
Introduction Syntax Translation Query Procedure Communication Procedure

A Non-Monotonic Logic for Distributed Access
Control

Marcos Cramer 1 Diego Agustı́n Ambrossio 1

1University of Luxembourg

LAP 2016
23 - Sept - 2016

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 1 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Outline

1 Introduction

2 Syntax

3 Translation

4 Query Procedure

5 Communication Procedure

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 2 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction

Who has access to what resource?

Many says-based logics.

“A says ϕ”.
“Principal A supports statement ϕ”.

Access is granted iff it is logically entailed by the access control
policy.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 3 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction

Who has access to what resource?

Many says-based logics.

“A says ϕ”.
“Principal A supports statement ϕ”.

Access is granted iff it is logically entailed by the access control
policy.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 3 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction

Who has access to what resource?

Many says-based logics.

“A says ϕ”.
“Principal A supports statement ϕ”.

Access is granted iff it is logically entailed by the access control
policy.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 3 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction

Who has access to what resource?

Many says-based logics.

“A says ϕ”.
“Principal A supports statement ϕ”.

Access is granted iff it is logically entailed by the access control
policy.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 3 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction

Who has access to what resource?

Many says-based logics.

“A says ϕ”.

“Principal A supports statement ϕ”.

Access is granted iff it is logically entailed by the access control
policy.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 3 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction

Who has access to what resource?

Many says-based logics.

“A says ϕ”.
“Principal A supports statement ϕ”.

Access is granted iff it is logically entailed by the access control
policy.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 3 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction

Who has access to what resource?

Many says-based logics.

“A says ϕ”.
“Principal A supports statement ϕ”.

Access is granted iff it is logically entailed by the access control
policy.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 3 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example

Consider the following example:

TA =

{
access(C, r)∧B says access(C,s)⇒ access(C,o)

access(C, r)

}

TB =

{
access(C,s)

¬access(C,s)∧A says access(C,o)⇒ access(C,o)

}

The says-statement is irrelevant.

Communication Overload!

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 4 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example

Consider the following example:

TA =

{
access(C, r)∧B says access(C,s)⇒ access(C,o)

access(C, r)

}

TB =

{
access(C,s)

¬access(C,s)∧A says access(C,o)⇒ access(C,o)

}

The says-statement is irrelevant.

Communication Overload!

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 4 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example

Consider the following example:

TA =

{
access(C, r)∧B says access(C,s)⇒ access(C,o)

access(C, r)

}

TB =

{
access(C,s)

¬access(C,s)∧A says access(C,o)⇒ access(C,o)

}

The says-statement is irrelevant.

Communication Overload!

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 4 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

Monotonicity

New statements cannot lead to less access.

Non-Monotonic!

Modeling Denial.
¬B says ¬ access(C, r)→ access(C, r)

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 5 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

Monotonicity
New statements cannot lead to less access.

Non-Monotonic!

Modeling Denial.
¬B says ¬ access(C, r)→ access(C, r)

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 5 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

Monotonicity
New statements cannot lead to less access.

Non-Monotonic!

Modeling Denial.
¬B says ¬ access(C, r)→ access(C, r)

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 5 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

Monotonicity
New statements cannot lead to less access.

Non-Monotonic!
Modeling Denial.

¬B says ¬ access(C, r)→ access(C, r)

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 5 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

Monotonicity
New statements cannot lead to less access.

Non-Monotonic!
Modeling Denial.
¬B says ¬ access(C, r)→ access(C, r)

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 5 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

The statements issued by a principal completely characterize
what a principal supports.

Similar to the motivation for autoepistemic logic:

“An agent’s knowledge base completely characterizes what the agent
knows”

We use autoepistemic logic with well-founded semantics

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 6 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

The statements issued by a principal completely characterize
what a principal supports.

