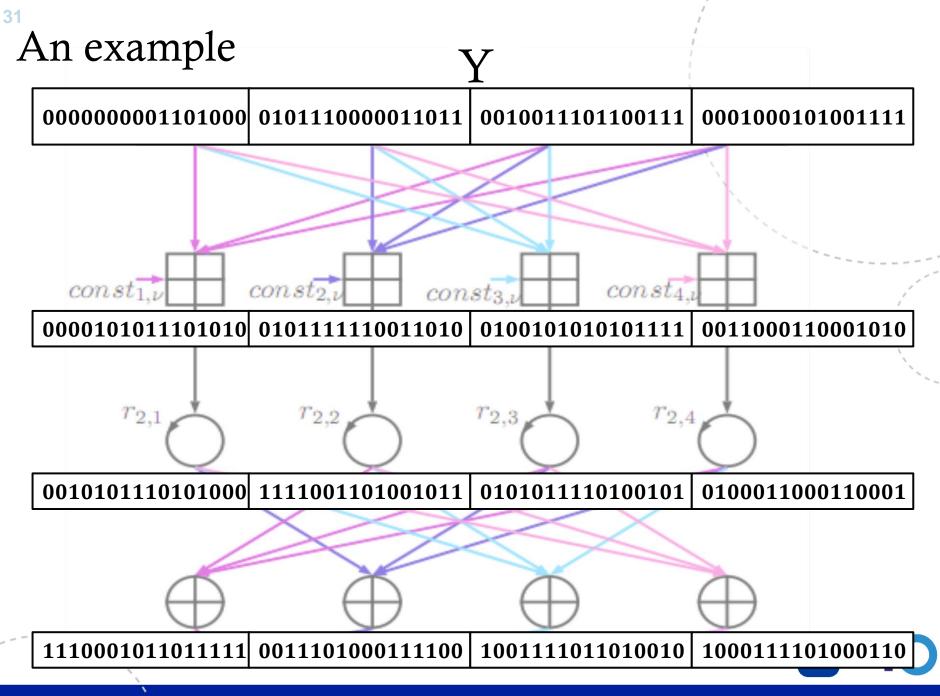
• Bit diffusion of the used ARX permutation

