Finite model property of interpretability logics via filtrations

Tin Perkov, Mladen Vuković

LAP 2015, Dubrovnik
Interpretability logic

Syntax: the basic modal language enriched with a binary modal operator ▷
Interpretability logic

Syntax: the basic modal language enriched with a binary modal operator \triangleright

Semantics: Veltman models

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded

Satisfaction: $w \models A \triangleright B$ if for all u s.t. wRu and $u \models A$ there is v s.t. $u \triangleleft w v$ and $v \models B$
Interpretability logic

Syntax: the basic modal language enriched with a binary modal operator \triangleright
Semantics: Veltman models
- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W$, $S_w \subseteq R[w] \times R[w]$

Satisfaction: $w \models A \triangleright B$ if for all u s.t. wRu and $u \models A$ there is v s.t. $uS_w v$ and $v \models B$
Interpretability logic

Syntax: the basic modal language enriched with a binary modal operator \(\triangleright \)

Semantics: Veltman models

- \(W \neq \emptyset \)
- \(R \subseteq W \times W \) transitive and reverse well-founded
- for each \(w \in W \), \(S_w \subseteq R[w] \times R[w] \)
 - if \(wRu \) then \(uS_w u \)
Interpretability logic

Syntax: the basic modal language enriched with a binary modal operator ▷

Semantics: Veltman models

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W$, $S_w \subseteq R[w] \times R[w]$
 - if $wR u$ then $uS_w u$
 - if $uS_w v$ and $vS_w z$ then $uS_w z$
Interpretability logic

Syntax: the basic modal language enriched with a binary modal operator ▷

Semantics: Veltman models

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W$, $S_w \subseteq R[w] \times R[w]$
 - if wRu then uS_wu
 - if uS_wv and vS_ww then uS_wv
 - if $wRuRv$ then uS_wv
Interpretability logic

Syntax: the basic modal language enriched with a binary modal operator ▷

Semantics: Veltman models

- \(W \neq \emptyset \)
- \(R \subseteq W \times W \) transitive and reverse well-founded
- for each \(w \in W \), \(S_w \subseteq R[w] \times R[w] \)
 - if \(wRu \) then \(uS_wu \)
 - if \(uS_wv \) and \(vS_wz \) then \(uS_wz \)
 - if \(wRuv \) then \(uS_wv \)

Satisfaction: \(w \models A \triangleright B \) if for all \(u \) s.t. \(wRu \) and \(u \models A \) there is \(v \) s.t. \(uS_wv \) and \(v \models B \)
Interpretability logic

Syntax: the basic modal language enriched with a binary modal operator ⊢

Semantics: generalized Veltman models

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W$, $S_w \subseteq R[w] \times \mathcal{P}(R[w])$
 - if wRu then $uS_w\{u\}$
 - if uS_wV and vS_wZ_v for all $v \in V$ then $uS_w(\bigcup Z_v)$
 - if $wRuRv$ then $uS_w\{v\}$

Satisfaction: $w \models A \triangleright B$ if for all u s.t. wRu and $u \models A$ there is V s.t. uS_wV and $v \models B$ for all $v \in V$
Filtrations of Kripke models

Let Γ be a set of formulas closed under taking subformulas.
Filtrations of Kripke models

Let Γ be a set of formulas closed under taking subformulas. For $w, u \in W$, put $w \equiv_\Gamma u$ if for all $A \in \Gamma$ we have $w \models A$ iff $u \models A$. Then \equiv_Γ is an equivalence relation.
Filtrations of Kripke models

Let Γ be a set of formulas closed under taking subformulas. For $w, u \in W$, put $w \equiv_{\Gamma} u$ if for all $A \in \Gamma$ we have $w \vDash A$ iff $u \vDash A$. Then \equiv_{Γ} is an equivalence relation. Filtration is a model over W/\equiv_{Γ} s.t.

