

Some Notes on Finite and Hyperfinite model theory

N. Ikodinović ikodinovic@matf.bg.ac.rs

Dubrovnik, September, 2016.

Three seminal papers

- 1. Gaifman: Concerning measures on first order calculi, Israel J. Math 2 (1964), 1-18
- 2. Fagin: Probabilities on finite models, J. Symb. Logic 41 (1976), 50-58
- 3. Keisler: Hyperfinite model theory, in: R. O. Gandy, J. M. E. Hyland (eds.) Logic Colloquim 76, North-Holland (1977), 5-110

Specifying probabilities on \mathbf{Sent}_L

Gaifman: A probabilty on $Sent_L$ is a function

 $P: \operatorname{Sent}_L \to [0,1]$ such that:

- $P(\alpha \vee \beta) + P(\alpha \wedge \beta) = P(\alpha) + P(\beta)$
- $P(\neg \alpha) = 1 P(\alpha)$
- $P(\alpha) = P(\beta)$, if $\vdash \alpha \leftrightarrow \beta$
- $P(\alpha) = 1$, if $\vdash \alpha$.

A probability on L can be conceived as a non-trivial, non-negative, finitely-additive probability measure on the Lindenbaum-Tarski algebra of the sentences of L.

Specifying probabilities on \mathbf{Sent}_L

• Let (M,R) be a classical structure:

$$P_{\mathbf{M}}: \operatorname{Sent}_{L} \to [0,1], P_{\mathbf{M}}(\varphi) = \begin{cases} 1, \mathbf{M} \vDash \varphi \\ 0, \mathbf{M} \not\vDash \varphi \end{cases}$$

• Let \mathfrak{M} be a set of classical structures with a probability m on the algebra of subsets of \mathfrak{M} generated by $[\varphi]_{\mathfrak{M}} = \{\mathbf{M} \in \mathfrak{M} \mid \mathbf{M} \models \varphi\}$:

$$P_{\mathfrak{M}}: \operatorname{Sent}_{L} \to [0,1], P_{\mathfrak{M}}(\varphi) = \int_{\mathfrak{M}} P_{\mathbf{M}}([\varphi]_{\mathfrak{M}}) dm(\mathbf{M})$$

Specifying probabilities on Sent_L

Example 1. $L = \{B\}$, ar(B) = 2

$$\begin{pmatrix} \mathbf{M}_1 & \mathbf{M}_2 & \mathbf{M}_3 \\ 5/8 & 1/4 & 1/8 \end{pmatrix}$$

$$P(\forall x \exists y \ Bxy) = \frac{1}{4} + \frac{1}{8} = \frac{3}{8}$$
$$P(\exists x \exists y \ (x \neq y \rightarrow Bxy)) = 1$$

$$M \neq \emptyset, L(M) = \{B\} \cup \{c_a \mid a \in M\}$$

Classical model:

$$B^M: M \times M \to \{0,1\}$$

$$c_a^M = a, a \in M$$

$$\mathcal{I}: \mathrm{Atomic}_{L(M)} \to \{0,1\}$$

$$\hat{\mathcal{I}}: \operatorname{Sent}_{L(M)} \to \{0,1\}$$

Probabilistic models

$$\mathcal{P}: \mathrm{Atomic}_{L(M)} \to [0,1]$$

is not suficient (the values assigned to atomic sentences do not determine unique values for Boolean combinations of these sentences)!

$$M \neq \emptyset, L(M) = \{B\} \cup \{c_a \mid a \in M\}$$

Classical model:

$$B^M: M \times M \rightarrow \{0,1\}$$

$$c_a^M = a, a \in M$$

Probabilistic models

$$B^M: M \times M \to \{0,1\}$$
 $\mathcal{P}: \operatorname{Bool}_{L(M)} \to [0,1]$

$$\mathcal{I}: \mathrm{Atomic}_{L(M)} \to \{0,1\}$$

$$\hat{\mathcal{I}}: \operatorname{Sent}_{L(M)} \to \{0,1\}$$

Gaifman's condition

```
Theorem. If P: \operatorname{Sent}_{L(M)} \to [0,1] is a probability, then (\mathsf{G}) P \big( \exists x \alpha(x) \big) = \sup \{ P \big( \alpha(a_1) \lor \dots \lor \alpha(a_k) \big) \mid k \in \mathbb{N}, a_1, \dots, a_k \in M \}. Theorem. Let (M, \mathcal{P}) be a probabilistic model (i.e., \mathcal{P}: \operatorname{Bool}_{L(M)} \to [0,1]). Then there is a unique probability \mathcal{P}^* which extends \mathcal{P} to \operatorname{Sent}_{L(M)} and satisfies (\mathsf{G}).
```

Theorem. Every probability on $Sent_L$ has a probabilistic model whose power is $\aleph_0 + |Sent_L|$.