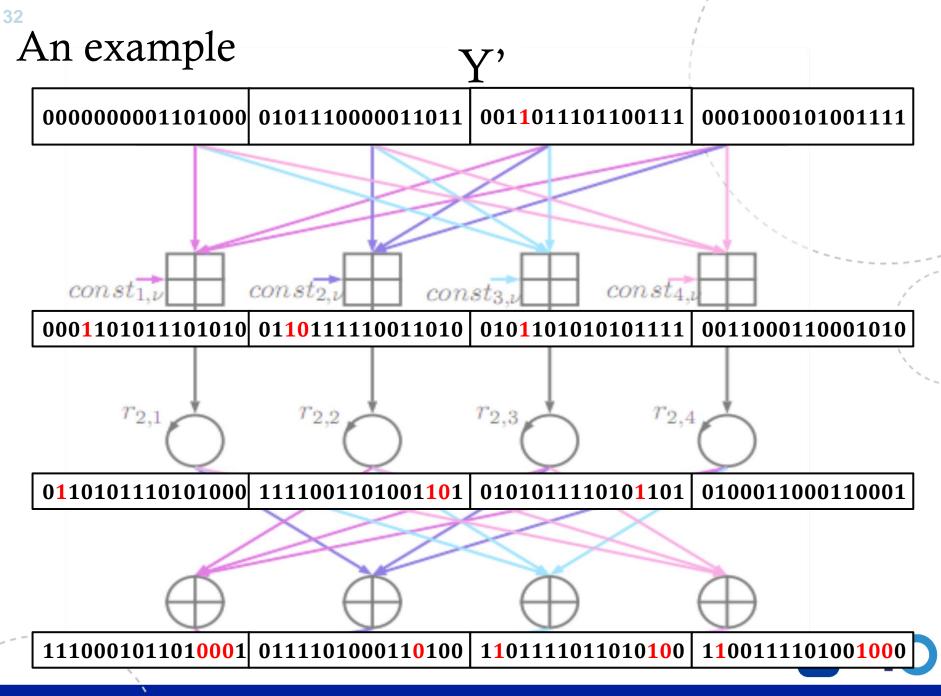


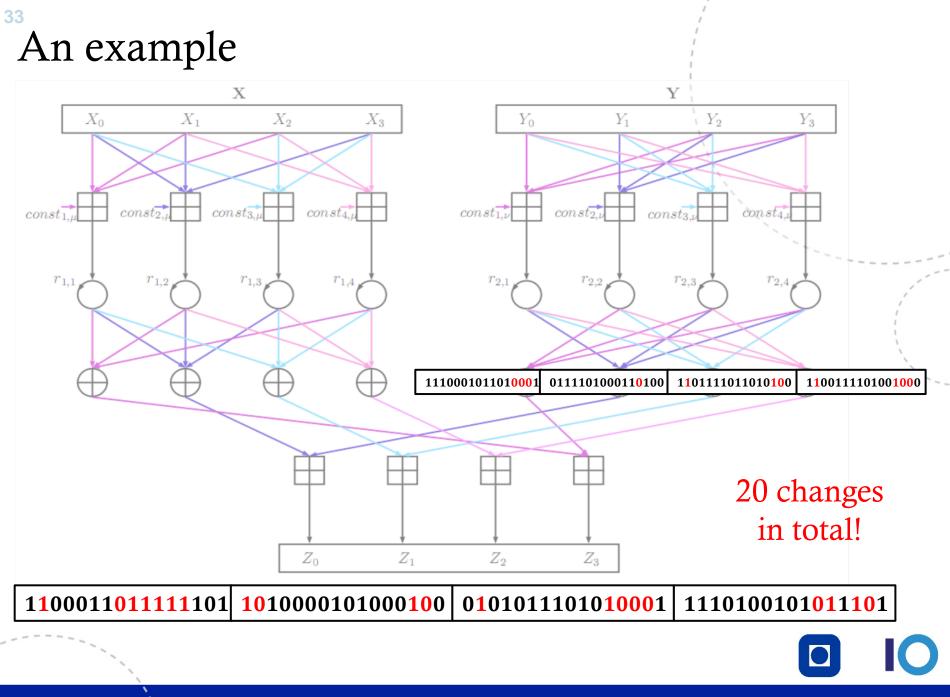
Avalanche effect of the * operation for $\omega = 16$