- if wRu then $[w] \tilde{R}[u]$
Filtrations of Kripke models

Let Γ be a set of formulas closed under taking subformulas. For $w, u \in W$, put $w \equiv_{\Gamma} u$ if for all $A \in \Gamma$ we have $w \models A$ iff $u \models A$. Then \equiv_{Γ} is an equivalence relation.

Filtration is a model over W/\equiv_{Γ} s.t.

- if wRu then $[w][u]$
- if $w \models \Box A \in \Gamma$ and $[w][u]$ then $u \models A$

Filtration theorem: for all $w \in W$ and $A \in \Gamma$, $[w] \models A$ iff $w \models A$.

Proof: by induction

Existence: \tilde{R} is a filtration iff $R_{\text{min}} \subseteq \tilde{R} \subseteq R_{\text{max}}$, where:

- $R_{\text{min}} = \{(w, u) : wRu\}$
- $[w]R_{\text{max}}[u]$ iff for all $\Box A \in \Gamma$ we have: if $w \models \Box A$ then $u \models A$
Filtrations of Kripke models

Let Γ be a set of formulas closed under taking subformulas. For $w, u \in W$, put $w \equiv_{\Gamma} u$ if for all $A \in \Gamma$ we have $w \models A$ iff $u \models A$. Then \equiv_{Γ} is an equivalence relation. Filtration is a model over W/\equiv_{Γ} s.t.

- if wRu then $[w]\tilde{R}[u]$
- if $w \models \Box A \in \Gamma$ and $[w]\tilde{R}[u]$ then $u \models A$
- $[w] \models p$ iff $w \models p$, for each propositional variable $p \in \Gamma$
Filtrations of Kripke models

Let Γ be a set of formulas closed under taking subformulas. For $w, u \in W$, put $w \equiv_\Gamma u$ if for all $A \in \Gamma$ we have $w \models A$ iff $u \models A$. Then \equiv_Γ is an equivalence relation.

Filtration is a model over W/\equiv_Γ s.t.

- if wRu then $[w]\tilde{R}[u]$
- if $w \models \Box A \in \Gamma$ and $[w]\tilde{R}[u]$ then $u \models A$
- $[w] \models p$ iff $w \models p$, for each propositional variable $p \in \Gamma$

Filtration theorem: for all $w \in W$ and $A \in \Gamma$, $[w] \models A$ iff $w \models A$.
Filtrations of Kripke models

Let \(\Gamma \) be a set of formulas closed under taking subformulas. For \(w, u \in W \), put \(w \equiv_\Gamma u \) if for all \(A \in \Gamma \) we have \(w \models A \) iff \(u \models A \). Then \(\equiv_\Gamma \) is an equivalence relation.

Filtration is a model over \(W/\equiv_\Gamma \) s.t.

\begin{itemize}
 \item if \(wRu \) then \([w]\tilde{R}[u]\)
 \item if \(w \models \Box A \in \Gamma \) and \([w]\tilde{R}[u]\) then \(u \models A \)
 \item \([w] \models p \) iff \(w \models p \), for each propositional variable \(p \in \Gamma \)
\end{itemize}

Filtration theorem: for all \(w \in W \) and \(A \in \Gamma \), \([w] \models A \) iff \(w \models A \).

Proof: by induction
Filtrations of Kripke models

Let Γ be a set of formulas closed under taking subformulas. For $w, u \in \mathcal{W}$, put $w \equiv_{\Gamma} u$ if for all $A \in \Gamma$ we have $w \models A$ iff $u \models A$. Then \equiv_{Γ} is an equivalence relation.

Filtration is a model over $\mathcal{W}/\equiv_{\Gamma}$ s.t.

- if wRu then $[w]\tilde{R}[u]
- if w \models \Box A \in \Gamma$ and $[w]\tilde{R}[u]$ then $u \models A
- [w] \models p$ iff $w \models p$, for each propositional variable $p \in \Gamma$

Filtration theorem: for all $w \in \mathcal{W}$ and $A \in \Gamma$, $[w] \models A$ iff $w \models A$.

