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Outline

I Concept lattices: concepts and implications
I Computing concept lattices and implication bases
I Learning association rules
I Pattern structures: Relational Knowledge Discovery



Implicative Dependencies and Closures

I Concept (Galois) lattices: concept hierarchies and
implicational dependencies

I functional dependencies
I Horn theories
I association rules
I version spaces
I emerging patterns



Basics of FCA



Formal Concept Analysis. 1. Data or “Context”
[Wille 1982], [Ganter, Wille 1996]

G ∖ M a b c d

1 × ×

2 × ×

3 × ×

4 × × ×

Objects:
1 – equilateral triangle,
2 – rectangle triangle,
3 – rectangle,
4 – square

Attributes:
a – has 3 vertices,
b – has 4 vertices,
c – has a direct angle,
d – equilateral



Formal Concept Analysis. 2
[Wille 1982], [Ganter, Wille 1996]

For a given context K := (G ,M, I ) consider two mappings
𝜙 : 2G → 2M and 𝜓 : 2M → 2G :

𝜙(A) def
= {m ∈ M | gIm for all g ∈ A}, 𝜓(B)

def
= {g ∈ G | gIm for all m ∈ B}.

The following properties hold for all A1,A2 ⊆ G , B1,B2 ⊆ M

1. A1 ⊆ A2 ⇒ 𝜙(A2) ⊆ 𝜙(A1)

2. B1 ⊆ B2 ⇒ 𝜓(B2) ⊆ 𝜓(B1)

3. A1 ⊆ 𝜓𝜙(A1) и B1 ⊆ 𝜙𝜓(B1)

Mappings 𝜙 and 𝜓 define Galois connection between (2G ,⊆) and (2M ,⊆).



Abstract Galois Connections

For two ordered sets (P,≤p) and (Q,≤q) a pair of mappings

𝜙 : P → Q, 𝜓 : Q → P makes a Galois connection if

x ≤p 𝜓(y) ⇔ y ≤q 𝜙(x)



Formal Concept Analysis. 3.
[Wille 1982], [Ganter, Wille 1996]

Let two sets G and M, called set of objects and set of attributes,
be given. Let I ⊆ G × M. If (g ,m) ∈ I , one says that object g has
attribute m. Triple K := (G ,M, I ) is called a (formal)context.

A′ def
= {m ∈ M | gIm for all g ∈ A}, B ′ def

= {g ∈ G | gIm for all m ∈ B}.

(Formal) concept is a pair (A,B):

A ⊆ G , B ⊆ M, A′ = B, and B ′ = A.

A is called a (formal) extent, and B is called a (formal)
intent of a concept (A,B).
Concepts are partially ordered by relation
(A1,B1) ≥ (A2,B2) ⇐⇒ A1 ⊇ A2 (B2 ⊇ B1).



Example. Diagram of the ordered set of concepts
({1,2,3,4},∅)

({1,4},{d}) ({2,3,4},{c}) ({1,2},{a})

({3,4},{b,c})

({1},{a,d})

(∅,M)

({4},{b,c,d}) ({2},{a,c})

G ∖ M a b c d
1 × ×
2 × ×
3 × ×
4 × × ×

a – has 3 vertices,
b – has 4 vertices,
c – has a direct angle,
d – equilateral



Properties of operation (·)′

Let (G ,M, I ) be a formal context, A,A1,A2 ⊆ G be subsets of objects, B ⊆ M
be subsets of attributes, then

1. If A1 ⊆ A2, then A′
2 ⊆ A′

1;

2. If A1 ⊆ A2, then A
′′
1 ⊆ A

′′
2

3. A ⊆ A′′

4. A′′′ = A′ (hence, A′′′′ = A′′);

5. (A1 ∪ A2)
′ = A′

1 ∩ A′
2;

6. A ⊆ B ′ ⇔ B ⊆ A′ ⇔ A × B ⊆ I .

Similar properties hold for subsets of attributes.



Closure operator on a set

A closure operator on set G is a mapping 𝜙 : 𝒫(G) → 𝒫(G) with the following
properties:

1. 𝜙𝜙X = 𝜙X (idempotency)

2. X ⊆ 𝜙X (extensity)

3. X ⊆ Y ⇒ 𝜙X ⊆ 𝜙Y (monotonicity)

For a closure operator 𝜙 the set 𝜙X is called closure of X .
A subset X ⊆ G is called closed if 𝜙X = X .
Example. Let (G ,M, I ) be a context, then operators
(·)′′ : 2G → 2G , (·)′′ : 2M → 2M are closure operators.



