A Non-Monotonic Logic for Distributed Access
Control

Marcos Cramer ' Diego Agustin Ambrossio

University of Luxembourg

LAP 2016
23 - Sept - 2016

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Outline

0 Introduction

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction

@ Who has access to what resource?

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction

@ Who has access to what resource?

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction

@ Who has access to what resource?

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction

@ Who has access to what resource?
@ Many says-based logics.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction

@ Who has access to what resource?
@ Many says-based logics.

e “Asays ¢

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction

@ Who has access to what resource?
@ Many says-based logics.

e “Asays ¢
e “Principal A supports statement ¢”.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction

@ Who has access to what resource?
@ Many says-based logics.

e “Asays ¢

e “Principal A supports statement ¢”.

@ Access is granted iff it is logically entailed by the access control
policy.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Example

Consider the following example:
. { access(C,r) \ B says access(C,s) = access(C, o)}
A =

access(C,r)

] access(C,s)
5 —access(C, s) \ A says access(C, 0) = access(C, 0)

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Example

Consider the following example:

| access(C,r) A\ B says access(C, s) = access(C, o)
AT access(C,r)

access(C, s)
—access(C, s) \ A says access(C, 0) = access(C, 0)

@ The says-statement is irrelevant.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Example

Consider the following example:

| access(C,r) A\ B says access(C, s) = access(C, o)
AT access(C,r)

access(C, s)
—access(C, s) \ A says access(C, 0) = access(C, 0)

@ The says-statement is irrelevant.
@ Communication Overload! .
nni.ln

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ Monotonicity

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ Monotonicity
o New statements cannot lead to /ess access.

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ Monotonicity
o New statements cannot lead to /ess access.
@ Non-Monotonic!

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ Monotonicity

o New statements cannot lead to /ess access.
@ Non-Monotonic!

@ Modeling Denial.

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ Monotonicity
o New statements cannot lead to /ess access.
@ Non-Monotonic!

@ Modeling Denial.
e —Bsays — access(C,r) — access(C,r)

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ The statements issued by a principal completely characterize
what a principal supports.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ The statements issued by a principal completely characterize
what a principal supports.

@ Similar to the motivation for autoepistemic logic:

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ The statements issued by a principal completely characterize
what a principal supports.

@ Similar to the motivation for autoepistemic logic:

“An agent’s knowledge base completely characterizes what the agent ’
knows”

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ The statements issued by a principal completely characterize
what a principal supports.

@ Similar to the motivation for autoepistemic logic:

“An agent’s knowledge base completely characterizes what the agent ’
knows”

@ We use autoepistemic logic with well-founded semantics

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ We adapt autoepistemic logic to the multi-agent case.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ We adapt autoepistemic logic to the multi-agent case.
@ Need to specify how the agents’ “knowledge” interacts.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ We adapt autoepistemic logic to the multi-agent case.

@ Need to specify how the agents’ “knowledge” interacts.
@ Standard says-based logic:

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ We adapt autoepistemic logic to the multi-agent case.

@ Need to specify how the agents’ “knowledge” interacts.
@ Standard says-based logic:
e Mutual positive introspection:

k says ¢ = j says k says @

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ We adapt autoepistemic logic to the multi-agent case.

@ Need to specify how the agents’ “knowledge” interacts.
@ Standard says-based logic:
e Mutual positive introspection:

k says ¢ = j says k says @

@ For denial, we need:

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Introduction

Introduction - Cont.

@ We adapt autoepistemic logic to the multi-agent case.

@ Need to specify how the agents’ “knowledge” interacts.
@ Standard says-based logic:
e Mutual positive introspection:

k says ¢ = j says k says @

@ For denial, we need:
e Mutual negative introspection:

—k says ¢ = j says —k says @

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Syntax

Outline

e Syntax

UNIVERSITE DU
LUXEMBOURG

. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Syntax

t denotes an arbitrary term and x and arbitrary variable:

Q:=P(t,....t) [t=t| Q| ONQ|VxQ|tsays¢

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Syntax

t denotes an arbitrary term and x and arbitrary variable:

Q:=P(t,....t) [t=t| Q| ONQ|VxQ|tsays¢

Inductive Definition

An D-ACL inductive definition A is a finite set of rules of the form
P(t,...,t;) < @, where P is an n-ary predicate symbol and @ is a
D-ACL formula.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Syntax

t denotes an arbitrary term and x and arbitrary variable:

Q:=P(t,....t) [t=t| Q| ONQ|VxQ|tsays¢

Inductive Definition

An D-ACL inductive definition A is a finite set of rules of the form
P(t,...,t;) < @, where P is an n-ary predicate symbol and @ is a
D-ACL formula.

