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Specifying probabilities on Sent𝐿 

Gaifman: A probabilty on Sent𝐿 is a function  
𝑃 ∶  Sent𝐿 → ,0, 1- such that: 

• 𝑃(𝛼 ∨ 𝛽) + 𝑃(𝛼 ∧ 𝛽)  =  𝑃(𝛼) + 𝑃(𝛽) 

• 𝑃 ¬𝛼 =  1 − 𝑃(𝛼) 
• 𝑃(𝛼)  =  𝑃(𝛽), if ⊢ 𝛼 ↔ 𝛽 
• 𝑃(𝛼)  =  1, if ⊢ 𝛼. 
 
A probability on 𝐿 can be conceived as a non-trivial,  
non-negative, finitely-additive probability measure on the 
Lindenbaum-Tarski algebra of the sentences of 𝐿. 



Specifying probabilities on Sent𝐿 

• Let 𝑀,𝑅  be a classical structure:  

𝑃𝐌 ∶ Sent𝐿 → 0,1 , 𝑃𝐌 𝜑 =  
1,
0,
𝐌 ⊨ 𝜑
𝐌 ⊭ 𝜑

 

 

• Let 𝔐 be a set of classical structures with a 
probability 𝑚 on the algebra of subsets of 𝔐 
generated by 𝜑 𝔐 = 𝐌 ∈ 𝔐 ∣ 𝐌 ⊨ 𝜑 : 

𝑃𝔐 ∶ Sent𝐿 → 0,1 , 𝑃𝔐 𝜑 =  𝑃𝐌( 𝜑 𝔐𝔐
) 𝑑𝑚 𝐌  

 

 



Specifying probabilities on Sent𝐿 

Example 1. 𝐿 = 𝐵 , ar 𝐵 = 2 

 
𝐌1 𝐌2 𝐌3

5/8 1/4 1/8
 

 

𝑃 ∀𝑥∃𝑦 𝐵𝑥𝑦 =
1

4
+
1

8
=

3

8
  

𝑃 ∃𝑥∃𝑦 𝑥 ≠ 𝑦 → 𝐵𝑥𝑦 = 1  

 



Probabilistic models 

𝑀 ≠ ∅, 𝐿 𝑀 = 𝐵 ∪ 𝑐𝑎 ∣ 𝑎 ∈ 𝑀  

 Classical model: 
𝐵𝑀 ∶ 𝑀 ×𝑀 → 0,1   

𝑐𝑎
𝑀 = 𝑎, 𝑎 ∈ 𝑀 

 

ℐ ∶ Atomic𝐿 𝑀 → 0,1   

ℐ : Sent𝐿 𝑀 → 0,1    

 

 

Probabilistic models 
𝒫 ∶ Atomic𝐿 𝑀 → 0,1   

is not suficient (the 
values assigned to atomic 
sentences do not 
determine unique values 
for Boolean combinations 
of these sentences)! 

 



Probabilistic models 

𝑀 ≠ ∅, 𝐿 𝑀 = 𝐵 ∪ 𝑐𝑎 ∣ 𝑎 ∈ 𝑀  
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Probabilistic models 
𝒫 ∶ Atomic𝐿 𝑀 → 0,1   

is not suficient (the 
values assigned to atomic 
sentences do not 
determine unique values 
for Boolean combinations 
of these sentences)! 

 

𝒫 ∶ Bool𝐿(𝑀) → 0,1        

 
 
 
 
 
 
 



Gaifman’s condition 

Theorem. If 𝑃 ∶ Sent𝐿(𝑀) → 0,1  is a probability, then 

(G) 𝑃 ∃𝑥𝛼 𝑥  

= sup 𝑃 𝛼 𝑎1 ∨ ⋯∨ 𝛼 𝑎𝑘 ∣ 𝑘 ∈ ℕ, 𝑎1, … , 𝑎𝑘 ∈ 𝑀 . 

Theorem. Let (𝑀,𝒫) be a probabilistic model (i.e., 
𝒫 ∶ Bool𝐿(𝑀) → 0,1 ). Then there is a unique 

probability 𝒫∗ which extends 𝒫 to Sent𝐿 𝑀  and 

satisfies (G).  

Theorem. Every probability on Sent𝐿 has a probabilistic 
model whose power is ℵ0 + Sent𝐿 . 