Basic Theorem of Formal Concept Analysis
[Wille 1982], [Ganter, Wille 1996]

Concept lattice B(G ,M, I ) is a complete lattice. For arbitrary sets of formal concepts

{(Aj ,Bj ) | j ∈ J} ⊆ B(G ,M, I )

infimums and supremums are given in the following way:⋀︁
j∈J

(Aj ,Bj ) = (
⋂︁
j∈J

Aj , (
⋃︁
j∈J

Bj )
′′),

⋁︁
j∈J

(Aj ,Bj ) = ((
⋃︁
j∈J

Aj )
′′,

⋂︁
j∈J

Bj ).

A complete lattice V is isomorphic to a lattice B(G ,M, I ) iff there are mappings
𝛾 : G → V and 𝜇 : M → V such that 𝛾(G) is supremum-dense in V , 𝜇(M) is
infimum-dense in V , and gIm ⇔ 𝛾g ≤ 𝜇m for all g ∈ G and all m ∈ M.
In particular, V ∼= B(V ,V ,≤).



FCA in Data Analysis. An
Example



Example: treating acute limphoblastic leukemia (ALL)

Data from randomized clinical studies for two protocols:
MB-ALL-2002 (more than 1500 patients) and MB-ALL-2008 (more
than 2000 patients) conducted in Russia and Germany under
surveillance of the Federal Center for Children’s Immunology,
Hematology and Oncology, Moscow.



Example: treating acute limphoblastic leukemia (ALL)

Data on treatment protocol for acute limphoblastic leukemia
ALL-MB-2008.

Figure: Plan of protocol ALL-MB-2008.



Physiological and diagnostics features as attributes

I Sex: categorical
I Age: integer
I Initial leukosis: “real”
I Immunophenotype: categorical
I Palpable liver size: “real”
I Palpable spleen size: “real”
I State of central neural system: categorical
I State of mediastinum: categorical



Example: treating ALL, standard risk group (SRG)

Totally 1121 patients
I strategy 100: 387 patients
I strategy 200: 366 patients
I strategy 300: 368 patients

Figure: General survival



Looking for subgroups of patients

Standard approaches:

I distance-based clustering. Drawbacks: metrics-based artifacts
I SVMs, neural networks. Drawbacks: poor interpretability of

results
I decision trees, random forests. Drawbacks: missing solutions

Hence, due to the high cost of an error, we need to perform global
search for statistically significant groups defined by all possible
attribute combinations, the exhaustive search.

This search can be however reduced (without losing any particular
group) by taking only one representative attribute combination for
every group. A natural candidate for this representative:
inclusion-maximal description. It is unique: a closed description!



Example: general survival analysis for SRG

Strategy 100 is better than 200 and 300 if

1. 4 ≤ age ≤ 13, 3 ≤ liver
I number of patients: 100 - 63, 200 - 52, 300 - 60
I long-term survival: 100 - 99.9%, 200 - 80.9%, 300 - 73.5%
I p-value: 100 vs 200 - 2.17%, 100 vs 300 - 0.52%
I cardinality: 100 vs 200 - 91%, 100 vs 300 - 98%

2. 4 ≤ age, 3 ≤ liver, cns = 1
I number of patients: 100 - 67, 200 - 61, 300 - 59
I long-term survival: 100 - 97.2%, 200 - 79.1%, 300 - 73.4%
I p-value: 100 vs 200 - 1.54%, 100 vs 300 - 1.63%
I cardinality: 100 vs 200 - 86%, 100 vs 300 - 94%

3. 4 ≤ age, 3 ≤ liver ≤ 7
I number of patients: 100 - 66, 200 - 61, 300 - 62
I long-term survival: 100 - 97.2%, 200 - 79.1%, 300 - 73.9%
I p-value: 100 vs 200 - 1.54%, 100 vs 300 - 1.96%
I cardinality: 100 vs 200 - 86%, 100 vs 300 - 94%

4. 4 ≤ age, 3 ≤ liver, spleen ≤ 4
I number of patients: 100 - 66, 200 - 61, 300 - 62
I long-term survival: 100 - 97.2%, 200 - 79.1%, 300 - 73.9%
I p-value: 100 vs 200 - 1.54%, 100 vs 300 - 1.96%
I cardinality: 100 vs 200 - 86%, 100 vs 300 - 94%



Example: general survival analysis in SRG

Strategy 100 is better than 200 and 300 when 4 ≤ age, 3 ≤ spleen
and one of the following conditions hold:
1) age ≤ 13, 2) cns = 1, 3) liver ≤ 7, 4) spleen ≤ 4



FCA in Machine Learning



JSM-method of hypothesis generation
FCA translation of [Finn 1991]

A target attribute w /∈ M,

I positive examples: Set G+ ⊆ G of objects known to have w ,
I negative examples: Set G− ⊆ G of objects known not to have w ,
I undetermined examples: Set G𝜏 ⊆ G of objects for which it is unknown

whether they have the target attribute or do not have it.