D-ACL Theory
A D-ACL theory is a set that consists of D-ACL formulas and D-ACL
inductive definitions. i

UNIVERSITE DU
LUXEMBOURG

| \

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Syntax

{p< Bsaysp
p<r}

Ta=< pANSABsaysq=q
rv-r=s

BsaysrV—(Bsaysr)=q

p
Ts=< Csaysq=q TC_{ﬁ(Bsaysq):q}
Csaysr=r Bsaysr=r

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 10/25

Translation

Outline

e Translation

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 11/25

Translation

Decision procedure

@ We define a decision procedure for D-ACL.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12/25

Translation

Decision procedure

@ We define a decision procedure for D-ACL.
e It coincides with the well-founded semantics.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12/25

Translation

Decision procedure

@ We define a decision procedure for D-ACL.

e It coincides with the well-founded semantics.
@ |t minimizes communication.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Translation

Decision procedure

@ We define a decision procedure for D-ACL.
e It coincides with the well-founded semantics.
@ |t minimizes communication.

@ Implemented in IDP.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Translation

Decision procedure

@ We define a decision procedure for D-ACL.

e It coincides with the well-founded semantics.
@ |t minimizes communication.

@ Implemented in IDP.
@ Well-founded semantics uses three truth-values: t, f and u.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Translation

Decision procedure

@ We define a decision procedure for D-ACL.

e It coincides with the well-founded semantics.
@ |t minimizes communication.

@ Implemented in IDP.
@ Well-founded semantics uses three truth-values: t, f and u.
@ Three-valuedness arises only through the modal operator says.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12/25

Translation

Decision procedure

We define a decision procedure for D-ACL.

e It coincides with the well-founded semantics.
@ |t minimizes communication.

Implemented in IDP.
Well-founded semantics uses three truth-values: t, f and u.
Three-valuedness arises only through the modal operator says.

We use pzsaysw for the upper bound for the truth value of
A says @ and py 55y ¢ for the lower bound.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12/25

Translation

Decision procedure

We define a decision procedure for D-ACL.

e It coincides with the well-founded semantics.
@ |t minimizes communication.

Implemented in IDP.
Well-founded semantics uses three truth-values: t, f and u.
Three-valuedness arises only through the modal operator says.

We use pzsaysw for the upper bound for the truth value of
A says @ and py 55y ¢ for the lower bound.

p,:,says,(p is used in positive contexts and p, 55y ¢ in Negative
contexts.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12/25

Translation

Decision procedure

We define a decision procedure for D-ACL.

e It coincides with the well-founded semantics.
@ |t minimizes communication.

Implemented in IDP.
Well-founded semantics uses three truth-values: t, f and u.
Three-valuedness arises only through the modal operator says.

We use pzsaysw for the upper bound for the truth value of
A says @ and py 55y ¢ for the lower bound.

° p;says,(p is used in positive contexts and p, 55y ¢ in Negative
contexts.

@ In inductive definitions, subformulas cannot be meaningfully
termed positive or negative. |||||.|||

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 12/25

Translation

Translation

t(T)
For every modal atom A says ¢ occurring in the body of an inductive
definition in theory T,

@ replace A says @ by the propositional variable wa says_¢

@ add to #(T) the two formulae Wasays.9 = A says @ and
A says ¢ = WA,says,<p-

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

13/25

Translation

Translation - Cont.

°(T)
Let T be a D-ACL theory. t(T) is constructed from t(T) by performing

the following replacements for every says-atom A says ¢ occurring in
t(T) that is not the sub-formula of another says-atom:

@ Replace every positive occurrence of A says @ in T by stays,¢-
@ Replace every negative occurrence of A says @ in T by

Pa.says.¢-

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 14/25

Translation

Example - Translation

{p < WBsaysp

p<«r}

w, = pt
B_says_p PB saysp

‘]:4 = pg,says,p = WB.saysp

pA S/\pg,says,q =q

rv-r==s

- +
prsaYS—f Vv _\pB,says,r =q

p
+
— N
Tp = Pc says_q =q T = PB_says.q q
- - = r .
P says.r =T Po.says.r [[R[]
UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 15/25

Translation

Theories and Structures

@ We work with partial structures: They are like standard first-order
structures, but with missing information.

