LAP21016
Dubrovnik, Sept. 2016

Interpreting Sequent Calculi as
Client—Server Games

Chris Fermuller

Theory and Logic Group
Vienna University of Technology

Background

Background

@ substructural logics are often motivated by resource consciousness

Background

@ substructural logics are often motivated by resource consciousness

@ this motivation usually remains metaphorical

Background

@ substructural logics are often motivated by resource consciousness
@ this motivation usually remains metaphorical

@ think of Girard's cigarette example:

“For $1 you get a pack of Camels, but also a pack of Marlboro”

Background

@ substructural logics are often motivated by resource consciousness
@ this motivation usually remains metaphorical

@ think of Girard's cigarette example:
“For $1 you get a pack of Camels, but also a pack of Marlboro”

“but also”: multiplicative in contrast to additive conjunction

Background

@ substructural logics are often motivated by resource consciousness
@ this motivation usually remains metaphorical
@ think of Girard's cigarette example:

“For $1 you get a pack of Camels, but also a pack of Marlboro”

“but also”: multiplicative in contrast to additive conjunction

e Gentzen's sequent calculus (LK/LI) is the natural starting point
for connecting inference and resource consciousness

Background

@ substructural logics are often motivated by resource consciousness
@ this motivation usually remains metaphorical
@ think of Girard's cigarette example:

“For $1 you get a pack of Camels, but also a pack of Marlboro”

“but also”: multiplicative in contrast to additive conjunction

e Gentzen's sequent calculus (LK/LI) is the natural starting point
for connecting inference and resource consciousness — this leads to
(fragments of) linear logic, possibly even Lambek calculus

Background

@ substructural logics are often motivated by resource consciousness
@ this motivation usually remains metaphorical

@ think of Girard's cigarette example:

“For $1 you get a pack of Camels, but also a pack of Marlboro’

“but also”: multiplicative in contrast to additive conjunction

e Gentzen's sequent calculus (LK/LI) is the natural starting point
for connecting inference and resource consciousness — this leads to
(fragments of) linear logic, possibly even Lambek calculus

@ to breathe life into the resource metaphor, we need dynamics

— game semantics for substructural sequent calculi

Different types of game semantics

Different types of game semantics

(1) “propositions as games / connectives as game operators”
(since 1990s: Blass, Abramsky, Jagadeesan, Hyland, Ong, ...)

— abstract semantic models of (fragments and variants) of linear logic
— leads to a fully abstract semantic model of PCF

(2) “logical dialogue games”
(since 1960s: Lorenz, Lorenzen, Krabbe, Rahman, ...)

— Proponent/Opponent games with logical and structural rules
— proofs are winning strategies for Proponent

Different types of game semantics

(1) “propositions as games / connectives as game operators”
(since 1990s: Blass, Abramsky, Jagadeesan, Hyland, Ong, ...)

— abstract semantic models of (fragments and variants) of linear logic
— leads to a fully abstract semantic model of PCF

(2) “logical dialogue games”
(since 1960s: Lorenz, Lorenzen, Krabbe, Rahman, ...)

— Proponent/Opponent games with logical and structural rules
— proofs are winning strategies for Proponent

We introduce a new type of games interpreting sequent rules directly:

Different types of game semantics

(1) “propositions as games / connectives as game operators”
(since 1990s: Blass, Abramsky, Jagadeesan, Hyland, Ong, ...)

— abstract semantic models of (fragments and variants) of linear logic
— leads to a fully abstract semantic model of PCF

(2) “logical dialogue games”
(since 1960s: Lorenz, Lorenzen, Krabbe, Rahman, ...)

— Proponent/Opponent games with logical and structural rules
— proofs are winning strategies for Proponent
We introduce a new type of games interpreting sequent rules directly:

(3) Client/Server games (C/S-games)

C/S-games - the basic idea

C/S-games - the basic idea

e we identify formulas with “information packages” (IPs)

C/S-games - the basic idea

e we identify formulas with “information packages” (IPs)

@ |Ps (for the moment) are
either atomic (including atom L = elementary inconsistency)
or structured according to access options:
> any_of(Fy,..., Fp)
> some_of(Fy,..., F,)

> Fygiven F

C/S-games - the basic idea

e we identify formulas with “information packages” (IPs)
@ |Ps (for the moment) are
either atomic (including atom L = elementary inconsistency)
or structured according to access options:
> any_of(Fy,..., Fp)
> some_of(Fy,..., F,)
> Fygiven F
@ a client C seeks to extract/reconstruct an IP H with respect to

a whole bunch of IPs G, ..., G, maintained by the server S:
Notation: Gi,...,G,> H

