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Specitying probabilities on Sent;

Gaifman: A probabilty on Sent; is a function
P : Sent; — [0, 1] such that:

* PlavpB)+PlanpB) = P(a) + P(B)
* P(—IC()= 1—P(C()

.+ P(a) = P(B),ifFra o f

* P(a) = 1,if+ «.

A probability on L can be conceived as a non-trivial,
non-negative, finitely-additive probability measure on the
Lindenbaum-Tarski algebra of the sentences of L.



Specitying probabilities on Sent;

e Let (M, R) be a classical structure:

1,ME
Py : Sent), = [0,1], Py(¢) = {0 M ¥ g

e Let I be a set of classical structures with a
probability m on the algebra of subsets of It
generated by [@]lgp ={M € M | M E ¢}:

Py : Sent;, - [0,1], Py (@) = Jo, Pu([@]an) dm(M)



Specitying probabilities on Sent;

Example 1. L = {B},ar(B) = 2
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Probabilistic models

M=+ L(M)={B}uU{c, | ae M}

Classical model: Probabilistic models
BY :MxM - {01} P :Atomicy,y — [0,1]
cM=q,aeM is not suficient (the

values assigned to atomic
) sentences do not
. determine unique values
J: Senty ) = 10,13 for Boolean combinations
of these sentences)!

J : Atomicyy — {0,1



Probabilistic models

M=+ L(M)={B}uU{c, | ae M}

Classical model: Probabilistic models
BM:MxM-{0,1} P :Booly,, — [0,1]
cM=q,aeM

J : Atomicy ) — 10,1}
j\: SentL(M) — {0,1}



Gaifman’s condition

Theorem. If P : Senty )y — [0,1] is a probability, then
(G) P(Elxa(x))

= sup{P(cx(al) VeV af(ak)) |k €EN,aq,..,a; € M}.
Theorem. Let (M, P) be a probabilistic model (i.e.,
P : Boolypy — [0,1]). Then there is a unique
probability P* which extends P to Sent ) and
satisfies (G).

Theorem. Every probability on Sent; has a probabilistic
model whose power is 8, + |Sent,|.



Probabilistic models
Example 2. M = {0,1}

P(BOOABO1AB10AB11) =py
P(BOOABO1AB10A=B11) = p,

P(=B00 A =B01 A =B10 A =B11) = pa,
p1+p2+“'+P32 =1

P SentL(M) — [0;1]



Probabilistic models

Example 2. M = {0,1}
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@‘)(:)@ ®<:>o O

Py Py - Py
p1 +p,+--+p3=1

P: SentL(M) — [0,1]




Probabilistic models

B00 B01 B10 Bll)

0
Example3.B : {0,1}* > [0,1],| 1 1 1 1
4 2 3 6
1

BOOABO1AB10OAB1l »=+--=-=

BOO/\BOlABlOA—lBlln—)Z-%é._

ﬂBoo/\ﬂBo1/\ﬂB10/\ﬂB11HZ.%%._



Probabilistic models

Example 4. 50(800):.1?90 P20 pmr0)-25

((B01|B00)=85 |
_ © (B01|BO0OAB10)=.99

11 (B01|-B00AB10)=.8
© (B01|—~B00A—B10)=.97

P(BO0OA-B01A-B10AB11)
= P(B00) - P(=B01 | BOO) - P(=B10) - P(B11|B00 A =B01)

=0.15- (1 —0.85) - (1 — 0.25) - 0.9



Random structure M (n, p)

Erd8s, Rényi: On the Evolution of the Random graph,
Mat. Kutato Int. Kozl 5 (1960), 17-60

M={01,...n—1}, 0<p<1
Define P : Bool,py — [0,1] by:

P(Bab) = p,a,b € M, and these events are mutually
independent.

P(A; Ba;b; AN—y 41 =Bajb;) = p*(1 — p)"7¥,

where sentences Ba;b; and Ba;b; are not identical.



Random structure M(8,0.5)

Example 5.

0(1(2|3]4|5|6]|7

O|HIHHIH|TIH|H|T

1[H{T{H|T|{H|H|T|T
2|T|TIH|T|T|T|H|T
3IT|T|H|T|T|H|H[H
ANHHIHIH|T|T|H|T
S5|T|T|T|{H|{H|T|T|H

Of(T|T|H|T|T|H|H|H
JIT|T|T|H|H|T|T|H
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Random structure M(8,0.5)

Example 5.

011(2(3|4|5|6]|7
O|HIHHIH|TIH|H|T

1[H{T{H|T|{H|H|T|T
2|T|TIH|T|T|T|H|T
3IT|T|H|T|T|H|H[H

S5|T|T|T|{H|{H|T|T|H

Of(T|T|H|T|T|H|H|H
JIT|T|T|H|H|T|T|H

ANHHIHIH|T|T|H|T
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Gaifman's simple example

Example 6: Let M an infinite set, and p a fixed number,
0<p<l1.

Define P : Booly ¢y — [0,1] by:

« P(Bab) =p,a,bEM,

* :P(/\i'(ﬂBaibi /\/\j=k+1 _'Bajbj) = Pk(l — P)n_k,
where sentences Ba;b; and Ba;b; are not identical,

e« Pla=b)=0,a#b.

Let P* : Senty(p) — [0,1] be the extension of P satisfying
(G).