Partial Model

We say S is a partial model for I if and only if there exists a total
structure S’ O Ssuch that S’ = 7.

Minimal Inconsistent Set

Let 7 a theory such that S [~ 7. We define min_incons_set(‘T , S) as
the set of minimal (under set inclusion) partial structure S’ C S such
that the theory 7 has no models that expand S.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 16/25

Translation

Theories and Structures

We define S to be the set containing every partial structure S such
that:

@ For every symbol 6 € ¥/, if 6 # P:\r,says,@ Or G # Py .5 o then
(6) =u
@ For every says-atom A says ¢ occurring in T:
© (Phoaysg) #t
° (p;ﬁsaysi(p)l # 1.

@ For no says-atom A says ¢, (pj_,says,(p)[=fand (pa..,.0) =t

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 17/25

Query Procedure

Outline

e Query Procedure

UNIVERSITE DU
LUXEMBOURG

. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 18/25

Query Procedure

Query Minimization Procedure.

Input: theory 7, D-ACL query o
Output: set L of sets of modal atoms
1:L:=0
2: T =1(TU{{—-0a}})
3: for each S€Sdo
4: if Sis not a partial model of 7" then
5 pick a partial structure Sp,;, from min_incons_set(Z, S)
6 L := Ly {LSnn}
7: return L

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Query Procedure

Example - Query Procedure

Query: “q"

{P < WB.says.p
p<r}

W6 ssssp = P caye
Ta= pé,says,p = WB_says.p
p/\ S/\pg,says,q =q
rv-r=s

— +
pB,sast N "pB,sast =q

UNIVERSITE DU
LUXEMBOURG

. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20/25

Query Procedure

Example - Query Procedure

Query: “q"

Ty =

{P < WB.says.p
p<r}

WB.says.p = pg,saysp
pE,says,p = WB_says_p
PA S/\pg,says,q =q
rv-r=s

— +
pB,sast N "pB,sast =q

® Pgeaysp @A Pgoaye g {B says p; B says q}

UNIVERSITE DU
LUXEMBOURG

20/25

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Query Procedure

Example - Query Procedure

Query: “q"
{P — WB_says.p
p<r}

u
WB_says p = pB,saysp
(Z:‘\ = pg," ays-p = WB_says.p
PASA pE,says,q =q
rv-r=s

— +
pB,sast N "pB,sast =q

® Pg..yep@ndpPg.,. g {Bsaysp;Bsays q}

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20/25

Query Procedure

Example - Query Procedure

Query: “q"

{p Wa_saysp
p<r}

WB says.p = pg,saysp
(1:4 - pg" ays-p = WB,says,p

PASAPg .yeq =1
rv-or=s

— +
pB,sast N "pB,sast =q

® pg..,.pandpg .. :{Bsaysp;Bsaysq}

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20/25

Query Procedure

Example - Query Procedure

Query: “q"

{P < WB.says.p
p<r}

W6 ssssp = P caye
Ta= pé,says,p = WB_says.p
p/\ S/\pg,says,q =q
rv-r=s

— +
pB,sast N "pB,sast =q

° p;,says,p and pg,says,q : {B says p; B says q}
® Ppoayer: {Bsaysr}

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20/25

Query Procedure

Example - Query Procedure

Query: “q"

{p ¢ Wa.saysp
p<r}

WB_says p = pg,saysp
Tn={ Posaysp = Wesaysp
PASA pE,says,q =q

rv-r=s

+
N "pB,sast =q

° p;,says,p and pg,says,q : {B says p; B says q}
® Dponye s {Bsaysr}

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20/25

Query Procedure

Example - Query Procedure

Query: “q"

{P < WB.says.p
p<r}

W6 ssssp = P caye
Ta= pé,says,p = WB_says.p
p/\ S/\pg,says,q =q
rv-r=s

— +
pB,sast N "pB,sast =q

° p;,says,p and pg,says,q : {B says p; B says q}
® Dponye s {Bsaysr}
° _'pg,says,r: {_'(B says f)}

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20/25

Query Procedure

Example - Query Procedure

Query: “q"