Proof: by induction

Existence: \tilde{R} is a filtration iff $R^{min} \subseteq \tilde{R} \subseteq R^{max}$, where:

- $R^{min} = \{([w],[u]) : wRu\}
- [w]R^{max}[u]$ iff for all $\Box A \in \Gamma$ we have: if $w \models \Box A$ then $u \models A$
Finite model property via filtration

Each satisfiable formula of the basic modal language has a finite model.

Proof: Let A be a satisfiable formula, W a model and $w \in W$ s.t. $w \models A$. Let Γ be the set of all subformulas of A. Since Γ is finite, $W/\equiv\Gamma$ is also finite, and by the filtration theorem we have $w \models A$.

In this proof we can use any filtration of W. Particular filtrations are used to prove fmp w.r.t. characteristic classes of models.

Example: each formula of the basic modal language which has a transitive model, also has a finite transitive model. The proof is the same, but using the particular filtration which preserves transitivity: $w R_t u$ iff for all $\Box A \in \Gamma$ we have: if $w \models \Box A$ then $u \models A \land \Box A$.
Finite model property via filtration

Each satisfiable formula of the basic modal language has a finite model.

Proof:
Let A be a satisfiable formula, W a model and $w \in W$ s.t. $w \models A$.
Finite model property via filtration

Each satisfiable formula of the basic modal language has a finite model.
Proof:
Let A be a satisfiable formula, W a model and $w \in W$ s.t. $w \models A$. Let Γ be the set of all subformulas of A. Since Γ is finite, W/\equiv_{Γ} is also finite, and by the filtration theorem we have $[w] \models A$.

In this proof we can use any filtration of W. Particular filtrations are used to prove \textsc{fmp} w.r.t. characteristic classes of models. Example: each formula of the basic modal language which has a transitive model, also has a finite transitive model. The proof is the same, but using the particular filtration which preserves transitivity:

$w \mathrel{R_t}[u]$ iff for all $\Box A \in \Gamma$ we have: if $w \models \Box A$ then $u \models A \land \Box A$.

Finite model property via filtration

Each satisfiable formula of the basic modal language has a finite model.
Proof:
Let A be a satisfiable formula, W a model and $w \in W$ s.t. $w \models A$. Let Γ be the set of all subformulas of A. Since Γ is finite, W/\equiv_Γ is also finite, and by the filtration theorem we have $[w] \models A$.

In this proof we can use any filtration of W. Particular filtrations are used to prove fmp w.r.t. characteristic classes of models.
Example: each formula of the basic modal language which has a transitive model, also has a finite transitive model.
Finite model property via filtration

Each satisfiable formula of the basic modal language has a finite model.
Proof:
Let A be a satisfiable formula, W a model and $w \in W$ s.t. $w \models A$. Let Γ be the set of all subformulas of A. Since Γ is finite, W/\equiv_Γ is also finite, and by the filtration theorem we have $[w] \models A$.
In this proof we can use any filtration of W. Particular filtrations are used to prove fmp w.r.t. characteristic classes of models.
Example: each formula of the basic modal language which has a transitive model, also has a finite transitive model.
The proof is the same, but using the particular filtration which preserves transitivity: $[w]R^t[u]$ iff for all $\Box A \in \Gamma$ we have: if $w \models \Box A$ then $u \models A \land \Box A$.
Refining filtration

It is not always possible to define a suitable filtration which preserves a desired property. Shehtman (1993) proposes a refinement of filtration using an appropriate equivalence relation $\sim \subseteq \equiv \Gamma$. Filtration is defined in the same way, but over W/\sim. Shehtman (2005) uses a particular \sim defined using bisimulations to prove fmp for some product modal logics. In the definition of generalized Veltman models there are plenty of properties we need to preserve under filtration. Refining filtration using bisimulations shows to be a good tool to accomplish this.
Refining filtration

