
Proposals for a Noncommutative
Continuum

Revisiting Brouwer and Weyl after Connes



Brouwer and Weyl (.gz)

Brouwer: Continuum should be regarded as “sequences of
nested intervals whose measure converges to zero.”

Brouwer: “We call such a sequence of nested intervals a
real number P . We must stress that the point P is the
sequence itself; not something like ‘the limiting point’ to
which, according to the classical view, the intervals
converge. Every one of these intervals is therefore part of
the point P”.

Brouwer and Weyl both used dyadic rational intervals
[m−12n , m+1

2n ] ⊂ Q, m ∈ Z, n ∈ N. There is no special reason,
here, to not allow other rational intervals.

Furthermore (vaguely): the continuum is not a “static” set
of a priori given points; it should be viewed as a collection
of processes — some sort of dynamical system.
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Some modificatons, after non-commutative geometry

The concept of space is algebraic: Gel’fand representation
characterizes (certain) spaces as C∗-algebras of continuous
functions.

Connes, roughly: non commutative C∗-algebras correspond
to “non-commutative” spaces.

Question: Is there a C∗-algebra — a C∗-dynamical system
— that captures some features of Brouwer’s idea of the
continuum?



The Game (not of thrones)

Find a C∗-dynamical system that “models” descending
chains of intervals.

Do this without overhauling the foundational framework.

Freely use any part of mathematics that may seem relevant.

Suspend “foundational” judgments and see what happens.



Interval arithmetic in numerical analysis

Numerical analysts Warmus (in Poland) and Sunaga (in Japan)
introduced the algebra of “approximate numbers”, namely
intervals. Each interval is represented in the form
x+ yε = [x− y, x+ y], where ε stands for [−1, 1]. Think of it as
x± y.

versities. A web site at the University of Texas at
El Paso (www.cs.utep.edu/interval-comp) pro-
vides links to these groups as well as a useful
archive of historical documents. The journal Reli-
able Computing (formerly Interval Computations) is
the main publication for the field; there are also
mailing lists and annual conferences. Implemen-
tations of interval arithmetic are available both
as specialized programming languages and as li-
braries that can be linked to a program written in
a standard language. There are even interval
spreadsheet programs and interval calculators.

One thing the interval community has been ar-
dently seeking—so far without success—is sup-
port for interval algorithms in standard comput-
er hardware. Most modern processor chips come
equipped with circuitry for floating-point arith-
metic, which reduces the process of manipulating
significands and exponents to a single machine-
language instruction. In this way floating-point
calculations become part of the infrastructure,
available to everyone as a common resource.
Analogous built-in facilities for interval compu-
tations are technologically feasible, but manufac-
turers have not chosen to provide them. A 1996
article by G. William Walster of Sun Microsys-
tems asks why. Uncertainty of demand is surely
one reason; chipmakers are wary of devoting re-
sources to facilities no one might use. But Walster
cites other factors as well. Hardware support for
floating-point arithmetic came only after the
IEEE published a standard for the format. There
have been drafts of standards for interval arith-
metic (the latest written by Dmitri Chiriaev and
Walster in 1998), but none of the drafts has been
adopted by any standards-setting body.

Gotchas
Although the principles of interval computing
may seem obvious or even trivial, getting the al-
gorithms right is not easy. There are subtleties.
There are gotchas. The pitfalls of division by an
interval that includes zero have already been
mentioned. Here are a few more trouble spots.

In doing arithmetic, we often rely on mathe-
matical laws or truths such as x + –x = 0 and
(a + b)x = ax + bx. With intervals, some of these
rules fail to hold. In general, an interval has no
additive inverse; that is, given a nondegenerate
interval [u–, u–], there is no interval [v–, v–] for which
[u–, u–]+[v–, v–] = [0,0]. There is no multiplicative in-
verse either—no pair of nondegenerate intervals
for which [u–, u–]×[v–, v–] = [1,1]. The reason is clear
and fundamental: No valid operation can ever di-
minish the width of an interval, and [0,0] and [1,1]
are intervals of zero width.

