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Interpretability logic

Syntax: the basic modal language enriched with a binary modal
operator B

Semantics: Veltman models

I W 6= ∅
I R ⊆W ×W transitive and reverse well-founded
I for each w ∈W , Sw ⊆ R[w ]× R[w ]

I if wRu then uSwu
I if uSwv and vSwz then uSwz
I if wRuRv then uSwv

Satisfaction: w 
 AB B if for all u s.t. wRu and u 
 A there is v
s.t. uSwv and v 
 B
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Interpretability logic

Syntax: the basic modal language enriched with a binary modal
operator B
Semantics: generalized Veltman models

I W 6= ∅
I R ⊆W ×W transitive and reverse well-founded
I for each w ∈W , Sw ⊆ R[w ]× P(R[w ])

I if wRu then uSw{u}
I if uSwV and vSwZv for all v ∈ V then uSw (∪Zv )
I if wRuRv then uSw{v}

Satisfaction: w 
 AB B if for all u s.t. wRu and u 
 A there is V
s.t. uSwV and v 
 B for all v ∈ V



Filtrations of Kripke models

Let Γ be a set of formulas closed under taking subformulas.

For w , u ∈W , put w ≡Γ u if for all A ∈ Γ we have w 
 A iff
u 
 A. Then ≡Γ is an equivalence relation.
Filtration is a model over W /≡Γ

s.t.

I if wRu then [w ]R̃[u]

I if w 
 �A ∈ Γ and [w ]R̃[u] then u 
 A

I [w ] 
 p iff w 
 p, for each propositional variable p ∈ Γ

Filtration theorem: for all w ∈W and A ∈ Γ, [w ] 
 A iff w 
 A.
Proof: by induction
Existence: R̃ is a filtration iff Rmin ⊆ R̃ ⊆ Rmax , where:

I Rmin = {([w ], [u]) : wRu}
I [w ]Rmax [u] iff for all �A ∈ Γ we have: if w 
 �A then u 
 A
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Finite model property via filtration

Each satisfiable formula of the basic modal language has a finite
model.

Proof:
Let A be a satisfiable formula, W a model and w ∈W s.t. w 
 A.
Let Γ be the set of all subformulas of A. Since Γ is finite, W /≡Γ

is
also finite, and by the filtration theorem we have [w ] 
 A.
In this proof we can use any filtration of W . Particular filtrations
are used to prove fmp w.r.t. characteristic classes of models.
Example: each formula of the basic modal language which has a
transitive model, also has a finite transitive model.
The proof is the same, but using the particular filtration which
preserves transitivity: [w ]Rt [u] iff for all �A ∈ Γ we have: if
w 
 �A then u 
 A ∧�A.
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Refining filtration

It is not always possible to define a suitable filtration which
preserves a desired property. Shehtman (1993) proposes a
refinement of filtration using an appropriate equivalence relation
∼ ⊆ ≡Γ. Filtration is defined in the same way, but over W /∼.

Both the filtration theorem and the existence are proved easily, but
due to the refinement of the equivalence relation we may no longer
have finitely many equivalence classes for a finite Γ.
Shehtman (2005) uses a particular ∼ defined using bisimulations
to prove fmp for some product modal logics.
In the definition of generalized Veltman models there are plenty of
properties we need to preserve under filtration. Refining filtration
using bisimulations shows to be a good tool to accomplish this.
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Filtrations of generalized Veltman models

Let W be a generalized Veltman model, Γ an adequate set of
formulas and ∼ ⊆ ≡Γ an equivalence relation on W .
For V ⊆W , put V∼ = {[w ] : w ∈ V }.

A filtration is a generalized Veltman model over W /∼ s.t.

I if wRu and there is �A ∈ Γ s.t. w 6
 �A and u 
 �A, then
[w ]R̃[u]

I [u]S̃[w ]V∼ iff for all w ′ ∈ [w ] and u′ ∈ [u] s.t. w ′Ru′ we have
u′Sw ′V ′ for some V ′ s.t. V ′∼ ⊆ V∼

I [w ] 
 p iff w 
 p, for each propositional variable p ∈ Γ

Filtration theorem: for all w ∈W and A ∈ Γ, [w ] 
 A iff w 
 A.
Proof: by induction
Existence: using a particular ∼ which is defined using bisimulations
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Filtration via bisimulations

Vrgoč and Vuković (2010) define an appropriate notion of
bisimulation between generalized Veltman models, with good
properties:

I if there is a bisimulation Z between W and W ′ s.t. wZw ′,
then w and w ′ are modally equivalent

I the identity is a bisimulation, the inverse of a bisimulation is a
bisimulation, the composition of bisimulations is a
bisimulation, the union of bisimulations is a bisimulation

Consequences:

I for w , u ∈W , put w ∼ u iff there is a bisimulation
Z ⊆W ×W s.t. wZu. Then ∼ is an equivalence relation.

I for any set of formulas Γ we have ∼ ⊆ ≡Γ

Existence of a filtration over W /∼: we prove that the filtration
over this particular ∼ is in fact a generalized Veltman model.
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Finite model property of interpretability logics
To prove the finite model property using filtration, we need ∼ to
generate only finitely many equivalence classes.

I the relation ≡Γ generates finitely many classes if Γ is finite,
but characteristic properties of structures may not be
preserved under filtration

I the relation ∼ defined using bisimulations preserves properties
of structures, but it refines ≡Γ, so we may lose finiteness

Fortunately, in the case of generalized Veltman semantics, we can
obtain the finite model property by using filtration twice:

I first we obtain a generalized Veltman model with bounded
length of R̃–chains,

I and then we use this to show that repeated filtration gives a
finite model.

Using this main idea, we obtained an alternative proof of the finite
model property of interpretability logic IL w.r.t. Veltman models,
and we proved the finite model property of the systems ILM and
ILM0 w.r.t. generalized Veltman models.
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