It is not always possible to define a suitable filtration which preserves a desired property. Shehtman (1993) proposes a refinement of filtration using an appropriate equivalence relation \(\sim \subseteq \equiv \Gamma \). Filtration is defined in the same way, but over \(W/\sim \). Both the filtration theorem and the existence are proved easily, but due to the refinement of the equivalence relation we may no longer have finitely many equivalence classes for a finite \(\Gamma \).
Refining filtration

It is not always possible to define a suitable filtration which preserves a desired property. Shehtman (1993) proposes a refinement of filtration using an appropriate equivalence relation $\sim \subseteq \equiv_\Gamma$. Filtration is defined in the same way, but over W/\sim. Both the filtration theorem and the existence are proved easily, but due to the refinement of the equivalence relation we may no longer have finitely many equivalence classes for a finite Γ. Shehtman (2005) uses a particular \sim defined using bisimulations to prove fmp for some product modal logics.
Refining filtration

It is not always possible to define a suitable filtration which preserves a desired property. Shehtman (1993) proposes a refinement of filtration using an appropriate equivalence relation \(\sim \subseteq \equiv_{\Gamma} \). Filtration is defined in the same way, but over \(W/\sim \). Both the filtration theorem and the existence are proved easily, but due to the refinement of the equivalence relation we may no longer have finitely many equivalence classes for a finite \(\Gamma \). Shehtman (2005) uses a particular \(\sim \) defined using bisimulations to prove fmp for some product modal logics.

In the definition of generalized Veltman models there are plenty of properties we need to preserve under filtration. Refining filtration using bisimulations shows to be a good tool to accomplish this.
Filtrations of generalized Veltman models

Let W be a generalized Veltman model, Γ an adequate set of formulas and $\sim \subseteq \equiv_{\Gamma}$ an equivalence relation on W. For $V \subseteq W$, put $V_{\sim} = \{[w]: w \in V\}$.

Filtration theorem: for all $w \in W$ and $A \in \Gamma$, $[w] \vDash A$ iff $w \vDash A$. Proof: by induction. Existence: using a particular \sim which is defined using bisimulations.
Filtrations of generalized Veltman models

Let W be a generalized Veltman model, Γ an adequate set of formulas and $\sim \subseteq \equiv_\Gamma$ an equivalence relation on W. For $V \subseteq W$, put $V_\sim = \{[w] : w \in V\}$. A filtration is a generalized Veltman model over W/\sim s.t.

- if wRu and there is $\Box A \in \Gamma$ s.t. $w \not\models \Box A$ and $u \models \Box A$, then $[w]\tilde{R}[u]$
Filtrations of generalized Veltman models

Let \mathcal{W} be a generalized Veltman model, Γ an adequate set of formulas and $\sim \subseteq \equiv_{\Gamma}$ an equivalence relation on \mathcal{W}. For $V \subseteq \mathcal{W}$, put $V_\sim = \{[w] : w \in V\}$. A filtration is a generalized Veltman model over \mathcal{W}/\sim s.t.

- if wRu and there is $\square A \in \Gamma$ s.t. $w \not\models \square A$ and $u \models \square A$, then $[w] R [u]$
- $[u] S_{[w]} V_\sim$ iff for all $w' \in [w]$ and $u' \in [u]$ s.t. $w' Ru'$ we have $u' S_{w'} V'$ for some V' s.t. $V_\sim \subseteq V_\sim$

Filtration theorem: for all $w \in \mathcal{W}$ and $A \in \Gamma$, $[w] \models A$ iff $w \models A$. Proof: by induction. Existence: using a particular \sim which is defined using bisimulations.
Filtrations of generalized Veltman models

Let \mathcal{W} be a generalized Veltman model, Γ an adequate set of formulas and $\sim \subseteq \equiv \subseteq \Gamma$ an equivalence relation on \mathcal{W}. For $V \subseteq \mathcal{W}$, put $V_\sim = \{[w] : w \in V\}$. A filtration is a generalized Veltman model over \mathcal{W}/\sim s.t.