C/S-games - the basic idea

e we identify formulas with “information packages” (IPs)
@ |Ps (for the moment) are
either atomic (including atom L = elementary inconsistency)
or structured according to access options:
> any_of(Fy,..., Fp)
> some_of(Fy,..., F,)
> Fygiven F
@ a client C seeks to extract/reconstruct an IP H with respect to

a whole bunch of IPs G, ..., G, maintained by the server S:
Notation: Gi,...,G,> H

@ extraction proceeds stepwise, in rounds, initiated by C

C/S-games - the basic idea

e we identify formulas with “information packages” (IPs)

@ |Ps (for the moment) are
either atomic (including atom L = elementary inconsistency)
or structured according to access options:
> any_of(Fy,..., Fp)
> some_of(Fy,..., F,)
> Fygiven F
@ a client C seeks to extract/reconstruct an IP H with respect to

a whole bunch of IPs G, ..., G, maintained by the server S:
Notation: Gi,...,G,> H

@ extraction proceeds stepwise, in rounds, initiated by C

@ C succeeds (wins) if H is atomic and € {Gy, ..., G,} the final state.
We are interested in winning strategies for C.

Two types of rounds

Two types of rounds

in each state I > H the client C may request one of two actions from S:
e UNPACK one of your (S's) IP
e CHECK my (C's) current IP

Two types of rounds

in each state I > H the client C may request one of two actions from S:
e UNPACK one of your (S's) IP
e CHECK my (C's) current IP

UNPACK-rules: C picks G € ' (= bunch of IPs provided by S)

(Usny) G =any_of(F1,...,Fp): C chooses i, S adds F; to I
(UZ,,e) G =some_of(Fi,...,Fp): S chooses i and adds F; to I’
(Uziven) G = (F1 given Fp): either S adds F; to I or F; replaces H

(U]) G= L: game ends, C wins
CHECK-rules: depend on C's current IP H.
(Cany) H =any_of(Fi,...,Fp): S chooses i, F; replaces H
(Csome) H =some_of(Fy,...,F,): C chooses i, F; replaces H
(g,ve,,) = (Figiven F,): S adds F, to I, Fy replaces H
)

(Ciom) H is atomic: game ends, C wins if H € T

A simple example

A simple example

A simple example

[(a,b),(b,c)]
some_of(any_of(a, b),any_of(b, ¢)) > some_of(b, d)

A simple example

[(a,b),(b,c)]
some_of(any_of(a, b),any_of(b, ¢)) > some_of(b, d)

l« Csome

A simple example

[(a,b),(b,c)]
some_of(any_of(a, b),any_of(b, ¢)) > some_of(b, d)
b Coome
[(a,b),(b,c)]>b

A simple example

[(a,b),(b,c)]
some_of(any_of(a, b),any_of(b, ¢)) > some_of(b, d)
b Coome
[(a,b),(b,c)]>b
v N Ugome

A simple example

[(a,b),(b,c)]
some_of(any_of(a, b),any_of(b, ¢)) > some_of(b, d)
b Coome
[(a,b),(b,c)]>b
v N Ugome
any_of(a, b),[(a, b), (b, c)]> b any_of(b, c),[(a, b),(b,c)]>b

A simple example

[(a,b),(b,c)]
some_of(any_of(a, b),any_of(b, ¢)) > some_of(b, d)
b Coome
[(a,b),(b,c)]>b
v N Ugome
any_of(a, b),[(a, b), (b, c)]> b any_of(b, c),[(a, b),(b,c)]>b
4 Usy b Usy

A simple example

[(a,b),(b,c)]
some_of(any_of(a, b),any_of(b, ¢)) > some_of(b, d)
l« Csome
[(a, b), (b,)] > b
v N Ugome
any_of(a, b), (2, b). (b,)] > b any_of(b, ¢), [(, b} (b,)] > b
4 Usy b Usy

b,any_of(a, b),[(a, b), (b,c)]>b b,any_of(b,c),[(a, b),(b,c)]> b
C wins C wins

A simple example

[(a,b),(b,c)]
some_of(any_of(a, b),any_of(b, ¢)) > some_of(b, d)
b Coome
[(a,b),(b,c)]>b
v N Ugome
any_of(a, b),[(a, b), (b, c)]> b any_of(b, c),[(a, b),(b,c)]>b
4 Usy b Usy

b,any_of(a, b),[(a, b), (b,c)]>b b,any_of(b,c),[(a, b),(b,c)]> b
C wins C wins

Note: (winning) strategies for C are trees of states
that branch for all choices of S