The distributive law also fails for intervals. In
an expression such as [1,2]× ([–3,–2] + [3,4]), it
makes a difference whether you do the addition
first and then multiply, or do two multiplications
and then add. One sequence of operations gives
the result [0,4], the other [–3,6]. Strictly speaking,
either of these results is correct—both of them

bound any true value of the original expression—
but the narrower interval is surely preferable.

Another example: squaring an interval. The
obvious definition [x–, x–]2 = [x–, x–]× [x–, x–] seems to
work in some cases, such as [1,2]2 = [1,4]. But
what about [–2,2]2 = [–4,4]? Whoops! The square
of a real number cannot be negative. The source
of the error is treating the two appearances of
[x–, x–] in the right-hand side of the formula as if
they were independent variables; in fact, what-
ever value x assumes in one instance, it must be
the same in the other. The same phenomenon can
arise in expressions such as 2x/x. Suppose x is
the interval [2,4]; then naïvely following the rules
of interval arithmetic yields the answer [1,4]. But
of course the correct value is 2 (or [2,2]) for any
nonzero value of x.

Comparisons are yet another murky area.
Computer programs rely heavily on conditional
expressions such as “if (x < y) then....” When x
and y are intervals, the comparison gets tricky. Is
[1, 3] less than [2, 4], or not? Whereas there are
just three elementary comparisons for pointlike
numbers (<, = and >), there are as many as 18
well-defined relations for intervals. It’s not al-
ways obvious which one to choose, or even how
to name them. (Chiriaev and Walster refer to
“certainly relations” and “possibly relations.”)

Finally, look at what happens if a naïve im-
plementation of the sine function is given an in-
terval argument. Sometimes there is no prob-
lem: sin([30°,60°]) yields the correct interval
[0.5,0.866]. But sin([30°,150°]) returns [0.5,0.5],
which is an error; the right answer is [0.5,1.0].
What leads us astray is the assumption that in-
terval calculations can be based on end points
alone, which is true only for monotonic functions
(those that never “change direction”). For other
functions it is necessary to examine the interior of
an interval for minima and maxima.

In fairness, it should be noted that many cher-
ished mathematical truths fail even in ordinary
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Figure 4. Diagrammatic scheme introduced by Zenon Kulpa of the
Polish Academy of Sciences represents an interval as a point on a
plane, somewhat like the representation of a complex number. Position
of the point along the horizontal axis gives the value of the midpoint of
the interval; height on the vertical axis encodes the radius (or half the
width) of the interval. Diagonals extended to the horizontal axis reveal
the interval itself. Any point within the shaded region represents an
interval that includes the value zero.

ε-axis is vertical in the pic. [1, 4] = 2.5± 1.5 = 2.5 + 1.5ε.



A bit of group theory

Let’s look at the part of the interval algebra which represents
actual intervals: x+ yε with y > 0. This in turn can be
identified with the (connected component of the) affine group,

Aff(R) = Ro R+ ∼=
{( 1 0

b a

) ∣∣∣ b ∈ R, a ∈ R+
}
.

Also known as the “ax+ b” group: the group of affine maps
f(x) = ax+ b (with a > 0).

We now use Aff(R) to define a (noncommutative) multiplication
of intervals.



Why look at the affine group

We are interested in finding an algebra that in some way
represents sequences of intervals. In the Brouwer-Weyl model,
these sequences should be nested.

Now consider the trivial computation:(
1 0
x y

)
·
(

1 0
1
2

1
2

)
=

(
1 0

x+ 1
2y

1
2y

)
.

Right multiplication by α =

(
1 0
1
2

1
2

)
has the effect of

shrinking the interval x+ yε to its right half:

x+ yε→
(
x+

1

2
y
)

+
1

2
yε

[x− y, x+ y] ⊃ [x, x+ y].



A noncommutative algebra of interval sequences

A sequence of multiplications by some (not all!) group
elements is equivalent to a finite sequence of nested intervals:

int(g1) ⊃ int(g1g2) ⊃ · · · ⊃ int(g1g2 · · · gn).

Informally: the group multiplication ecnodes the inclusion
relation among intervals (considered as elements of the group).
Choosing a generating set of Aff(R), for words u and v in the
generators we (almost) have:

int(u) ⊆ int(v) ⇐⇒ v is a prefix of u.