- if wRu and there is $\square A \in \Gamma$ s.t. $w \not\models \square A$ and $u \models \square A$, then $[w] \tilde{R} [u]$
- $[u] \tilde{S}_{[w]} V_\sim$ iff for all $w' \in [w]$ and $u' \in [u]$ s.t. $w'Ru'$ we have $u'S_{w'} V'$ for some V' s.t. $V' \subseteq V_\sim$
- $[w] \models p$ iff $w \models p$, for each propositional variable $p \in \Gamma$

Filtration theorem: for all $w \in \mathcal{W}$ and $A \in \Gamma$, $[w] \models A$ iff $w \models A$. Proof: by induction. Existence: using a particular \sim which is defined using bisimulations.
Filtrations of generalized Veltman models

Let W be a generalized Veltman model, Γ an adequate set of formulas and $\sim \subseteq \equiv_\Gamma$ an equivalence relation on W. For $V \subseteq W$, put $V_\sim = \{ [w] : w \in V \}$. A filtration is a generalized Veltman model over W/\sim s.t.

- if wRu and there is $\Box A \in \Gamma$ s.t. $w \not\models \Box A$ and $u \models \Box A$, then $[w] \tilde{R} [u]$
- $[u] \tilde{S}_{[w]} V_\sim$ iff for all $w' \in [w]$ and $u' \in [u]$ s.t. $w' Ru'$ we have $u' S_{w'} V'$ for some V' s.t. $V'_\sim \subseteq V_\sim$
- $[w] \models p$ iff $w \models p$, for each propositional variable $p \in \Gamma$

Filtration theorem: for all $w \in W$ and $A \in \Gamma$, $[w] \models A$ iff $w \models A$.

Proof: by induction

Existence: using a particular \sim which is defined using bisimulations.
Filtrations of generalized Veltman models

Let W be a generalized Veltman model, Γ an adequate set of formulas and $\sim \subseteq \equiv \Gamma$ an equivalence relation on W. For $V \subseteq W$, put $V_\sim = \{[w] : w \in V\}$. A filtration is a generalized Veltman model over W/\sim s.t.

- if wRu and there is $\Box A \in \Gamma$ s.t. $w \not\Vdash \Box A$ and $u \Vdash \Box A$, then $[w][\tilde{R}[u]$
- $[u][\tilde{S}_w] V_\sim$ iff for all $w' \in [w]$ and $u' \in [u]$ s.t. $w'Ru'$ we have $u'S_{w'} V'$ for some V' s.t. $V'_\sim \subseteq V_\sim$
- $[w] \Vdash p$ iff $w \Vdash p$, for each propositional variable $p \in \Gamma$

Filtration theorem: for all $w \in W$ and $A \in \Gamma$, $[w] \Vdash A$ iff $w \Vdash A$. Proof: by induction
Filtrations of generalized Veltman models

Let W be a generalized Veltman model, Γ an adequate set of formulas and $\sim \subseteq \equiv_{\Gamma}$ an equivalence relation on W.
For $V \subseteq W$, put $V_{\sim} = \{[w] : w \in V\}$. A filtration is a generalized Veltman model over W/\sim s.t.
- if wRu and there is $\Box A \in \Gamma$ s.t. $w \not\models \Box A$ and $u \models \Box A$, then $[w]\tilde{R}[u]$
- $[u]\tilde{S}_{[w]} V_{\sim}$ iff for all $w' \in [w]$ and $u' \in [u]$ s.t. $w'Ru'$ we have $u'S_{w'} V'$ for some V' s.t. $V'_{\sim} \subseteq V_{\sim}$
- $[w] \not\models p$ iff $w \not\models p$, for each propositional variable $p \in \Gamma$