Similar to the motivation for autoepistemic logic:

“An agent’s knowledge base completely characterizes what the agent
knows”

We use autoepistemic logic with well-founded semantics

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 6 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

The statements issued by a principal completely characterize
what a principal supports.

Similar to the motivation for autoepistemic logic:

“An agent’s knowledge base completely characterizes what the agent
knows”

We use autoepistemic logic with well-founded semantics

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 6 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

The statements issued by a principal completely characterize
what a principal supports.

Similar to the motivation for autoepistemic logic:

“An agent’s knowledge base completely characterizes what the agent
knows”

We use autoepistemic logic with well-founded semantics

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 6 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

We adapt autoepistemic logic to the multi-agent case.

Need to specify how the agents’ “knowledge” interacts.
Standard says-based logic:

Mutual positive introspection:

k says ϕ⇒ j says k says ϕ

For denial, we need:

Mutual negative introspection:

¬k says ϕ⇒ j says ¬k says ϕ

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 7 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

We adapt autoepistemic logic to the multi-agent case.

Need to specify how the agents’ “knowledge” interacts.

Standard says-based logic:

Mutual positive introspection:

k says ϕ⇒ j says k says ϕ

For denial, we need:

Mutual negative introspection:

¬k says ϕ⇒ j says ¬k says ϕ

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 7 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

We adapt autoepistemic logic to the multi-agent case.

Need to specify how the agents’ “knowledge” interacts.
Standard says-based logic:

Mutual positive introspection:

k says ϕ⇒ j says k says ϕ

For denial, we need:

Mutual negative introspection:

¬k says ϕ⇒ j says ¬k says ϕ

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 7 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

We adapt autoepistemic logic to the multi-agent case.

Need to specify how the agents’ “knowledge” interacts.
Standard says-based logic:

Mutual positive introspection:

k says ϕ⇒ j says k says ϕ

For denial, we need:

Mutual negative introspection:

¬k says ϕ⇒ j says ¬k says ϕ

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 7 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

We adapt autoepistemic logic to the multi-agent case.

Need to specify how the agents’ “knowledge” interacts.
Standard says-based logic:

Mutual positive introspection:

k says ϕ⇒ j says k says ϕ

For denial, we need:

Mutual negative introspection:

¬k says ϕ⇒ j says ¬k says ϕ

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 7 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Introduction - Cont.

We adapt autoepistemic logic to the multi-agent case.

Need to specify how the agents’ “knowledge” interacts.
Standard says-based logic:

Mutual positive introspection:

k says ϕ⇒ j says k says ϕ

For denial, we need:
Mutual negative introspection:

¬k says ϕ⇒ j says ¬k says ϕ

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 7 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Outline

1 Introduction

2 Syntax

3 Translation

4 Query Procedure

5 Communication Procedure

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 8 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Syntax

D-ACL Syntax

t denotes an arbitrary term and x and arbitrary variable:

ϕ ::= P(t, . . . , t) | t = t | ¬ϕ | ϕ∧ϕ | ∀x ϕ | t says ϕ

Inductive Definition

An D-ACL inductive definition ∆ is a finite set of rules of the form
P(t1, . . . , tn)← ϕ, where P is an n-ary predicate symbol and ϕ is a
D-ACL formula.

D-ACL Theory

A D-ACL theory is a set that consists of D-ACL formulas and D-ACL
inductive definitions.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 9 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Syntax

D-ACL Syntax

t denotes an arbitrary term and x and arbitrary variable:

ϕ ::= P(t, . . . , t) | t = t | ¬ϕ | ϕ∧ϕ | ∀x ϕ | t says ϕ

Inductive Definition

An D-ACL inductive definition ∆ is a finite set of rules of the form
P(t1, . . . , tn)← ϕ, where P is an n-ary predicate symbol and ϕ is a
D-ACL formula.