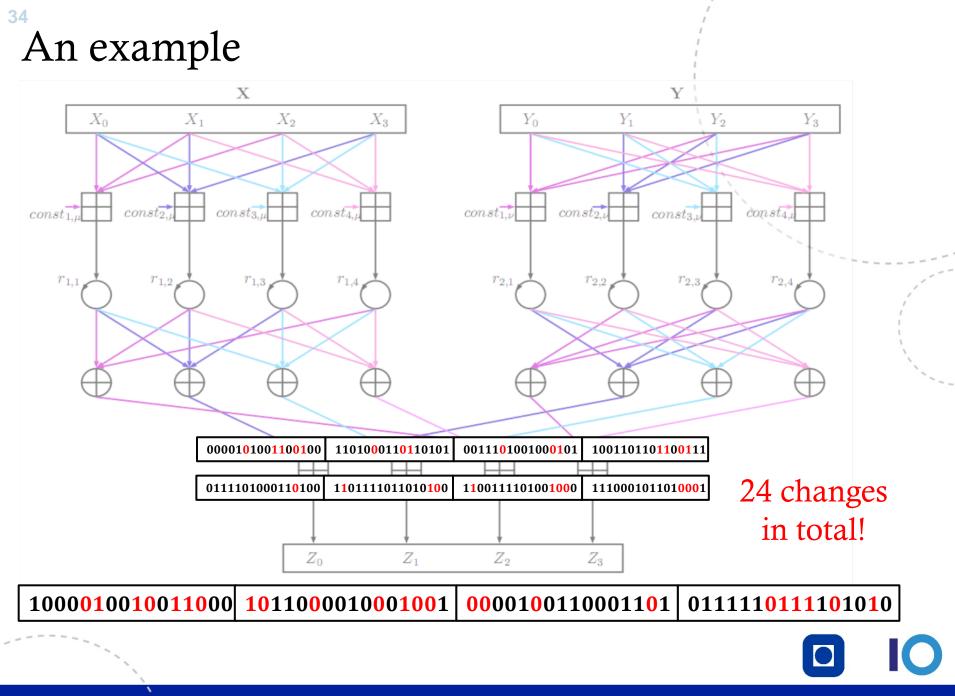


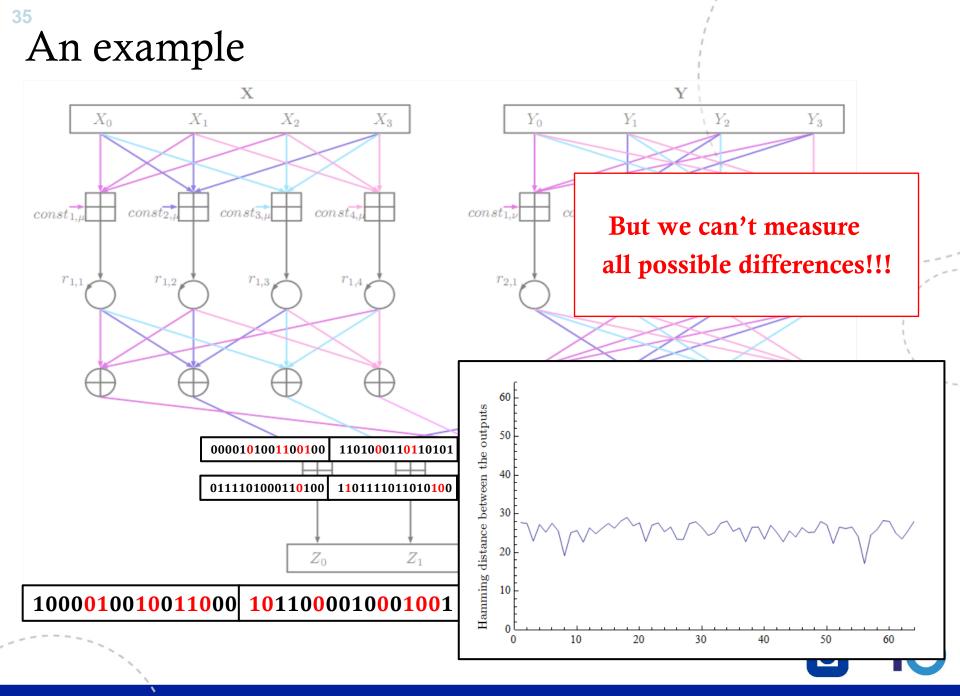




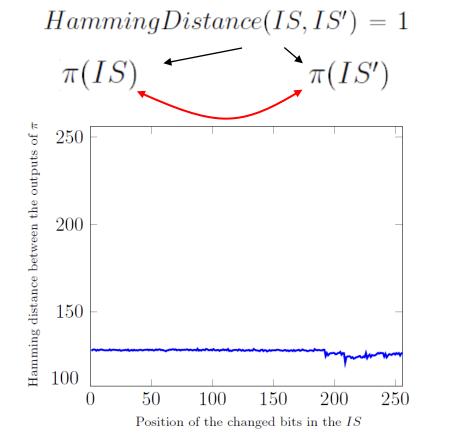


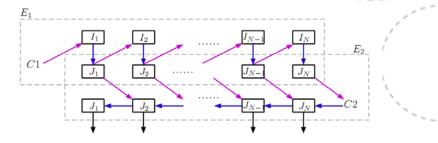






• Bit diffusion of the one round of the permutation

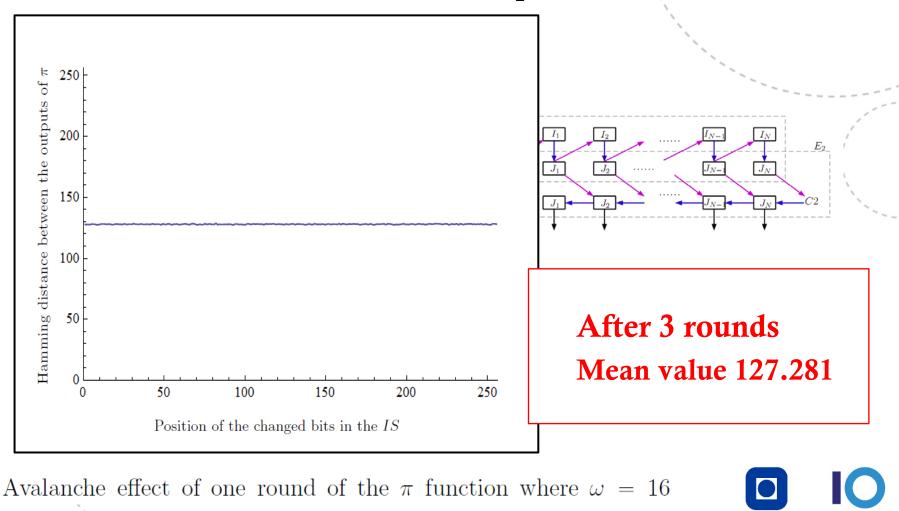




Even after ONLY one round one bit difference propagates in 1/2 of the bits

Avalanche effect of one round of the π function where $\omega = 16$

• Bit diffusion of the one round of the permutation



The ARX structure of π -Cipher

LAP '15

- Similar construction as SHA-3 candidate Edon-R [Gligoroski et al. '09] indicates solid differential properties
- New popular approach for ARX designs
 - Automated tools

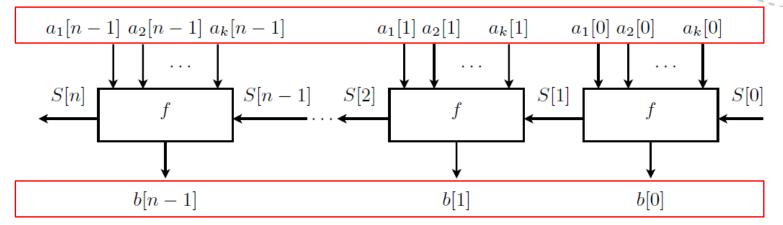
[Mouha et al. '10], [Laurent '12]

• Ongoing work

– create a dedicated automated engine for π -Cipher for search of differential characteristics of a predefined weight

A taste of ARX automated tools (credit to N. Mouha)