Filtration theorem: for all $w \in W$ and $A \in \Gamma$, $[w] \not\models A$ iff $w \not\models A$.
Proof: by induction
Existence: using a particular \sim which is defined using bisimulations
Filtration via bisimulations

Vrgoč and Vuković (2010) define an appropriate notion of bisimulation between generalized Veltman models, with good properties:

- If there is a bisimulation Z between W and W' s.t. wZw', then w and w' are modally equivalent.
- The identity is a bisimulation, the inverse of a bisimulation is a bisimulation, the composition of bisimulations is a bisimulation, the union of bisimulations is a bisimulation.

Consequences:
- For $w, u \in W$, put $w \sim u$ iff there is a bisimulation $Z \subseteq W \times W$ s.t. wZu. Then \sim is an equivalence relation.
- For any set of formulas Γ, we have $\sim \subseteq \equiv \Gamma$.

Existence of a filtration over W/\sim: We prove that the filtration over this particular \sim is in fact a generalized Veltman model.
Filtration via bisimulations

Vrgoč and Vuković (2010) define an appropriate notion of bisimulation between generalized Veltman models, with good properties:

- if there is a bisimulation Z between W and W' s.t. wZw', then w and w' are modally equivalent
Filtration via bisimulations

Vrgoč and Vuković (2010) define an appropriate notion of bisimulation between generalized Veltman models, with good properties:

- if there is a bisimulation Z between W and W' s.t. wZw', then w and w' are modally equivalent
- the identity is a bisimulation, the inverse of a bisimulation is a bisimulation, the composition of bisimulations is a bisimulation, the union of bisimulations is a bisimulation

Consequences:

- for $w, u \in W$, put $w \sim u$ iff there is a bisimulation $Z \subseteq W \times W$ s.t. wZu. Then \sim is an equivalence relation.
- for any set of formulas Γ we have $\sim \subseteq \equiv \Gamma$

Existence of a filtration over W/\sim: we prove that the filtration over this particular \sim is in fact a generalized Veltman model.
Filtration via bisimulations

Vrgoč and Vuković (2010) define an appropriate notion of bisimulation between generalized Veltman models, with good properties:

- if there is a bisimulation Z between W and W' s.t. wZw', then w and w' are modally equivalent.
- the identity is a bisimulation, the inverse of a bisimulation is a bisimulation, the composition of bisimulations is a bisimulation, the union of bisimulations is a bisimulation.

Consequences:

- for $w, u \in W$, put $w \sim u$ iff there is a bisimulation $Z \subseteq W \times W$ s.t. wZu. Then \sim is an equivalence relation.
Filtration via bisimulations

Vrgoč and Vuković (2010) define an appropriate notion of bisimulation between generalized Veltman models, with good properties:

- if there is a bisimulation Z between W and W' s.t. wZw', then w and w' are modally equivalent
- the identity is a bisimulation, the inverse of a bisimulation is a bisimulation, the composition of bisimulations is a bisimulation, the union of bisimulations is a bisimulation

Consequences:

- for $w, u \in W$, put $w \sim u$ iff there is a bisimulation $Z \subseteq W \times W$ s.t. wZu. Then \sim is an equivalence relation.
- for any set of formulas Γ we have $\sim \subseteq \equiv_{\Gamma}$
Filtration via bisimulations

Vrgoč and Vuković (2010) define an appropriate notion of bisimulation between generalized Veltman models, with good properties:

▶ if there is a bisimulation Z between W and W' s.t. wZw', then w and w' are modally equivalent
▶ the identity is a bisimulation, the inverse of a bisimulation is a bisimulation, the composition of bisimulations is a bisimulation, the union of bisimulations is a bisimulation

Consequences:

▶ for $w, u \in W$, put $w \sim u$ iff there is a bisimulation $Z \subseteq W \times W$ s.t. wZu. Then \sim is an equivalence relation.
▶ for any set of formulas Γ we have $\sim \subseteq \equiv_\Gamma$

Existence of a filtration over W/\sim: we prove that the filtration over this particular \sim is in fact a generalized Veltman model.
Finite model property of interpretability logics

To prove the finite model property using filtration, we need \(\sim \) to generate only finitely many equivalence classes.
Finite model property of interpretability logics

To prove the finite model property using filtration, we need \sim to generate only finitely many equivalence classes.