 

 



Probabilistic models 

Example 2. 𝑀 = 0,1   
 
𝒫 𝐵00 ∧ 𝐵01 ∧ 𝐵10 ∧ 𝐵11 = 𝑝1  
𝒫 𝐵00 ∧ 𝐵01 ∧ 𝐵10 ∧ ¬𝐵11 = 𝑝2  
 ⋮ 
𝒫 ¬𝐵00 ∧ ¬𝐵01 ∧ ¬𝐵10 ∧ ¬𝐵11 = 𝑝32  

𝑝1 + 𝑝2 +⋯+ 𝑝32 = 1  
  

𝒫 ∶ Sent𝐿(𝑀) → 0,1  
  



Probabilistic models 

Example 2. 𝑀 = 0,1   
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Probabilistic models 

Example 3. 𝐵 ∶ 0,1 2 → 0,1 ,
𝐵00
1

4

  
𝐵01
1

2

  
𝐵10
1

3

  
𝐵11
1

6

  

𝐵00 ∧ 𝐵01 ∧ 𝐵10 ∧ 𝐵11 ↦
1

4
⋅
1

2
⋅
1

3
⋅
1

6
  

𝐵00 ∧ 𝐵01 ∧ 𝐵10 ∧ ¬𝐵11 ↦
1

4
⋅
1

2
⋅
1

3
⋅
5

6
  

⋮  

¬𝐵00 ∧ ¬𝐵01 ∧ ¬𝐵10 ∧ ¬𝐵11 ↦
3

4
⋅
1

2
⋅
2

3
⋅
5

6
  

 



Probabilistic models 

Example 4. 

 

 

 
 
𝒫 𝐵00 ∧ ¬𝐵01 ∧ ¬𝐵10 ∧ 𝐵11  
= 𝒫 𝐵00 ⋅ 𝒫 ¬𝐵01 ∣ 𝐵00 ⋅ 𝒫 ¬𝐵10 ⋅ 𝒫 𝐵11|𝐵00 ∧ ¬𝐵01  

= 0.15 ⋅ 1 − 0.85 ⋅ 1 − 0.25 ⋅ 0.9  



Random structure 𝑀(𝑛, 𝑝) 

Erdős, Rényi: On the Evolution of the Random graph, 
Mat. Kutató Int. Közl 5 (1960), 17-60  

𝑀 = 0,1, … , 𝑛 − 1 , 0 ≤ 𝑝 ≤ 1  

Define 𝒫 ∶ Bool𝐿(𝑀) → 0,1  by:  

𝒫 𝐵𝑎𝑏 = 𝑝, 𝑎, 𝑏 ∈ 𝑀, and these events are mutually 
independent. 

𝒫  𝐵𝑎𝑖𝑏𝑖 ∧
𝑘
𝑖<1  ¬𝐵𝑎𝑗𝑏𝑗

𝑛
𝑗<𝑘:1 = 𝑝𝑘 1 − 𝑝 𝑛;𝑘,  

where sentences 𝐵𝑎𝑖𝑏𝑖 and 𝐵𝑎𝑗𝑏𝑗 are not identical. 

 

 

 



Random structure 𝑀 8,0.5   

Example 5. 



Random structure 𝑀 8,0.5   

Example 5. 



Gaifman's simple example 

Example 6: Let 𝑀 an infinite set, and 𝑝 a fixed number, 
0 < 𝑝 < 1. 

Define 𝒫 ∶ Bool𝐿(𝑀) → 0,1  by: 

• 𝒫 𝐵𝑎𝑏 = 𝑝, 𝑎, 𝑏 ∈ 𝑀, 

• 𝒫  𝐵𝑎𝑖𝑏𝑖 ∧
𝑘
𝑖<1  ¬𝐵𝑎𝑗𝑏𝑗

𝑛
𝑗<𝑘:1 = 𝑝𝑘 1 − 𝑝 𝑛;𝑘,  

where sentences 𝐵𝑎𝑖𝑏𝑖 and 𝐵𝑎𝑗𝑏𝑗 are not identical, 
• 𝒫 𝑎 = 𝑏 = 0, 𝑎 ≠ 𝑏. 
 

Let 𝒫∗ ∶ Sent𝐿 𝑀 → 0,1   be the extension of 𝒫 satisfying 
(G).  
  