{P < WB.says.p
p<r}

W6 ssssp = P caye
Ta= pé,says,p = WB_says.p
p/\ S/\pg,says,q =q
rv-r=s

— +
pB,sast N “Pp_s

° p;,says,p and pg,says,q : {B says p; B says q}
® Dponye s {Bsaysr}
° _‘pg,says,r: {_'(B says f)}

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20/25

Query Procedure

Example - Query Procedure

Query: “q"

{p ¢ Wa.saysp
p<r}

WB_says.p = pg,saysp
Ta= pé,says,p = WB_says.p
PASA pE,says,q =q

rv-r=s

— +
pB,sast N "pB,sast =q

° p;,says,p and pg,says,q : {B says p; B says q}
® Dponye s {Bsaysr}
° _‘pg,says,r: {_'(B says f)}
L = {{Bsays p; B says q};{B says r};{~(B saysr)}} amil

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 20/25

Communication Procedure

Outline

e Communication Procedure

UNIVERSITE DU
LUXEMBOURG

A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 21/25

Communication Procedure

Communication Procedure

(1) Apply Query Minimization Procedure.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 22/25

Communication Procedure

Communication Procedure

(1) Apply Query Minimization Procedure.
(2) Build query graph:

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 22/25

Communication Procedure

Communication Procedure

(1) Apply Query Minimization Procedure.
(2) Build query graph:
e query vertices: (A: o) : {?|t|f]|u}.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 22/25

Communication Procedure

Communication Procedure

(1) Apply Query Minimization Procedure.
(2) Build query graph:
e query vertices: (A: o) : {?|t|f]|u}.
e says vertices: {A says ¢}; {—A says ¢};....

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 22/25

Communication Procedure

Communication Procedure

(1) Apply Query Minimization Procedure.
(2) Build query graph:
e query vertices: (A: o) : {?|t]|f]|u}.
e says vertices: {A says ¢}; {—A says ¢};....
e unlabelled edges: from query vertices to says vertices (that make
the query true).

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 22/25

Communication Procedure

Communication Procedure

(1) Apply Query Minimization Procedure.
(2) Build query graph:
e query vertices: (A: o) : {?|t]|f]|u}.
e says vertices: {A says ¢}; {—A says ¢};....
e unlabelled edges: from query vertices to says vertices (that make
the query true).
labelled edges: from says vertices to query vertices.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 22/25

Communication Procedure

Example Query Graph

We query principal A about the truth value of q.

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 23/25

Communication Procedure

Example Query Graph

We query principal A about the truth value of q.

minimize_query (A, q)

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 23/25

Communication Procedure

Example Query Graph

We query principal A about the truth value of q.

minimize_query (A, q)

L = {{Bsays p;Bsays q};{Bsaysr};{—~(Bsaysr)}}

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 23/25

Communication Procedure

Example Query Graph

We query principal A about the truth value of q.

minimize_query (A, q)

L = {{Bsays p;Bsays q};{Bsaysr};{—~(Bsaysr)}}

We start building the query graph:

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 23/25

Communication Procedure

Example Query Graph

We query principal A about the truth value of q.

minimize_query (A, q)

L = {{Bsays p;Bsays q};{Bsaysr};{—~(Bsaysr)}}

We start building the query graph:

(A:q):?

{Bsaysp;Bsaysq} {Bsaysr} {=(Bsaysr)} ni.lu

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 23/25

Communication Procedure

Example Query Graph - Complete

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}

(B:p):?

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}
(B:p):?

ﬁ

{

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}
(B:p):t

ﬁ

{

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}

X
B:ﬁp):t (B:q):?

{

(

UNIVERSITE DU
LUXEMBOURG

D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}

VA
Bip):t (Biq)?
ﬁ)

{3 {Csays q}

(

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}

VA
Bip)it (Big):?

(B:p): :
ﬁ)
{3 {Csays q}
),
(C:q):?

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}

VA
Bip)it (Big):?

(B:p): 7
ﬁ)
{3 {Csays q}
),
(C:q):?
)
{~(B says q)}

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}

VA
Bip)it (Big):?

(B:p): 7
ﬁ)
{3 {Csays q}
),
(C:q):?
)
{~(B says q)}

.

(Bio 7 .l

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}

VA
Bip)it (Big):?