Logical connectives in disguise

Logical connectives in disguise

e any_of(Fy,...,F,) correspondsto FiA...AF,
e some_of(Fi,...,Fy,) corresponds to F; V...V F,
@ Figiven Fp corresponds to F, — F

Logical connectives in disguise

e any_of(Fy,...,F,) correspondsto FiA...AF,
e some_of(Fi,...,Fy,) corresponds to F; V...V F,
@ Figiven Fp corresponds to F, — F

Sequent calculus proofs in disguise
C’s winning strategy for [(a, b), (b, ¢)] >some_of(b, d) corresponds to
b, anb, (aAb)V(bAc)F b Al b, aAb, (anb)V(bAc)F b

anb, (anb)V(bAc)E b (A1) anb, (anb)V(bAc)Fb

(anb)Vv(bnc)kb
(anb)v(brc)Fbvd

(A1)
(Vi)

(Vir)

Logical connectives in disguise

e any_of(Fy,...,F,) correspondsto FiA...AF,
e some_of(Fi,...,Fy,) corresponds to F; V...V F,
@ Figiven Fp corresponds to F, — F

Sequent calculus proofs in disguise

C’s winning strategy for [(a, b), (b, ¢)] >some_of(b, d) corresponds to

b, anb, (aAb)V(bAc)F b b, aAb, (anb)V(bAc)F b

anb, (anb)V(bAc)E b (A1) anb, (anb)V(bAc)Fb
(anb)Vv(bnc)kb

(anb)v(brc)Fbvd

(A1)
(Vi)

(Vir)

Note:
@ intuitionistic rules
@ no structural rules

Gentzen’s original LI/LK
Mr=-AA ATEA

Initial sequents: A A Cut rule: A (cut)
Structural rules:
r-A r-A Nr-AAA AATEA
rraAa™) area W Feaa @0 arra @)
Logical rules: ATEA N=AA
Fra-A (0 “ArEA (00
Mr=AA FI—A,B(/\ " A B TEA (A1)
[FAAANB : ANBTEFA VY
F-AAB v.r) ATHA B,FI—A(V)
TFAAVB '\ AVB,TFA ’
ATFA,B rFAA BTFA

rraAsB (") AsBrra (D

Gentzen’s original LI/LK
Mr=-AA ATEA

Initial sequents: A A Cut rule: A (cut)
Structural rules:
rea reA [EAAA AATEA
rraa ™) area) reaa 60 grea @)
Logical rules: ATEA N=AA
Fra-A (0 “ArEA (00
FAA TEAB ABIEA
TFAANB ’ ANBTEA ™
rFAAB ATEA BTEA
TFAAVE Y AVB,TFA !
ATFEAB rFAA BTEA
TFAASB (7 AsBrra)

LIp — a proof search friendly version of LlI:

e |Initial sequents: A THFA A/ L.,THFA = no weakening
e contraction built into logical rules, cut-free

Adequateness of the basic C/S-game

Adequateness of the basic C/S-game

Corollary to the (cut-free!) soundness and completeness of Llp:

Theorem

C has a winning strategy for Gy, ..., G, > F iff
Gi, ..., Gp = F holds in intuitionistic logic.

Adequateness of the basic C/S-game

Corollary to the (cut-free!) soundness and completeness of Llp:

Theorem

C has a winning strategy for Gy, ..., G, > F iff
Gi,..., Gy = F holds in intuitionistic logic.

Proof:
@ by translating winning strategies into LIp-proofs and vice versa

@ in fact: isomorphism between cut-free LIp-derivations and strategies

Adequateness of the basic C/S-game

Corollary to the (cut-free!) soundness and completeness of Llp:

Theorem

C has a winning strategy for Gy, ..., G, > F iff
Gi,..., Gy = F holds in intuitionistic logic.

Proof:
@ by translating winning strategies into LIp-proofs and vice versa

@ in fact: isomorphism between cut-free LIp-derivations and strategies

Where to go from here?

Adequateness of the basic C/S-game

Corollary to the (cut-free!) soundness and completeness of Llp:

Theorem

C has a winning strategy for Gy, ..., G, > F iff
Gi,..., Gy = F holds in intuitionistic logic.