D-ACL Theory

A D-ACL theory is a set that consists of D-ACL formulas and D-ACL
inductive definitions.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 9 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Syntax

D-ACL Syntax

t denotes an arbitrary term and x and arbitrary variable:

ϕ ::= P(t, . . . , t) | t = t | ¬ϕ | ϕ∧ϕ | ∀x ϕ | t says ϕ

Inductive Definition

An D-ACL inductive definition ∆ is a finite set of rules of the form
P(t1, . . . , tn)← ϕ, where P is an n-ary predicate symbol and ϕ is a
D-ACL formula.

D-ACL Theory

A D-ACL theory is a set that consists of D-ACL formulas and D-ACL
inductive definitions.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 9 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example

TA =



{p← B says p

p← r}
p∧ s∧B says q⇒ q

r ∨¬r ⇒ s

B says r ∨¬(B says r)⇒ q


TB =


p

C says q⇒ q

C says r ⇒ r

 TC =

{
¬(B says q)⇒ q

B says r ⇒ r

}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 10 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Outline

1 Introduction

2 Syntax

3 Translation

4 Query Procedure

5 Communication Procedure

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 11 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Decision procedure

We define a decision procedure for D-ACL.

It coincides with the well-founded semantics.
It minimizes communication.

Implemented in IDP.

Well-founded semantics uses three truth-values: t, f and u.

Three-valuedness arises only through the modal operator says.

We use p+
A says ϕ

for the upper bound for the truth value of
A says ϕ and p−A says ϕ

for the lower bound.

p+
A says ϕ

is used in positive contexts and p−A says ϕ
in negative

contexts.

In inductive definitions, subformulas cannot be meaningfully
termed positive or negative.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Decision procedure

We define a decision procedure for D-ACL.
It coincides with the well-founded semantics.

It minimizes communication.

Implemented in IDP.

Well-founded semantics uses three truth-values: t, f and u.

Three-valuedness arises only through the modal operator says.

We use p+
A says ϕ

for the upper bound for the truth value of
A says ϕ and p−A says ϕ

for the lower bound.

p+
A says ϕ

is used in positive contexts and p−A says ϕ
in negative

contexts.

In inductive definitions, subformulas cannot be meaningfully
termed positive or negative.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Decision procedure

We define a decision procedure for D-ACL.
It coincides with the well-founded semantics.
It minimizes communication.

Implemented in IDP.

Well-founded semantics uses three truth-values: t, f and u.

Three-valuedness arises only through the modal operator says.

We use p+
A says ϕ

for the upper bound for the truth value of
A says ϕ and p−A says ϕ

for the lower bound.

p+
A says ϕ

is used in positive contexts and p−A says ϕ
in negative

contexts.

In inductive definitions, subformulas cannot be meaningfully
termed positive or negative.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Decision procedure

We define a decision procedure for D-ACL.
It coincides with the well-founded semantics.
It minimizes communication.

Implemented in IDP.

Well-founded semantics uses three truth-values: t, f and u.

Three-valuedness arises only through the modal operator says.

We use p+
A says ϕ

for the upper bound for the truth value of
A says ϕ and p−A says ϕ

for the lower bound.

p+
A says ϕ

is used in positive contexts and p−A says ϕ
in negative

contexts.

In inductive definitions, subformulas cannot be meaningfully
termed positive or negative.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Decision procedure

We define a decision procedure for D-ACL.
It coincides with the well-founded semantics.
It minimizes communication.

Implemented in IDP.

Well-founded semantics uses three truth-values: t, f and u.

Three-valuedness arises only through the modal operator says.

We use p+
A says ϕ

for the upper bound for the truth value of
A says ϕ and p−A says ϕ

for the lower bound.

p+
A says ϕ

is used in positive contexts and p−A says ϕ
in negative

contexts.

In inductive definitions, subformulas cannot be meaningfully
termed positive or negative.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Decision procedure

We define a decision procedure for D-ACL.
It coincides with the well-founded semantics.
It minimizes communication.

Implemented in IDP.

Well-founded semantics uses three truth-values: t, f and u.