Example 2. $M = \{0,1\}$

$$\mathcal{P}(B00 \land B01 \land B10 \land B11) = p_1$$
 $\mathcal{P}(B00 \land B01 \land B10 \land \neg B11) = p_2$
 \vdots
 $\mathcal{P}(\neg B00 \land \neg B01 \land \neg B10 \land \neg B11) = p_{32}$
 $p_1 + p_2 + \dots + p_{32} = 1$
 $\mathcal{P}: Sent_{L(M)} \rightarrow [0,1]$

Example 2. $M = \{0,1\}$

$$\begin{array}{c|cccc}
 & 0 & 1 & 0 & 1 & \cdots & & & & \\
\hline
p_1 & & p_2 & & & p_{32} & & \\
p_1 + p_2 + \cdots + p_{32} & = 1 & & & \\
 & \mathcal{P} : \operatorname{Sent}_{L(M)} \to [0,1]
\end{array}$$

Example 3.
$$B: \{0,1\}^2 \to [0,1], \begin{pmatrix} B00 & B01 & B10 & B11 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \end{pmatrix}$$
 $B00 \land B01 \land B10 \land B11 \mapsto \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{1}{6}$
 $B00 \land B01 \land B10 \land \neg B11 \mapsto \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{3} \cdot \frac{5}{6}$
 \vdots
 $\neg B00 \land \neg B01 \land \neg B10 \land \neg B11 \mapsto \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{5}{6}$

Example 4.


```
\mathcal{P}(B00 \land \neg B01 \land \neg B10 \land B11)
= \mathcal{P}(B00) \cdot \mathcal{P}(\neg B01 \mid B00) \cdot \mathcal{P}(\neg B10) \cdot \mathcal{P}(B11 \mid B00 \land \neg B01)
= 0.15 \cdot (1 - 0.85) \cdot (1 - 0.25) \cdot 0.9
```

Random structure M(n, p)

Erdős, Rényi: On the Evolution of the Random graph, Mat. Kutató Int. Közl 5 (1960), 17-60

$$M = \{0, 1, \dots, n-1\}, \ 0 \le p \le 1$$

Define $\mathcal{P}: \operatorname{Bool}_{L(M)} \to [0,1]$ by:

 $\mathcal{P}(Bab) = p, a, b \in M$, and these events are mutually independent.

$$\mathcal{P}\left(\bigwedge_{i=1}^k Ba_ib_i \wedge \bigwedge_{j=k+1}^n \neg Ba_jb_j\right) = p^k(1-p)^{n-k},$$

where sentences Ba_ib_i and Ba_jb_j are not identical.

Random structure M(8,0.5)

Example 5.

	0	1	2	3	4	5	6	7
0	$_{\rm I\!I}$	$_{\rm I}$	Τ	Ι	Т	Τ	Η	Т
1	\mathbf{I}	\vdash	$_{\perp}$	\vdash	Τ	\mathbf{I}	\vdash	Т
2	\vdash	\vdash	\pm	Т	Т	Т	$\boldsymbol{\mathbb{T}}$	Т
3	\vdash	\vdash	\pm	H	Т	\mathbf{I}	\mathbf{I}	Н
4	\mathbf{I}	\mathbf{I}	$_{\pm}$	I	Τ	\vdash	\mathbf{I}	Т
5	\vdash	Η	Τ	I	Н	Т	Т	Н
6	T	Т	I	T	Т	Η	Н	Н
7	T	T	Т	Н	Н	Т	Т	Н

Random structure M(8,0.5)

Example 5.

	0	1	2	3	4	5	6	7
0	$_{\rm I\!I}$	$_{\rm I}$	Τ	Ι	Т	Τ	Η	Т
1	\mathbf{I}	Т	Τ	Т	Η	$\boldsymbol{\mathbb{T}}$	Т	Т
2	Т	H	Н	T	T	Т	Τ	Т
3	Т	Т	Η	Т	Т	Н	Н	Н
4	\mathbf{I}	Τ	I	Н	Т	Т	Н	Т
5	\vdash	T	Т	Н	Н	Т	\vdash	Н
6	Т	Τ	Н	T	Т	Н	Н	Н
7	Т	Т	Т	Н	Н	Т	Т	Н

Gaifman's simple example

Example 6: Let M an infinite set, and p a fixed number, 0 .