Gaifman's simple example 

Lemma. If 𝛼, 𝛽 ∈ Sent𝐿 𝑀  and no constant occurs both 

in 𝛼 and 𝛽 then  
𝒫∗ 𝛼 ∧ 𝛽 = 𝒫∗ 𝛼 ⋅ 𝒫∗ 𝛽 . 

 

In particular, for every 𝜎 ∈ Sent𝐿 
𝒫∗ 𝜎 = 𝒫∗ 𝜎 ∧ 𝜎 = 𝒫∗ 𝜎 2, 

and hence 𝒫∗ 𝜎  is either 0 or 1. 

 

(𝑀,𝒫) determines a complete theory! 



The complete theory 

Let 𝑉𝑛 = *𝑣0, 𝑣1, … , 𝑣𝑛;1+ be a set of distinct variables.  

A complete diagram 𝜎 𝑉𝑛  is a conjunction s.t. for every 

pair 𝑣𝑖 , 𝑣𝑗 ∈ 𝑉𝑛 × 𝑉𝑛 either  𝐵𝑣𝑖𝑣𝑗 or ¬𝐵𝑣𝑖𝑣𝑗 is a 

conjunct.  

 
𝜎 𝑉3 = 𝐵𝑣0𝑣0 ∧ ¬𝐵𝑣0𝑣1 ∧ 𝐵𝑣0𝑣2 ∧ 

         ∧ ¬𝐵𝑣1𝑣0 ∧ 𝐵𝑣1𝑣1 ∧ 𝐵𝑣1𝑣2 ∧ 

         ∧ 𝐵𝑣2𝑣0 ∧ ¬𝐵𝑣2𝑣1 ∧ ¬𝐵𝑣2𝑣2 

 

 



The complete theory 

A complete diagram 𝜎 𝑉𝑛:1  extends another complete 
diagram 𝜎′ 𝑉𝑛  if ⊢ 𝜎′ 𝑉𝑛 → 𝜎 𝑉𝑛:1 . 

 
𝜎 𝑉3 = 𝐵𝑣0𝑣0 ∧ ¬𝐵𝑣0𝑣1 ∧ 𝐵𝑣0𝑣2 ∧ 

         ∧ ¬𝐵𝑣1𝑣0 ∧ 𝐵𝑣1𝑣1 ∧ 𝐵𝑣1𝑣2 ∧ 

         ∧ 𝐵𝑣2𝑣0 ∧ ¬𝐵𝑣2𝑣1 ∧ ¬𝐵𝑣2𝑣2 

extends  
𝜎′ 𝑉2 = 𝐵𝑣0𝑣0 ∧ ¬𝐵𝑣0𝑣1 ∧ 

           ∧ ¬𝐵𝑣1𝑣0 ∧ 𝐵𝑣1𝑣1 

 



The complete theory 

Let 𝐸 be the set of all sentences 𝜀𝑛: 

∀𝑣0…𝑣𝑛;1   𝑣𝑖 ≠ 𝑣𝑗
𝑖≠𝑗

∧ 𝜎 𝑉𝑛  

→ ∃𝑣𝑛 𝑣𝑖 ≠ 𝑣𝑛
𝑖

∧ 𝜎′ 𝑉𝑛:1   

Theorem. 𝐸 is consistent and complete.  



The complete theory 

The theory 𝐸 has exactly one, up to isomorphism,  
countable model – the Rado graph.  

That model is `most general’ in the sense that: 

• every possible finite model is realized there as a 
submodel, and  

• for every finite submodel every possible finite 
extension of it is realized.   



Probabilities on finite models 

What is the probability that a certain sentence holds for 
a randomly chosen finite structure? 

 

𝔐𝑛 the class of all 𝑛-structures (on 0,1, … , 𝑛 − 1 ).  

𝔐𝑛 𝜎 = 𝐌 ∈ 𝔐𝑛 ∣ 𝐌 ⊨ 𝜎   

 

𝑃𝑛 𝜎 =
𝔐𝑛 𝜎

𝔐𝑛
 



Specifying probabilities on Sent𝐿 

Example 7.  

  𝑃2 ∀𝑥∃𝑦 𝐵𝑥𝑦 =?     



Specifying probabilities on Sent𝐿 

Example 7.  