Three-valuedness arises only through the modal operator says.

We use p+
A says ϕ

for the upper bound for the truth value of
A says ϕ and p−A says ϕ

for the lower bound.

p+
A says ϕ

is used in positive contexts and p−A says ϕ
in negative

contexts.

In inductive definitions, subformulas cannot be meaningfully
termed positive or negative.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Decision procedure

We define a decision procedure for D-ACL.
It coincides with the well-founded semantics.
It minimizes communication.

Implemented in IDP.

Well-founded semantics uses three truth-values: t, f and u.

Three-valuedness arises only through the modal operator says.

We use p+
A says ϕ

for the upper bound for the truth value of
A says ϕ and p−A says ϕ

for the lower bound.

p+
A says ϕ

is used in positive contexts and p−A says ϕ
in negative

contexts.

In inductive definitions, subformulas cannot be meaningfully
termed positive or negative.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Decision procedure

We define a decision procedure for D-ACL.
It coincides with the well-founded semantics.
It minimizes communication.

Implemented in IDP.

Well-founded semantics uses three truth-values: t, f and u.

Three-valuedness arises only through the modal operator says.

We use p+
A says ϕ

for the upper bound for the truth value of
A says ϕ and p−A says ϕ

for the lower bound.

p+
A says ϕ

is used in positive contexts and p−A says ϕ
in negative

contexts.

In inductive definitions, subformulas cannot be meaningfully
termed positive or negative.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Decision procedure

We define a decision procedure for D-ACL.
It coincides with the well-founded semantics.
It minimizes communication.

Implemented in IDP.

Well-founded semantics uses three truth-values: t, f and u.

Three-valuedness arises only through the modal operator says.

We use p+
A says ϕ

for the upper bound for the truth value of
A says ϕ and p−A says ϕ

for the lower bound.

p+
A says ϕ

is used in positive contexts and p−A says ϕ
in negative

contexts.

In inductive definitions, subformulas cannot be meaningfully
termed positive or negative.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Translation

t(T)

For every modal atom A says ϕ occurring in the body of an inductive
definition in theory T ,

replace A says ϕ by the propositional variable wA says ϕ

add to t(T) the two formulae wA says ϕ⇒ A says ϕ and
A says ϕ⇒ wA says ϕ.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 13 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Translation - Cont.

τ(T)

Let T be a D-ACL theory. τ(T) is constructed from t(T) by performing
the following replacements for every says-atom A says ϕ occurring in
t(T) that is not the sub-formula of another says-atom:

Replace every positive occurrence of A says ϕ in T by p+
A says ϕ

.

Replace every negative occurrence of A says ϕ in T by
p−A says ϕ

.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 14 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example - Translation

TA =



{p← wB says p

p← r}
wB says p⇒ p+

B says p

p−B says p⇒ wB says p

p∧ s∧p−B says q ⇒ q

r ∨¬r ⇒ s

p−B says r ∨¬p+
B says r ⇒ q


TB =


p

p−C says q ⇒ q

p−C says r ⇒ r

 TC =

{
¬p+

B says q ⇒ q

p−B says r ⇒ r

}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 15 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Theories and Structures

We work with partial structures: They are like standard first-order
structures, but with missing information.

Partial Model

We say S is a partial model for T if and only if there exists a total
structure S′ ⊇ S such that S′ |= T .

Minimal Inconsistent Set

Let T a theory such that S 6|= T . We define min incons set(T ,S) as
the set of minimal (under set inclusion) partial structure S′ ⊆ S such
that the theory T has no models that expand S.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 16 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Theories and Structures

Set S
We define S to be the set containing every partial structure S such
that:

For every symbol σ ∈ Σ′, if σ 6= p+
A says ϕ

or σ 6= p−A says ϕ
, then

(σ)I = u
For every says-atom A says ϕ occurring in T :

(p+
A says ϕ

)I 6= t.
(p−A says ϕ

)I 6= f.