Define $\mathcal{P}: \operatorname{Bool}_{L(M)} \to [0,1]$ by:

- $\mathcal{P}(Bab) = p, a, b \in M$,
- $\mathcal{P}(\bigwedge_{i=1}^k Ba_ib_i \wedge \bigwedge_{j=k+1}^n \neg Ba_jb_j) = p^k(1-p)^{n-k}$, where sentences Ba_ib_i and Ba_jb_j are not identical,
- $\mathcal{P}(a=b)=0$, $a\neq b$.

Let $\mathcal{P}^*: \operatorname{Sent}_{L(M)} \to [0,1]$ be the extension of \mathcal{P} satisfying (G).

Gaifman's simple example

Lemma. If $\alpha, \beta \in \operatorname{Sent}_{L(M)}$ and no constant occurs both in α and β then

$$\mathcal{P}^*(\alpha \wedge \beta) = \mathcal{P}^*(\alpha) \cdot \mathcal{P}^*(\beta).$$

In particular, for every $\sigma \in \operatorname{Sent}_L$

$$\mathcal{P}^*(\sigma) = \mathcal{P}^*(\sigma \wedge \sigma) = (\mathcal{P}^*(\sigma))^2$$
,

and hence $\mathcal{P}^*(\sigma)$ is either 0 or 1.

 (M,\mathcal{P}) determines a complete theory!

Let $V_n = \{v_0, v_1, ..., v_{n-1}\}$ be a set of distinct variables. A complete diagram $\sigma(V_n)$ is a conjunction s.t. for every pair $(v_i, v_j) \in V_n \times V_n$ either Bv_iv_j or $\neg Bv_iv_j$ is a conjunct.

$$\sigma(V_3) = Bv_0v_0 \wedge \neg Bv_0v_1 \wedge Bv_0v_2 \wedge \\ \wedge \neg Bv_1v_0 \wedge Bv_1v_1 \wedge Bv_1v_2 \wedge \\ \wedge Bv_2v_0 \wedge \neg Bv_2v_1 \wedge \neg Bv_2v_2$$

A complete diagram $\sigma(V_{n+1})$ extends another complete diagram $\sigma'(V_n)$ if $\vdash \sigma'(V_n) \to \sigma(V_{n+1})$.

$$\sigma(V_3) = Bv_0v_0 \land \neg Bv_0v_1 \land Bv_0v_2 \land \\ \land \neg Bv_1v_0 \land Bv_1v_1 \land Bv_1v_2 \land \\ \land Bv_2v_0 \land \neg Bv_2v_1 \land \neg Bv_2v_2$$
 extends
$$\sigma'(V_2) = Bv_0v_0 \land \neg Bv_0v_1 \land \\ \land \neg Bv_1v_0 \land Bv_1v_1$$

Let E be the set of all sentences ε_n :

$$\forall v_0 \dots v_{n-1} \left(\bigwedge_{i \neq j} v_i \neq v_j \wedge \sigma(V_n) \right)$$

$$\rightarrow \exists v_n \bigwedge_i v_i \neq v_n \wedge \sigma'(V_{n+1})$$

Theorem. E is consistent and complete.

The theory E has exactly one, up to isomorphism, countable model – the Rado graph.

That model is 'most general' in the sense that:

- every possible finite model is realized there as a submodel, and
- for every finite submodel every possible finite extension of it is realized.

Probabilities on finite models

What is the probability that a certain sentence holds for a randomly chosen finite structure?

$$\mathfrak{M}_n$$
 the class of all n -structures (on $\{0,1,\ldots,n-1\}$). $\mathfrak{M}_n[\sigma]=\{\mathbf{M}\in\mathfrak{M}_n\mid\mathbf{M}\models\sigma\}$

$$P_n(\sigma) = \frac{|\mathfrak{M}_n[\sigma]|}{|\mathfrak{M}_n|}$$

Specifying probabilities on Sent_L

Example 7.

0 0					
0	○← ○				
○€ ○					
C 5					
C o	0 0				
$\bigcirc \longrightarrow \bigcirc$	C⋄				
\bigcirc \longrightarrow \circ	∘←-5				
⊘ ←—∘	$\circ \longrightarrow \circ$				
$\bigcirc \longleftrightarrow \Diamond$					
Ç√	∘ ← → ₺				

$$P_2(\forall x \exists y \ Bxy) = ?$$

Specifying probabilities on \mathbf{Sent}_L

Example 7.

$$P_2(\forall x \exists y \ Bxy) = ?$$

$$P_2(\forall x \exists y \, Bxy) = \frac{9}{16} \approx 0.56$$

Specifying probabilities on Sent_L

Example 7.

$$P_3(\forall x \exists y \ Bxy) = ?$$

0-1 law

$$P_n(\sigma) = \frac{|\mathfrak{M}_n[\sigma]|}{|\mathfrak{M}_n|} \to ?, n \to \infty$$

The zero-one law.