- the relation \equiv_{Γ} generates finitely many classes if Γ is finite, but characteristic properties of structures may not be preserved under filtration.
Finite model property of interpretability logics

To prove the finite model property using filtration, we need \sim to generate only finitely many equivalence classes.

- the relation \equiv_Γ generates finitely many classes if Γ is finite, but characteristic properties of structures may not be preserved under filtration
- the relation \sim defined using bisimulations preserves properties of structures, but it refines \equiv_Γ, so we may lose finiteness

Fortunately, in the case of generalized Veltman semantics, we can obtain the finite model property by using filtration twice:

- first we obtain a generalized Veltman model with bounded length of \tilde{R}-chains,
- and then we use this to show that repeated filtration gives a finite model.

Using this main idea, we obtained an alternative proof of the finite model property of interpretability logic IL. And we proved the finite model property of the systems ILM and ILM_0 w.r.t. generalized Veltman models.
Finite model property of interpretability logics

To prove the finite model property using filtration, we need \sim to generate only finitely many equivalence classes.

- the relation \equiv_Γ generates finitely many classes if Γ is finite, but characteristic properties of structures may not be preserved under filtration

- the relation \sim defined using bisimulations preserves properties of structures, but it refines \equiv_Γ, so we may lose finiteness

Fortunately, in the case of generalized Veltman semantics, we can obtain the finite model property by using filtration twice
Finite model property of interpretability logics

To prove the finite model property using filtration, we need \sim to generate only finitely many equivalence classes.

- the relation \equiv_Γ generates finitely many classes if Γ is finite, but characteristic properties of structures may not be preserved under filtration.

- the relation \sim defined using bisimulations preserves properties of structures, but it refines \equiv_Γ, so we may lose finiteness.

Fortunately, in the case of generalized Veltman semantics, we can obtain the finite model property by using filtration twice:

- first we obtain a generalized Veltman model with bounded length of \tilde{R}–chains,
Finite model property of interpretability logics

To prove the finite model property using filtration, we need \sim to generate only finitely many equivalence classes.

- the relation \equiv_{Γ} generates finitely many classes if Γ is finite, but characteristic properties of structures may not be preserved under filtration
- the relation \sim defined using bisimulations preserves properties of structures, but it refines \equiv_{Γ}, so we may lose finiteness

Fortunately, in the case of generalized Veltman semantics, we can obtain the finite model property by using filtration twice:

- first we obtain a generalized Veltman model with bounded length of \tilde{R}–chains,
- and then we use this to show that repeated filtration gives a finite model.
Finite model property of interpretability logics

To prove the finite model property using filtration, we need \(\sim \) to generate only finitely many equivalence classes.

- the relation \(\equiv_\Gamma \) generates finitely many classes if \(\Gamma \) is finite, but characteristic properties of structures may not be preserved under filtration
- the relation \(\sim \) defined using bisimulations preserves properties of structures, but it refines \(\equiv_\Gamma \), so we may lose finiteness

Fortunately, in the case of generalized Veltman semantics, we can obtain the finite model property by using filtration twice:

- first we obtain a generalized Veltman model with bounded length of \(\tilde{R} \)-chains,
- and then we use this to show that repeated filtration gives a finite model.

Using this main idea, we obtained an alternative proof of the finite model property of interpretability logic \(\text{IL} \) w.r.t. Veltman models, and we proved the finite model property of the systems \(\text{ILM} \) and \(\text{ILM}_0 \) w.r.t. generalized Veltman models.