For no says-atom A says φ, (p+
A says ϕ

)I = f and (p−A says ϕ
)I = t.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 17 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Outline

1 Introduction

2 Syntax

3 Translation

4 Query Procedure

5 Communication Procedure

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 18 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Query Minimization Procedure.

Input: theory T , D-ACL query α

Output: set L of sets of modal atoms
1: L := /0

2: T := τ(T ∪{{¬α}})
3: for each S ∈ S do
4: if S is not a partial model of T then
5: pick a partial structure Smin from min incons set(T ,S)
6: L := L∪{LSmin}
7: return L

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 19 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example - Query Procedure

Query: “q“

TA =



{p← wB says p

p← r}

wB says p ⇒ p+B says p

p−B says p ⇒ wB says p

p∧ s∧p−B says q ⇒ q

r ∨¬r ⇒ s

p−B says r ∨¬p+B says r ⇒ q



p−B says p and p−B says q : {B says p;B says q}
p−B says r : {B says r}
¬p+

B says r : {¬(B says r)}
L = {{B says p;B says q};{B says r};{¬(B says r)}}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example - Query Procedure

Query: “q“

TA =



{p← wB says p

p← r}

wB says p ⇒ p+B says p

p−B says p ⇒ wB says p

p∧ s∧p−B says q ⇒ q

r ∨¬r ⇒ s

p−B says r ∨¬p+B says r ⇒ q


p−B says p and p−B says q : {B says p;B says q}

p−B says r : {B says r}
¬p+

B says r : {¬(B says r)}
L = {{B says p;B says q};{B says r};{¬(B says r)}}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example - Query Procedure

Query: “q“

TA =



{p← wB says p

p← r}

wB says p ⇒ p+B says p

p−B says p ⇒ wB says p

p∧ s∧p−B says q ⇒ q

r ∨¬r ⇒ s

p−B says r ∨¬p+B says r ⇒ q


p−B says p and p−B says q : {B says p;B says q}

p−B says r : {B says r}
¬p+

B says r : {¬(B says r)}
L = {{B says p;B says q};{B says r};{¬(B says r)}}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example - Query Procedure

Query: “q“

TA =



{p← wB says p

p← r}

wB says p ⇒ p+B says p

p−B says p ⇒ wB says p

p∧ s∧p−B says q ⇒ q

r ∨¬r ⇒ s

p−B says r ∨¬p+B says r ⇒ q


p−B says p and p−B says q : {B says p;B says q}

p−B says r : {B says r}
¬p+

B says r : {¬(B says r)}
L = {{B says p;B says q};{B says r};{¬(B says r)}}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example - Query Procedure

Query: “q“

TA =



{p← wB says p

p← r}

wB says p ⇒ p+B says p

p−B says p ⇒ wB says p

p∧ s∧p−B says q ⇒ q

r ∨¬r ⇒ s

p−B says r ∨¬p+B says r ⇒ q


p−B says p and p−B says q : {B says p;B says q}
p−B says r : {B says r}

¬p+
B says r : {¬(B says r)}
L = {{B says p;B says q};{B says r};{¬(B says r)}}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example - Query Procedure

Query: “q“

TA =



{p← wB says p

p← r}

wB says p ⇒ p+B says p

p−B says p ⇒ wB says p

p∧ s∧p−B says q ⇒ q

r ∨¬r ⇒ s

p−B says r ∨¬p+B says r ⇒ q


p−B says p and p−B says q : {B says p;B says q}
p−B says r : {B says r}

¬p+
B says r : {¬(B says r)}
L = {{B says p;B says q};{B says r};{¬(B says r)}}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example - Query Procedure

Query: “q“

TA =



{p← wB says p

p← r}

wB says p ⇒ p+B says p

p−B says p ⇒ wB says p

p∧ s∧p−B says q ⇒ q

r ∨¬r ⇒ s

p−B says r ∨¬p+B says r ⇒ q


p−B says p and p−B says q : {B says p;B says q}
p−B says r : {B says r}
¬p+

B says r : {¬(B says r)}

L = {{B says p;B says q};{B says r};{¬(B says r)}}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example - Query Procedure