  𝑃2 ∀𝑥∃𝑦 𝐵𝑥𝑦 =?     

𝑃2 ∀𝑥∃𝑦 𝐵𝑥𝑦 =
9

16
≈ 0.56  



Specifying probabilities on Sent𝐿 

Example 7.  

  𝑃3 ∀𝑥∃𝑦 𝐵𝑥𝑦 =?     



0-1 law 

𝑃𝑛 𝜎 =
𝔐𝑛 𝜎

𝔐𝑛
→ ? , 𝑛 → ∞  

 

The zero-one law.  

𝑃𝑛 𝜎  converges to either 0 or 1. 



Random structure 𝑀 = 8,0.5  

Example 8.  



Random graph 

𝜎 𝑣0, 𝑣1 = 𝐵𝑣0𝑣0 ∨ 𝐵𝑣0𝑣1 ∧ 𝐵𝑣1𝑣0 ∨ 𝐵𝑣1𝑣1  

𝑃* 𝑎, 𝑏 ∈ 𝑀 ×𝑀 ∣ 𝐌 ⊨ 𝜎 𝑎, 𝑏 + =? 



Random graph 

𝜎 𝑣0, 𝑣1 = 𝐵𝑣0𝑣0 ∨ 𝐵𝑣0𝑣1 ∧ 𝐵𝑣1𝑣0 ∨ 𝐵𝑣1𝑣1  

𝑃* 𝑎, 𝑏 ∈ 𝑀 ×𝑀 ∣ 𝐌 ⊨ 𝜎 𝑎, 𝑏 + =? 

… ⊨ ∀𝑥∃𝑦 𝐵𝑥𝑦  
 

=
16
8
2

=
16

28
≈ 0.57  

 
  



Count models! 

𝑃2 ∀𝑥∃𝑦 𝐵𝑥𝑦 ≈ 0.56  𝑃 𝜎 𝑣0, 𝑣1 ≈ 0.57  

Count pairs! 



Count models vs. count tuples 

Intuition:  If 𝐻 ≫ 𝑛, then 𝐻, 0.5  contains (almost) all 
𝑛-structures as its substructures. Moreover, the 
distribution of 𝑛-structures inside  𝐻, 0.5  is (almost) 
uniform.     



Hyperfinite model theory 

Keisler: The purpose of hyperfinite model theory is to 
study and classify a type of models which arises in 
applied mathematics.  

⋯ [These] models have usually been either countable 
sequences of finite models or structures built upon the 
real numbers. Hyperfinite models provide a better 
source of infinite models which closely approximate 
large finite phenomena.  

⋯ Hyperfinite models deal with limiting behavior of 
finite models. 



Hyperfinite model theory 

Definition. A hyperfinite probability space is a pair 
𝑀, 𝜇  where 𝐴 is a nonempty hyperfinite set and 𝜇 is 

an internal function 𝜇 ∶ 𝑀 →∗,0,1- such that 
 𝜇 𝑎 = 1𝑎∈𝑀 . 

 

𝔐1,𝔐2,𝔐3, … 𝒰 - a hyperfinite set 

𝔐1,𝜎-,𝔐2,𝜎-,𝔐3,𝜎-, … 𝒰 ⊆ 𝔐1,𝔐2,𝔐3, … 𝒰  

𝔐1 𝜎

𝔐1
,
𝔐2 𝜎

𝔐2
,
𝔐2 𝜎

𝔐2
, …

𝒰
∈ ∗,0,1-  



Probability logic 𝐿𝜔𝑃 

Probability logic 𝐿𝜔𝑃 is like first-order logic, but instead 
of ∀ and ∃ it has probability quantifiers 𝑃𝑥 > 𝑟 , 
𝑟 ∈ ℚ. 

 

𝐌 ⊨ 𝑃𝑥 > 𝑟 𝜑 𝑥  iff 𝜇 𝑥 ∈ 𝑀 ∣ 𝐌 ⊨ 𝜑 𝑥 > 𝑟  



Logic and Probability 

First-order logic Probability logic Probability theory 

Downward 
Löwenheim- Skolem 
theorem 

Elementary 
submodel theorem 

Weak law of large 
numbers 

 
The zero-one law 

Elementary 
subsequence 
theorem 
 

Strong law of large 
numbers 
 



 

 

Thank you for your attention 