But this is not correct. Not yet. (1) Aff(R) is uncountable, so it
does not have a discrete set of generators; (2) we must choose
generators in a special way: they should be contractions; then
(3) there are issues with inverses of generators (inverse of a
contraction is an expansion).



Group and semigroup algebras

Obviously there will some corrections and decisions to make.
Still, this is the basic idea: we have a group multiplication that
we like, so turn it into an algebra in the usual way. I.e., make it
a group algebra. Use group elements as the basis of a vector
space and extend the group multiplication by linearity.

But contractions are a semigroup, not a group: no inverses. So
if we want nested sequences, we should have a semigroup
algebra. For example, the matrices

α =

(
1 0
1
2

1
2

)
, β =

(
1 0
−1

2
1
2

)
generate the free semigroup. The free semigroup algebra on two
generators is simply the algebra of noncommuting polynomials
in two variables.



Several options at this stage

In this thought experiment, the Brouwer-Weyl continuum
appears as (more or less) the semigroup algebra QB, where B is
the semigroup generated by the affine matrices corresponding to
dyadic rational intervals.

Since we are not interested in ditching R, or C, we have more
options. We can work with real or complex group algebras, or
C∗ algebras.



A definition

Let M be the submonoid of the rational affine group, consisting
of subintervals of [−1, 1] ∩Q.

Lemma

For intervals a+ bε and c+ dε: a+ εb ⊆ c+ εd if and only if
a+ bε = (c+ dε)(x+ yε) in Aff(Q) for some x+ εy ∈M (i.e.
|x|+ y ≤ 1).



Less formally. . .

By discussions above, the prefix order on Aff(Q) induced by the
monoid M , namely:

x ≤M y ⇐⇒ y ∈ xM

is precisely the reverse inclusion; because right multiplication by
elements of M acts as an affine contraction.



Main definition

Let C(M) be the C∗-algebra of operators on `2(M) obtained by
restricting the left-regular representation of the rational affine
group.

This algebra has the structure of a C∗-dynamical system.



The structure

For each interval x ∈M , let Px be the projection onto the
subspace `2(xM) of `2(M). This is the projection onto the
subspace of intervals of x.

These projections generate an abelian algebra AM since
PxPy = Px∩y (or zero if the intersection is empty or a point).

The monoid M acts on this abelian algebra by endomorphisms
ϕx(Py) = Pxy. Formally the endomorphisms are implemented
by isometries vx such that vxPyv

∗
x = Pxy.

C(M) is the C∗-algebra generated by isometries vx: it is the
semidirect product AM oM . This is the structure of a
C∗-dynamical system.



Heyting algebra semantics

In topos-theoretic foundations of physics the lattice of right
ideals of a monoid—which has the structure a Heyting
algebra—has been used to define a semantics of propositions,
for example by Isham. In this thought experiment, we have:

Theorem

The maximal abelian subalgebra of the continuum C(M)
provides a natural Heyting algebra semantics, with propositions
represented by projections associated to right ideals of the
monoid M .

But there is a kind of dynamics as well, arising from the action
of the monoid on projections: ϕx(PJ) = PxJ , for right ideals J
of M .



Dual structure

Let ΩM be the set of filters on M as a poset. With the topology
induced from 2M , ΩM is a compact space now known as the
Nica spectrum of M .

The algebra of functions C(ΩM ) is the Gel’fand dual of the
abelian algebra of projections Px.

The monoid M acts on C(ΩM ) by affine substitutions
(basically). By NIca’s results, C(M) is isomorphic to the
crossed product C(ΩM ) oM .



More generally. . .

Essentially, reverse inclusion of intervals is an order relation
defined by the monoid M on the rational affine group.

The construction works for any “quasi-lattice ordered group” (a
term introduced by Nica): their order can be defined as the
prefix order induced from a submonoid (under some conditions).

Therefore we could look at various “discretizations” of this idea
of the continuum, of which dyadic intervals of Brouwer and
Weyl are just one example.