 $P_n(\sigma)$ converges to either 0 or 1.

Random structure M = (8,0.5)

Example 8.

0 0	13
0 → 0	15,34, 45
∘€⇒∘	14,35
0 5	07
Co o	16,17
$\bigcirc \longrightarrow \bigcirc$	02,27,67
\bigcirc \longrightarrow \circ	03,05,25,56,57
⊘ ←— ∘	04,12,23,24,36,46
$\bigcirc \longleftrightarrow \bigcirc$	26
Có€→∘	01,37,47

Random graph

$$\sigma(v_0, v_1) = (Bv_0v_0 \lor Bv_0v_1) \land (Bv_1v_0 \lor Bv_1v_1)$$

Random graph

$$\sigma(v_0, v_1) = (Bv_0v_0 \lor Bv_0v_1) \land (Bv_1v_0 \lor Bv_1v_1)$$

0 0	$P\{(a, b)\}$	$\sigma(a,b) \in M \times M \mid \mathbf{M} \models \sigma[a,b] = ?$
○	15,34, 45	
○€ ○	14,35	$ \models \forall x \exists y \ Bxy$
G 5	07	
Co o	16,17	$-\frac{16}{16} - \frac{16}{16} \sim 0.57$
	02,27,67	$=\frac{16}{\binom{8}{2}}=\frac{16}{28}\approx 0.57$
\bigcirc \longrightarrow \circ	03,05,25,56,57	
⊘ ←—∘	04,12,23,24,36,46	5
Ø€ 5	26	
Có←→∘	01,37,47	

$$... \models \forall x \exists y \ Bxy$$

$$=\frac{16}{\binom{8}{2}}=\frac{16}{28}\approx 0.57$$

Count models!

0

$P_2(\forall x \exists y Bxy) \approx 0.56 \qquad P\{\sigma(v_0, v_1)\} \approx 0.57$

Count pairs!

$$P\{\sigma(v_0, v_1)\} \approx 0.57$$

Count models vs. count tuples

Intuition: If $H \gg n$, then (H, 0.5) contains (almost) all n-structures as its substructures. Moreover, the distribution of n-structures inside (H, 0.5) is (almost) uniform.

Hyperfinite model theory

Keisler: The purpose of hyperfinite model theory is to study and classify a type of models which arises in applied mathematics.

- ··· [These] models have usually been either countable sequences of finite models or structures built upon the real numbers. Hyperfinite models provide a better source of infinite models which closely approximate large finite phenomena.
- · · · Hyperfinite models deal with limiting behavior of finite models.

Hyperfinite model theory

Definition. A hyperfinite probability space is a pair (M,μ) where A is a nonempty hyperfinite set and μ is an internal function $\mu: M \to^* [0,1]$ such that $\sum_{a \in M} \mu(a) = 1$.

$$\begin{split} &\langle \mathfrak{M}_1, \mathfrak{M}_2, \mathfrak{M}_3, \dots \rangle_{\mathcal{U}} \text{ - a hyperfinite set} \\ &\langle \mathfrak{M}_1[\sigma], \mathfrak{M}_2[\sigma], \mathfrak{M}_3[\sigma], \dots \rangle_{\mathcal{U}} \subseteq \langle \mathfrak{M}_1, \mathfrak{M}_2, \mathfrak{M}_3, \dots \rangle_{\mathcal{U}} \\ &\frac{|\mathfrak{M}_1[\sigma]|}{|\mathfrak{M}_1|}, \frac{|\mathfrak{M}_2[\sigma]|}{|\mathfrak{M}_2|}, \frac{|\mathfrak{M}_2[\sigma]|}{|\mathfrak{M}_2|}, \dots \Big\rangle_{\mathcal{U}} \in {}^*[0,1] \end{split}$$

Probability logic $L_{\omega P}$

Probability logic $L_{\omega P}$ is like first-order logic, but instead of \forall and \exists it has probability quantifiers $(P\vec{x} > r)$, $r \in \mathbb{Q}$.

$$\mathbf{M} \models (Px > r)\varphi(x) \text{ iff } \mu\{x \in M \mid \mathbf{M} \models \varphi(\vec{x})\} > r$$

Logic and Probability

First-order logic	Probability logic	Probability theory
Downward Löwenheim- Skolem theorem	Elementary submodel theorem	Weak law of large numbers
The zero-one law	Elementary subsequence theorem	Strong law of large numbers

Thank you for your attention