Analysis of **S-functions**



Output: word b

39

 $(b[i], S[i+1]) = f(a_1[i], a_2[i], \dots, a_k[i], S[i]), \quad 0 \le i < n$

$$((x_1 \oplus \Delta x) + (y_1 \oplus \Delta y)) \oplus (x_1 + y_1) = \Delta z$$

$$\begin{cases} x_2 \quad \leftarrow \quad x_1 \oplus \Delta x \\ y_2 \quad \leftarrow \quad y_1 \oplus \Delta y \\ z_1 \quad \leftarrow \quad x_1 + y_1 \implies \\ z_2 \quad \leftarrow \quad z_2 \oplus z_1 \end{cases} \begin{cases} x_2[i] \quad \leftarrow \quad x_1[i] \oplus \Delta x[i] \\ y_2[i] \quad \leftarrow \quad y_1[i] \oplus \Delta y[i] \\ z_1[i] \quad \leftarrow \quad x_1[i] \oplus y_1[i] \oplus c_1[i] \\ c_1[i+1] \quad \leftarrow \quad (x_1[i] + y_1[i] + c_1[i]) \gg 1 \\ z_2[i] \quad \leftarrow \quad x_2[i] \oplus y_2[i] \oplus c_2[i] \\ c_2[i+1] \quad \leftarrow \quad (x_2[i] + y_2[i] + c_2[i]) \gg 1 \\ \Delta z[i] \quad \leftarrow \quad z_2[i] \oplus z_1[i] \end{cases}$$