A simple example

Let F be the monoid generated by the subintervals [−1, 0] and
[0, 1] of [−1, 1]: the free monoid on two generators. ΩF is the
usual Cantor space associated with a binary tree (left-right
partitions), and its nodes correspond to the Cayley graph F .
The action of F on this space corresponds to pushing along the
tree by left multiplication.

The algebra C(F ) is known as the Cuntz-Toeplitz algebra T O2,
i.e. the C∗-algebra defined by the generators v1, v2 and
relations: v∗i vj = δij .



Discretizations make a difference

Theorem

A partition of the unit interval into n subintervals generates the
free monoid Fn on n generators. The corresponding algebra
C(Fn) is isomorphic to the Cuntz-Toplitz algebra T On. In
particular, different partitions can yield different “continua”.

The semigroup B generated by dyadic intervals of Brouwer and
Weyl is not free. In the affine group, it generates the subgroup
known as the Baumslag-Solitar group B(1, 2). Also known as
the “wavelet group”, generated by affine maps x→ x+ 1 and
x→ 2x.



Groups acting on trees

The Baumslag-Solitar group B(1,m) is an action of Z on

Z[1/m] =
⋃
n∈Z

mnZ, mnZ→ mn+1Z

Z[1/m] is essentially a tree:
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Remark 2.2. Let a ∈ Z
[

1
m

]
. Write a =

∑
i∈ aimi, 0 ≤ ai ≤ m − 1. The

{ai}i∈ are uniquely determined by a, and all but finitely many are 0. Now,
d(a) = min{i : ai $= 0}. Then a =

∑∞
i=d(a) aimi. For k ∈ Z, a ≡

∑
i<k aimi

(mod mk).

Using this information we can give a sketch of part of the tree that starts at
mk−1Z, k ∈ Z:

mkZ

mk−1Z

mk−1 + mkZ

(m − 1)mk−1 + mkZ

mk+1Z

mk + mk+1Z

(m − 1)mk + mk+1Z

mk−1 + mk+1Z
mk−1 + mk + mk+1Z

mk−1 + (m − 1)mk + mk+1Z

(m − 1)mk−1 + mk+1Z
(m − 1)mk−1 + mk + mk+1Z

(m − 1)mk−1 + (m − 1)mk + mk+1Z

1

Figure 2. part of the tree

Let T +
∞ be the set of all (one-sided) infinite directed paths. Then an element

of T +
∞ is a sequence (ei)∞i=1 of directed edges such that o(ei+1) = t(ei), for all i.

Definition 2.3. Two infinite directed paths p = (ei)∞i=1 and q = (fi)∞i=1 are
equivalent , written p ∼ q, if there are l and k such that el+i = fk+i for all i.

Since each vertex of T has exactly one incoming edge, p ∼ q iff one of p and
q is a subpath of the other.

Note 2.1. 1. ∼ is an equivalence relation on T +
∞

2. By Lemma 2.1 we can see that for any p ∈ T +
∞, there exist k ∈ Z and a

path q with, o(q) = mkZ, such that p ∼ q

Let ∂T = T +
∞/ ∼ be the set of all equivalence classes, and for all l ∈ Z, let

Tl be the subtree that starts at mlZ. Let Xl = ∂Tl be the set of all infinite
paths starting at mlZ.



Picture from geometric group theory

The graph of B is coarsely isometric (“quasi-isometric”) to a
foliation with each leaf a copy of the hyperbolic plane:
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The geometry has two limit cases, real and p-adic: in the pic,
∂l = R and ∂u = Q2.



Continua as noncommutative spaces

Some natural homomorphic images of the contuina defined
here have been studied from the viewpoint of
non-commutative geometry.

The work is ongoing, although no one seems to have
noticed the interval algebra interpretation.

For some reason, algebras that appear in this context also
appear in contemporary mathematical physics.



Higher Dimensions

Similar ideas can be made to work in higher dimensions.

For example, elements of the affine group Q2 oQ+ can be
thought of as disks (rather than intervals), with the
positive component representing radius.

This group is not quasi-lattice ordered since intersection of
disks is not a disk; the difficulty can be resolved but the
algebra has a complicated presentation.

In case of 3D balls, the analog of the Nica spectrum would
be the compactification of the space of future cones in the
sense of special relativity.
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