Three subcontexts of K = (G ,M, I ): K𝜀 := (G𝜀,M, I𝜀), 𝜀 ∈ {−,+, 𝜏} with respective
derivation operators (·)+, (·)−, and (·)𝜏 .

A positive hypothesis H ⊆ M is an intent of K+ not contained in the intent g− of
any negative example g ∈ G−: ∀g ∈ G− H ̸⊆ g−. Equivalently,

H++ = H, H′ ⊆ G+ ∪ G𝜏 .



Example of a learning context

G ∖ M color firm smooth form fruit
1 apple yellow no yes round +
2 grapefruit yellow no no round +
3 kiwi green no no oval +
4 plum blue no yes oval +
5 toy cube green yes yes cubic −
6 egg white yes yes oval −
7 tennis ball white no no round −
8 mango green no yes oval 𝜏



Natural scaling (binarization) of the context

G ∖ M w y g b f f s s r r fruit
1 apple × × × × +
2 grapefruit × × × × +
3 kiwi × × × × +
4 plum × × × × +
5 toy cube × × × × −
6 egg × × × × −
7 tennis ball × × × × −
8 mango × × × × 𝜏

Abbreviations:
“g” for green, “y” for yellow, “w” for white, “f” for firm, “f” for nonfirm,
“s” for smooth, “s” for nonsmooth, “r” for round,
“r” for nonround.



Positive Concept Lattice
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Implications

Implication A → B , where A,B ⊆ M holds in context (G ,M, I ) if
A′ ⊆ B ′, i.e., each object having all attributes from A also has all
attributes from B .
Implications and concept lattice: If A → B , then the meet of all
attribute concepts for attributes from A in the lattice diagram lies
below the meet of all attribute concepts of attributes in B .
Implications satisfy Armstrong rules:

X → X
,

X → Y
X ∪ Z → Y

,
X → Y ,Y ∪ Z → W

X ∪ Z → W
,

An implication cover is a subset of implications from which all
other implications can be derived by means of Armstrong rules.
An implication base is a minimal (by inclusion) implication cover.



Hypotheses vs. implications

A positive hypothesis h corresponds to an implication h → {w} in the context
K+ = (G+,M ∪ {w}, I+ ∪ G+ × {w}).
A negative hypothesis h corresponds to an implication h → {w̄} in the context
K− = (G−,M ∪ {w̄}, I− ∪ G− × {w̄}).
Hypotheses are special implications: their premises are closed (in K+ or in K−).

G ∖ M w y g b f f s s r r fruit nonfruit
1 apple × × × × ×
2 grapefruit × × × × ×
3 kiwi × × × × ×
4 plum × × × × ×
5 toy cube × × × × ×
6 egg × × × × ×
7 tennis ball × × × × ×



Functional dependencies

For a relational datatable (G ,M,W , I ), where I ⊆ G × M × W ,
and X ,Y ⊆ M
X ⇒ Y is a functional dependency if the following holds for
every pair of objects g , h ∈ G :

(∀m ∈ X m(g) = m(h)) → (∀n ∈ Y n(g) = n(h)).



Functional dependencies → Implications

For a relational database K = (G ,M,W , I ) one can construct a
context KN := (𝒫2(G ),M, IN), where 𝒫2(G ) is a set of pairs of
different objects from G , the relation IN is defined as

{g , h}INm :⇔ m(g) = m(h).

so that a functional dependency X ⇒ Y holds in K iff implication
X → Y holds in KN .



Functional dependencies → Implications

G ∖ M a b c d
1 0 0 1 1
2 0 2 0 0
3 3 0 3 0

A context with the “same” implications:

G ∖ M a b c d
12 ×
13 ×
23 ×



Implications → Functional dependencies

G ∖ M a b c d
1 × ×
2 × × ×
3 × ×
4 × ×

A relational database with the “same” functional dependencies:

G ∖ M a b c d
1 1 1 2 2
2 1 3 1 1
3 4 1 4 1
4 1 5 1 5
5 1 1 1 1



Minimum implication base
[Duquenne, Guigues 1986]

Duquenne-Guigues base is an implication base where each
implication premise is a pseudo-intent:

{P → (P ′′ ∖ P) | P is a pseudo-intent}.
A subset of attributes P ⊆ M is called a pseudo-intent if P ̸= P ′′

and for any pseudo-intent Q such that Q ⊂ P one has Q ′′ ⊂ P .