(B:p): 7
ﬁ)
{3 {Csays q}
),
(C:q):?
)
{~(B says q)}

B: : M
B il

(over negation) LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}
(B:p):t (B:q):?
{3 {Csays q}

(C:q):u

{~(Bsaysq)}
B il

(over negation) LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

/ (A:q):? \

{B says p; B says q} {B sags r} {~(Bsaysr)}
(B: p>/:t <>tﬁ
£{} {c sayis q}

(C:q):u

{~(Bsaysq)}
B il

(over negation) LUXEMBOURG

tu

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

/ (A:q):? \

{B says p; B says q} {B sa,gs r} {—~(Bsaysr)}
/X)-

(B:p):t (B:g):u (B:r):?

ﬁ)

{3 {c sayls q}

(C:q):u

{~(Bsaysq)}
B il

(over negation) LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {~(Bsaysr)}
<B:p>/:t <B\:q>:u <B:}>~:?
£{} {c sayls q} {c sa}i/s r}
(C: q%ju
{~(8 salys 9}

B: : M
B il

(over negation) LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {~(Bsaysr)}
<B:p>/:t <B\:q>:u <B:}>~:?
£{} {c sayls q} {c sa}i/s r}
cdn el
{~(8 salys 9}

B: : M
B il

(over negation) LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {~(Bsaysr)}
<B:p>/:t <B\:q>:u <B:}>~:?
£{} {c sayls q} {c sa}i/s r}
cdn el

{-(Bsaysq)} {Bsaysr}
oo .l

(over negation) LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {~(Bsaysr)}
<B:p>/:t <B\:q>:u <B:}>~:?
£{} {c sayls q} {c sa}i/s r}
cdn el

))

{-(Bsaysq)} {Bsaysr}
(B:g):u)

loop! (B:r):? I"".I“

(over negation) LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {~(Bsaysr)}
<B:p>/:t <B\:q>:u <B:}>~:?
£{} {c sayls q} {c sa}i/s r}
cdn el

))

{-(Bsaysq)} {Bsaysr}

o)

B:q): H
o B0 il
(over negation) loop! ke sune

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {~(Bsaysr)}
<B:p>/:t <B\:q>:u <B:}>~:?
£{} {c sayls q} {c sa}i/s r}
edn el

))

{-(Bsaysq)} {Bsaysr}

o)

B:q): H
o B0 il
(over negation) loop! ke sune

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {~(Bsaysr)}
<B:p>/:t <B\:q>:u <B:ri>~:f
£{} {c sayls q} {c sa}i/s r}
edn el

))

{-(Bsaysq)} {Bsaysr}

o)

B:q): H
o B0 il
(over negation) loop! ke sune

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}
/X)-)
(B:p):t (B:g):u (B:r):f (B:r):?
ﬁ))
{3 {Csays q} {Csaysr}
-)-
(C:q):u (C:r):f

))

{-(Bsaysq)} {Bsaysr}

o)

B:q): H
o B0 il
(over negation) loop! ke sune

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}
/X)-)
(B:p):t (B:g):u (B:r):f (B:r):?
ﬁ)))
{3 {Csays q} {Csaysr}
-)-
(C:q):u (C:r):f

))

{-(Bsaysq)} {Bsaysr}

o)

B:q): H
o B0 il
(over negation) loop! ke sune

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

T

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}
/X)-)
(B:p):t (B:g):u (B:r):f (B:r):f
ﬁ)))
{3 {Csays q} {Csaysr}
-)-
(C:q):u (C:r):f

))

{-(Bsaysq)} {Bsaysr}

o)

B:q): H
o B0 il
(over negation) loop! ke sune

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Communication Procedure

Example Query Graph - Complete

{B says p; B says q} {Bsaysr} {—~(Bsaysr)}
/X)-)
(B:p):t (B:g):u (B:r):f (B:r):f
ﬁ)))
{3 {Csays q} {Csaysr}
-)-
(C:q):u (C:r):f

))

{-(Bsaysq)} {Bsaysr}

o)

B:q): H
o B0 il
(over negation) loop! ke sune

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 24/25

Last Slide

Thanks!

Questions? .
mi.lo

UNIVERSITE DU
LUXEMBOURG

M. Cramer, D. A. Ambrossio A Non-Monotonic Logic for Distributed Access Control 25/25

	Introduction
	Syntax
	Translation
	Query Procedure
	Communication Procedure