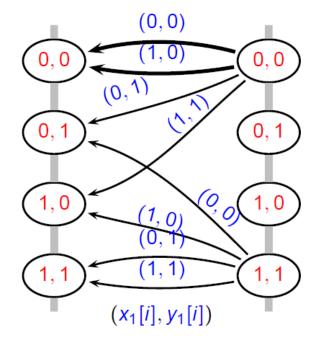
S-function:

 $\begin{aligned} (\Delta z[i], S[i+1]) &= f(x_1[i], y_1[i], \Delta x[i], \Delta y[i], S[i]), & 0 \le i < n \\ S[i] \leftarrow (c_1[i], c_2[i]), \\ S[i+1] \leftarrow (c_1[i+1], c_2[i+1]). \end{aligned}$ (credit to N. Mouha)

Represent as graphs:

41

 $(\Delta x[i], \Delta y[i], \Delta z[i]) = (1,0,1)$

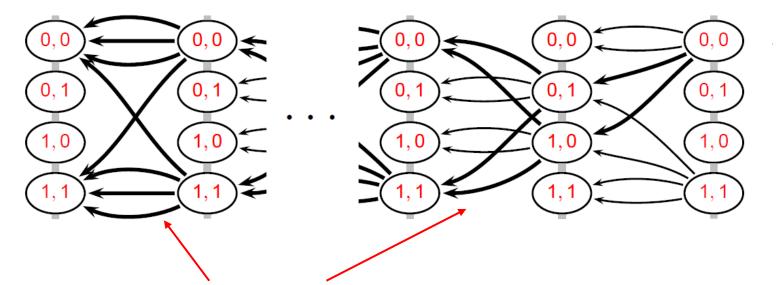


	(x ₂ [i]	$\leftarrow x_1[i] \oplus \Delta x[i]$
	y ₂ [i]	$\leftarrow y_1[i] \oplus \Delta y[i]$
	z ₁ [<i>i</i>]	$\leftarrow x_1[i] \oplus y_1[i] \oplus c_1[i]$
<	<i>c</i> ₁ [<i>i</i> + 1]	$\leftarrow (x_1[i] + y_1[i] + c_1[i]) \gg 1$
	z ₂ [<i>i</i>]	$\leftarrow x_2[i] \oplus y_2[i] \oplus c_2[i]$
	<i>c</i> ₂ [<i>i</i> + 1]	$\leftarrow (x_2[i] + y_2[i] + \boldsymbol{c_2[i]}) \gg 1$
	$\Delta z[i]$	$\leftarrow z_2[i] \oplus z_1[i]$

(credit to N. Mouha)

Represent as graphs:

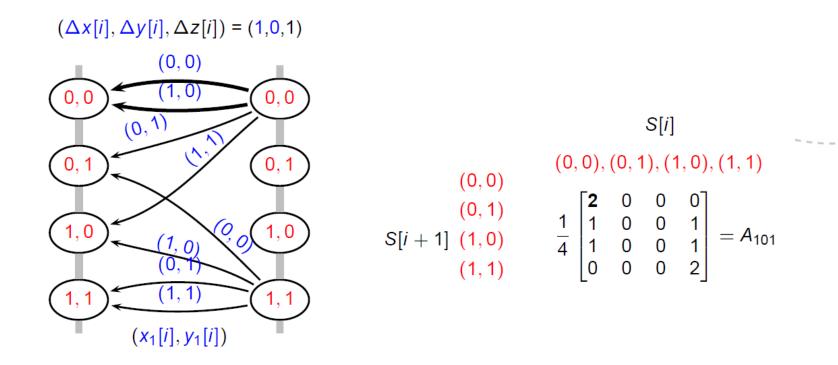
42



Valid paths with desired differential

Count the paths using adjacency matrices!

(credit to N. Mouha)



Probability: $\operatorname{xdp}^+(\Delta x, \Delta y \to \Delta z) = LA_{w[n-1]} \cdots A_{w[1]}A_{w[0]}C$ $w[i] = \Delta x[i] \parallel \Delta y[i] \parallel \Delta z[i], \ 0 \le i < n,$ $L = [\ 1 \ 1 \ \cdots \ 1 \],$ $C = [\ 1 \ 0 \ \cdots \ 0 \]^T.$ (credit to N. Mouha)

Thank you for listening!