Query: “q“

TA =



{p← wB says p

p← r}

wB says p ⇒ p+B says p

p−B says p ⇒ wB says p

p∧ s∧p−B says q ⇒ q

r ∨¬r ⇒ s

p−B says r ∨¬p+B says r ⇒ q


p−B says p and p−B says q : {B says p;B says q}
p−B says r : {B says r}
¬p+

B says r : {¬(B says r)}

L = {{B says p;B says q};{B says r};{¬(B says r)}}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example - Query Procedure

Query: “q“

TA =



{p← wB says p

p← r}

wB says p ⇒ p+B says p

p−B says p ⇒ wB says p

p∧ s∧p−B says q ⇒ q

r ∨¬r ⇒ s

p−B says r ∨¬p+B says r ⇒ q


p−B says p and p−B says q : {B says p;B says q}
p−B says r : {B says r}
¬p+

B says r : {¬(B says r)}
L = {{B says p;B says q};{B says r};{¬(B says r)}}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Outline

1 Introduction

2 Syntax

3 Translation

4 Query Procedure

5 Communication Procedure

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 21 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Communication Procedure

(1) Apply Query Minimization Procedure.

(2) Build query graph:

query vertices: 〈A : α〉 : {? | t | f | u}.
says vertices: {A says ϕ}; {¬A says ϕ};
unlabelled edges: from query vertices to says vertices (that make
the query true).
labelled edges: from says vertices to query vertices.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 22 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Communication Procedure

(1) Apply Query Minimization Procedure.
(2) Build query graph:

query vertices: 〈A : α〉 : {? | t | f | u}.
says vertices: {A says ϕ}; {¬A says ϕ};
unlabelled edges: from query vertices to says vertices (that make
the query true).
labelled edges: from says vertices to query vertices.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 22 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Communication Procedure

(1) Apply Query Minimization Procedure.
(2) Build query graph:

query vertices: 〈A : α〉 : {? | t | f | u}.

says vertices: {A says ϕ}; {¬A says ϕ};
unlabelled edges: from query vertices to says vertices (that make
the query true).
labelled edges: from says vertices to query vertices.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 22 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Communication Procedure

(1) Apply Query Minimization Procedure.
(2) Build query graph:

query vertices: 〈A : α〉 : {? | t | f | u}.
says vertices: {A says ϕ}; {¬A says ϕ};

unlabelled edges: from query vertices to says vertices (that make
the query true).
labelled edges: from says vertices to query vertices.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 22 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Communication Procedure

(1) Apply Query Minimization Procedure.
(2) Build query graph:

query vertices: 〈A : α〉 : {? | t | f | u}.
says vertices: {A says ϕ}; {¬A says ϕ};
unlabelled edges: from query vertices to says vertices (that make
the query true).

labelled edges: from says vertices to query vertices.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 22 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Communication Procedure

(1) Apply Query Minimization Procedure.
(2) Build query graph:

query vertices: 〈A : α〉 : {? | t | f | u}.
says vertices: {A says ϕ}; {¬A says ϕ};
unlabelled edges: from query vertices to says vertices (that make
the query true).
labelled edges: from says vertices to query vertices.

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 22 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph

We query principal A about the truth value of q.

minimize query(A,q)

L = {{B says p;B says q};{B says r};{¬(B says r)}}

We start building the query graph:

〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 23 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph

We query principal A about the truth value of q.

minimize query(A,q)

L = {{B says p;B says q};{B says r};{¬(B says r)}}

We start building the query graph:

〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 23 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph

We query principal A about the truth value of q.

minimize query(A,q)

L = {{B says p;B says q};{B says r};{¬(B says r)}}

We start building the query graph:

〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 23 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph

We query principal A about the truth value of q.

minimize query(A,q)

L = {{B says p;B says q};{B says r};{¬(B says r)}}

We start building the query graph:

〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 23 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph

We query principal A about the truth value of q.

minimize query(A,q)

L = {{B says p;B says q};{B says r};{¬(B says r)}}

We start building the query graph:

〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 23 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 :?

t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 :?