Proof:
@ by translating winning strategies into LIp-proofs and vice versa

@ in fact: isomorphism between cut-free LIp-derivations and strategies

Where to go from here?

intuitionistic logic is hardly ‘substructural’
= find versions of the game that model resource consciousness

Eliminating implicit contraction

10

Eliminating implicit contraction
Recall the UNPACK-rules:
C picks G € T (= bunch of IPs provided by S)

(Usny) G =any_of(F1,...,Fp): C chooses i, S adds F; to I
= some_of(F1,...,F,): S chooses i and adds F; to I’

= (Fy given F,): either S adds F; to I' or F; replaces H

(some)
(glven)
(Ul)

G = L: game ends, C wins

10

Eliminating implicit contraction

Recall the UNPACK-rules:
C picks G € T (= bunch of IPs provided by S)

(U,,) G=any_of(F1,...,Fs): Cchooses i, S adds F; to I'

any

= some_of(Fy,...,F,): S chooses i and adds F; to I’

(some

) G
(Ugiven) G = (F1given Fp): either S adds F to ' or F, replaces H
)

(U

G = 1: game ends, C wins

10

Eliminating implicit contraction

Recall the UNPACK-rules:
C picks G € I' (= bunch of IPs provided by S)

(U,,) G=any_of(Fy,...,F,): Cchooses i, S adds F; to I'

any

(UL e) G =some_of(Fi,...,Fp): S chooses i and adds F; to I
(Ugiven) G = (F1given Fp): either S adds F to ' or F, replaces H
(Ul) G = L: game ends, C wins

@ change adds F;/; to I into _

10

Eliminating implicit contraction

Recall the UNPACK-rules:
C picks G € I' (= bunch of IPs provided by S)

(Uz,,) G=any_of(F1,...,F,): Cchooses i, S adds F; to I'

any

(Uime) G =some_of(Fi,...,F,): S chooses i and adds Fj to I
(Ugiven) G = (F1given Fp): either S adds F to ' or F, replaces H
(Ul) G = L: game ends, C wins

@ change adds F;/; to I into _

@ = contraction free intuitionistic logic

10

Weaking as explicit dismissal

11

Weaking as explicit dismissal

@ instead of always adding to S’s bunch of IPs, allow C to dismiss IPs:
(Dismiss) C chooses F €T, S removes F from '

@ corresponds to weakening (w, /) of LI

11

Weaking as explicit dismissal

@ instead of always adding to S’s bunch of IPs, allow C to dismiss IPs:
(Dismiss) C chooses F €T, S removes F from '

@ corresponds to weakening (w, /) of LI

Compensating for contraction

11

Weaking as explicit dismissal

@ instead of always adding to S’s bunch of IPs, allow C to dismiss IPs:
(Dismiss) C chooses F €T, S removes F from '

@ corresponds to weakening (w, /) of LI

Compensating for contraction

@ new constructor: arbitrary_many(F)

11

Weaking as explicit dismissal

@ instead of always adding to S’s bunch of IPs, allow C to dismiss IPs:
(Dismiss) C chooses F €T, S removes F from '

@ corresponds to weakening (w, /) of LI

Compensating for contraction

@ new constructor: arbitrary_many(F)
@ game rules for arbitrary_many(F):

» dismiss arbitrary__many(F)
» replace arbitrary_many(F) by F
» add another copy of arbitrary_many(F)

11

Weaking as explicit dismissal

@ instead of always adding to S’s bunch of IPs, allow C to dismiss IPs:
(Dismiss) C chooses F €T, S removes F from '

@ corresponds to weakening (w, /) of LI

Compensating for contraction

@ new constructor: arbitrary_many(F)

game rules for arbitrary_many(F):
» dismiss arbitrary__many(F)
» replace arbitrary_many(F) by F
» add another copy of arbitrary_many(F)

arbitrary_many(F) corresponds to !F of linear logic

dismissing, copying, and replacing correspond to

SV !A,!A,I’I—A() ATEA
ATEFA W IATFA) TarrFa b

Modeling multiplicative conjunction

12

Modeling multiplicative conjunction

@ we want to model/interpret the following sequent rules:

A BTHA @) MEFA TLFB
A9BTFA M.L-A®B

(®,r)

12

Modeling multiplicative conjunction

@ we want to model/interpret the following sequent rules:

A BTHA @) MEFA TLFB
A9BTFA M.L-A®B

(®,r)

@ new constructor: each_of(Fy,..., Fp)

12

Modeling multiplicative conjunction

@ we want to model/interpret the following sequent rules:

ABTEFA (@, 1) MmEA FQFB(@))
AQBTFA .l FA®B »f
@ new constructor: each_of(Fy,..., Fp)

@ game rules require splitting of the bunch of IPs provided by S:
(Ueach) G = each_of(F1, F2): S replaces G in I by F1 and F,
(Ceach) H = each_of(Fy, Fp): Csplits S's I into '] W Ty,

S chooses whether to continue with 1> Fy or o> F>

12

Modeling multiplicative conjunction

@ we want to model/interpret the following sequent rules:

A BTHA @) MEFA TLFB
A9BTFA M.L-A®B

(®,r)

@ new constructor: each_of(Fy,..., Fp)

@ game rules require splitting of the bunch of IPs provided by S:
(Ueach) G = each_of(F1, F2): S replaces G in I by F1 and F,
(Ceach) H = each_of(Fy, Fp): Csplits S's I into '] W Ty,

S chooses whether to continue with 1> Fy or o> F>

@ to obtain a C/S-game for full intuitionistic linear logic (ILL):
> replace (Ugiven) by a 'splitting version’ of it
» C can always add () (empty IP — corresponding to Girard's 1) to S's T
» modify the winning conditions:
C wins in the following states: ArA L. IT>A)

12

Interpreting Lambek’s calculus:
sequences of IPs instead of multisets

13

Interpreting Lambek’s calculus:
sequences of IPs instead of multisets

@ the ‘bunch of information’ provided by S might be a list (sequence)

13

Interpreting Lambek’s calculus:
sequences of IPs instead of multisets

@ the ‘bunch of information’ provided by S might be a list (sequence)

e if S CHECKs an conditional IP of C, the ‘conditioning IP’ is added
either first or last:
= Fy given F> splits into Fp given\, F», F1 given " F, corresponding to

ATFHB rA-B
M- A\B (\.r) [+ B/A (/,r)

o UNPACKing conditional information provided by S follows

r-A MN,BXkA r-A MN,BXrFA
(1) (/.
M,r,ABYFA N,A/B,T,S F A

e combined with a ‘sequence version of conjunction’ (fusion) this
leads to an C/S-game for full Lambek calculus FL

13

Conclusion

14

Conclusion

@ interpreting formulas as ‘information packages' emphasizes resources

14

Conclusion

@ interpreting formulas as ‘information packages' emphasizes resources
@ a client C seeks to reconstruct an IP form IPs provided by a server S

14

Conclusion

@ interpreting formulas as ‘information packages' emphasizes resources
@ a client C seeks to reconstruct an IP form IPs provided by a server S
@ corresponding game rules are asymmetric:

» C acts as scheduler

» S's choices can be seen as nondeterministic behavior

14

Conclusion

interpreting formulas as ‘information packages' emphasizes resources
a client C seeks to reconstruct an IP form IPs provided by a server S
corresponding game rules are asymmetric:

» C acts as scheduler

» S’s choices can be seen as nondeterministic behavior
@ games rules correspond to sequent rules directly
sequent proofs are isomorphic to C's winning strategies

14

Conclusion

interpreting formulas as ‘information packages' emphasizes resources
a client C seeks to reconstruct an IP form IPs provided by a server S
corresponding game rules are asymmetric:

» C acts as scheduler
» S’s choices can be seen as nondeterministic behavior

@ games rules correspond to sequent rules directly
sequent proofs are isomorphic to C's winning strategies
cut-elimination corresponds to composition of strategies

14

Conclusion

@ interpreting formulas as ‘information packages' emphasizes resources

@ a client C seeks to reconstruct an IP form IPs provided by a server S
@ corresponding game rules are asymmetric:

» C acts as scheduler

» S’s choices can be seen as nondeterministic behavior

@ games rules correspond to sequent rules directly
sequent proofs are isomorphic to C's winning strategies
@ cut-elimination corresponds to composition of strategies
@ covers all single-conclusion sequent calculi: LI, ILL, FL, ...

14

Conclusion

@ interpreting formulas as ‘information packages' emphasizes resources

@ a client C seeks to reconstruct an IP form IPs provided by a server S
@ corresponding game rules are asymmetric:

» C acts as scheduler

» S’s choices can be seen as nondeterministic behavior

@ games rules correspond to sequent rules directly
sequent proofs are isomorphic to C's winning strategies
@ cut-elimination corresponds to composition of strategies
@ covers all single-conclusion sequent calculi: LI, ILL, FL, ...

14

Conclusion

@ interpreting formulas as ‘information packages' emphasizes resources

a client C seeks to reconstruct an IP form IPs provided by a server S
corresponding game rules are asymmetric:
» C acts as scheduler
» S’s choices can be seen as nondeterministic behavior
games rules correspond to sequent rules directly
sequent proofs are isomorphic to C's winning strategies

@ cut-elimination corresponds to composition of strategies
@ covers all single-conclusion sequent calculi: LI, ILL, FL, ...

Topics for further investigation

interpreting multi-conclusion calculi, in particular full LL
systematic connections to other game semantics
hypersequent systems modeled by parallel games

14