Gaifman's simple example

Lemma. If a, f € Senty ) and no constant occurs both
ina and S then

P*anpB) =P (a) P (B).
In particular, for every o € Sent;

P*(0) = P*(o Ao) = (P*(0))?,
and hence P*(o) is either O or 1.

(M,P) determines a complete theory!




The complete theory

Let V}, = {vy, V4, ..., Vyy_1} be a set of distinct variables.

A complete diagram o (V) is a conjunction s.t. for every
pair (vi,vj) € I, X I, either Bv;vj or =Bv;v; is a
conjunct.

O-(Vg) — Bvovo N —|Bv0v1 N Bvovz N
/\ _IBU]_UO /\ Bvlvl /\ Bvlvz /\
/\ szvo /\ —|BU2U1 /\ _IszvZ



The complete theory

A complete diagram a(V,,4 1) extends another complete
diagram o' (1) if - o' (V) = o(Vy41).

o(V3) = Bvygvy A ~Bvyv, A Bugv, A
AN —Bvivyg AN Bvyvy ABvyv, A
AN Bv,vyg A =Bv,vy A 2By, v,
extends
o'(V,) = Bvyvyg A =Bvgv, A
AN ~Bvyvg AN By,



The complete theory

Let E' be the set of all sentences &,,:

YV .. Vg /\vi = v; Ao(V,)

L#]

— v, /\vi + Up A O-I(Vn+1)>

i
Theorem. E is consistent and complete.



The complete theory

The theory E has exactly one, up to isomorphism,
countable model —the Rado graph.

That model is ‘most general’ in the sense that:

* every possible finite model is realized there as a
submodel, and

e for every finite submodel every possible finite
extension of it is realized.



Probabilities on finite models

What is the probability that a certain sentence holds for
a randomly chosen finite structure?

It the class of all n-structures (on {0,1, ...,n — 1}).
M o] ={MeD, | ME o}

|, [o]]
|0, |

P,(0) =



Specifying probabilities on Sent;

Example 7.

P,(Vx3y Bxy) =?




Specitying probabilities on Sent;

Example 7.

P,(Vx3y Bxy) =?

O—> 0 O¢<— O

9
GO P,(Vx3y Bxy) = — = 0.56




Specitying probabilities on Sent;

Example 7.

P;(Vx3y Bxy) =?

Be==




0-1 law

Pn(o') — lgﬁ;tiol-]l >7 N —

The zero-one law.
P. (o) converges to either 0 or 1.



Random structure M = (8,0.5)

Example 8. > o [13
o——o |15,34, 45
(o) °——° |14,35
1 ) 0 e Olo7
/ I & e 16,17
\\ 3——$|02,27,67
(oA 7@ (——0 103,05,25,56,57
\ / o |04,12,23,24,36,46
0 — A—t > 0 G)<:>o© 26
3 \\\ /// 5
. (=2 101,37,47




Random graph

O-(vo, vl) — (BVOVO \ BV()vl) N (Bv1v0 VvV Bvlvl)

Q) P{(a,b) EM XM |M E ola,b]} =?
1O/O~ @
Nl

3’ *\“\\0/// 5
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Random graph

O-(U(), Ul) — (Bvovo \ BVOV]_) N (Bv1v0 VvV Bvlvl)

o o [13 P{(a,b) EM XM |M E ola,b]} =?
o——o |1534 45
=N |14 35
' ... EVx3y Bx
S: &) |07 Y Y
@ o 116,17 _ 1T§ _ 1_6 ~ 0.57
G—8|02,27,67 (5) 28

(®——0 103,05,25,56,57

(P«——0 104,12,23,24,36,46

Q==8)|26

G==° (01,3747




Count models!

®<:>O O<:>(®

P,(Vx3y Bxy) = 0.56

Count pairs!

P{O-(Uo, vl)} ~ (0.57




Count models vs. count tuples

Intuition: If H > n, then (H, 0.5) contains (almost) all
n-structures as its substructures. Moreover, the
distribution of n-structures inside (H, 0.5) is (almost)
uniform.



Hyperfinite model theory

Keisler: The purpose of hyperfinite model theory is to
study and classify a type of models which arises in
applied mathematics.

-+« [These] models have usually been either countable
sequences of finite models or structures built upon the
real numbers. Hyperfinite models provide a better
source of infinite models which closely approximate
large finite phenomena.

-« Hyperfinite models deal with limiting behavior of
finite models.




Hyperfinite model theory

Definition. A hyperfinite probability space is a pair
(M, u) where A is a nonempty hyperfinite set and u is
an internal function u : M —=*[0,1] such that

ZaEM .u(a) = 1.

(M, M5, M3, ... )y - a hyperfinite set
(%1[0-],%2[0-],%3[0'], >‘U - (9.711,93?2,9.733, >-u

1Dy lo]l |Mylo]l |M;lo]l «
<|§IJ21| S R I 15 ,...>uE [0’1]




Probability logic L, p

Probability logic L,p is like first-order logic, but instead
of ¥ and 3 it has probability quantifiers (Px > 1),

r e Q.

MEPx>r)px)iffufxe M I ME @(x)}>r



Logic and Probability

First-order logic | Probability logic | Probability theory

Downward Elementary Weak law of large
Lowenheim- Skolem submodel theorem  numbers

theorem

Elementary Strong law of large

The zero-one law subsequence numbers
theorem



Thank you for your attention