{}

t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 :?

t t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 :?

{C says q}

t t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 :?

{C says q}

〈C : q〉 :?

t t

t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 :?

{C says q}

〈C : q〉 :?

{¬(B says q)}

t t

t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 :?

{C says q}

〈C : q〉 :?

{¬(B says q)}

〈B : q〉 :?

t t

t

f

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 :?

{C says q}

〈C : q〉 :?

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

t t

t
f

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 :?

{C says q}

〈C : q〉 : u

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

t t

t
f

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 : u

{C says q}

〈C : q〉 : u

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

t t

t
f

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 : u

{C says q}

〈C : q〉 : u

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

〈B : r〉 :?

t t

t
f

t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 : u

{C says q}

〈C : q〉 : u

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

〈B : r〉 :?

{C says r}

t t

t
f

t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 : u

{C says q}

〈C : q〉 : u

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

〈B : r〉 :?

{C says r}

〈C : r〉 :?

t t

t
f

t
t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 : u

{C says q}

〈C : q〉 : u

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

〈B : r〉 :?

{C says r}

〈C : r〉 :?

{B says r}

t t

t
f

t
t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 : u

{C says q}

〈C : q〉 : u

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

〈B : r〉 :?

{C says r}

〈C : r〉 :?

{B says r}

〈B : r〉 :?

t t

t
f

t
t

t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 : u

{C says q}

〈C : q〉 : u

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

〈B : r〉 :?

{C says r}

〈C : r〉 :?

{B says r}

〈B : r〉 : f
loop!

t t

t
f

t
t

t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 : u

{C says q}

〈C : q〉 : u

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

〈B : r〉 :?

{C says r}

〈C : r〉 : f

{B says r}

〈B : r〉 : f
loop!

t t

t
f

t
t

t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 : u

{C says q}

〈C : q〉 : u

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

〈B : r〉 : f

{C says r}

〈C : r〉 : f

{B says r}

〈B : r〉 : f
loop!

t t

t
f

t
t

t

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 : u

{C says q}

〈C : q〉 : u

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

〈B : r〉 : f

{C says r}

〈C : r〉 : f

{B says r}

〈B : r〉 : f
loop!

〈B : r〉 :?

t t

t
f

t
t

t

f
M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 : u

{C says q}

〈C : q〉 : u

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

〈B : r〉 : f

{C says r}

〈C : r〉 : f

{B says r}

〈B : r〉 : f
loop!

〈B : r〉 :?

. . .

t t

t
f

t
t

t

f
M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 :?

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 : u

{C says q}

〈C : q〉 : u

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

〈B : r〉 : f

{C says r}

〈C : r〉 : f

{B says r}

〈B : r〉 : f
loop!

〈B : r〉 : f

. . .

t t

t
f

t
t

t

f
M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Example Query Graph - Complete

. .

. .〈A : q〉 : t

{B says p;B says q} {B says r} {¬(B says r)}

〈B : p〉 : t

{}

〈B : q〉 : u

{C says q}

〈C : q〉 : u

{¬(B says q)}

〈B : q〉 : u
loop!

(over negation)

〈B : r〉 : f

{C says r}

〈C : r〉 : f

{B says r}

〈B : r〉 : f
loop!

〈B : r〉 : f

. . .

t t

t
f

t
t

t

f
M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24 / 25

Introduction Syntax Translation Query Procedure Communication Procedure

Last Slide

Thanks!

Questions?

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 25 / 25

	Introduction
	Syntax
	Translation
	Query Procedure
	Communication Procedure