Duquenne-Guigues base is a minimum (cardinality minimal)
implication base.
Computing Duquenne-Guigues base ∼ learning a propositional Horn
theory from models



Two closures

Given K = (G ,M, I ), B ⊆ M, an implication base IB

I “double prime” closure B ′′

I implication closure: iterate
B := B ∪⋃︀{D | E → D,E ⊆ B,E → D from IB}

Two closures are equivalent



Computing concepts



Main intractability results for concept lattices

I Consider context K = (G ,G ̸=) for an arbitrary finite set G .
Then B(K ) is isomorphic to the Boolean lattice 2G with 2|G |

concepts.
I Given a context K = (G ,M, I ), computing the size of B(K ) is

#P-complete [Kuznetsov 1989, 2001].



#P and #P-completeness [L.Valiant, 1979]
Definition: #P is the class of counting problems associated with
the decision problems in NP. More formally, a problem is in #P if
there is a non-deterministic, polynomial time Turing machine that,
for each instance I of the problem, has a number of accepting
computations that is exactly equal to the number of distinct
solutions for instance I .
A problem is #P-complete if it is in #P and it is
#P-hard, i.e., any problem in #P can be reduced by Turing to it.
In particular, a problem in #P is #P-complete if a #P-complete
problem can be reduced to it. Obviously, #P = P =⇒ NP = P.
Examples of #P-complete problems:

I Given a matrix, output its permanent
I Given a bipartite graph, output the number of its perfect

matchings
I Given a CNF, output the number of its satisfying assignments
I Given a graph, output the number of its vertex covers



#P-completeness of counting concepts.

First, the problem of recognizing whether a pair (A,B) is a concept
of context K is solvable in polynomial time, therefore, the problem

INPUT Context K = (G ,M, I ).
OUTPUT The number of all concepts of the context K .

is in #P. Its completeness is shown by reducing to it the following
problem

INPUT A set of binary variables X = {x1, . . . , xn}, and C , a
monotone CNF with two variables in each conjunction:
C =

⋀︀s
i=1(xi1 ∨ xi2), with xi1 , xi2 ∈ X for all i = 1, s.

OUTPUT Number of binary n-vectors (binary assignments of
variables from X ) that satisfy CNF C .



Polynomial-delay algorithms for computing concepts

Definition
An algorithm for listing a family of combinatorial structures has delay d [Johnson et
al. 1988] if it executes at most d many computation steps before either outputting
each next structure or halting. Polynomial delay: d is bounded from above by a
polynomial from input size.

.
Generation of concepts and hypotheses can be done with polynomial delay
O(|G |2 · |M|) or O(|G |3 · |M|). Many batch algorithms have polynomial delay, among
them

I B. Ganter 1984 (NextClosure)
I J.-P. Bordat 1986
I S. Kuznetsov 1993 (CbO),
I D. van der Merwe et al. 2004 (AddIntent)
I J. Outrata and V. Vychodil, 2010 (FCbO)
I . . .

All these algorithms have O(|G |2 · |M| · |L|) total runtime complexity. The algorithm

of L.Nourine and O.Raynaud (2000) has O(|G | · |M| · |L|) complexity, but is very slow

in practice.



Example. A context and a concept lattice

({1,2,3,4},∅)

({1,4},{d}) ({2,3,4},{c}) ({1,2},{a})

({3,4},{b,c})

({1},{a,d})

(∅,M)

({4},{b,c,d}) ({2},{a,c})

G ∖ M a b c d

1 × ×

2 × ×

3 × ×

4 × × ×

a – has 3 vertices,

b – has 4 vertices,

c – has a direct angle,

d – equilateral



CbO in the strategy “top-down” (attribute-wise)

a]) b]c) c]) d])

..b]c,d)

?

..c]) ..d]) ..d]) ..d]b)

..d]b)



Fast computation of concepts under monotone constraints

I Computing only concepts with big extents (“large support”).
I Computing hypotheses (intents not contained in special intents

called “negative examples”) quality indices.

can be performed with polynomial delay by changing the branching
condition of an algorithm for computing concepts.



Computing implication bases



Duquenne-Guigues base can be exponential in the context
size

G ∖ M m0 m1 . . .mn mn+1 . . .m2n
g1
... ̸= ̸=

gn
gn+1 ×

...
...

...
... ̸=

...
...

g3n ×

The set {m1, . . . ,mn} is a pseudo-intent. Replacing mi with mn+i
independently for each i , one obtains all 2n pseudo-intents of the
context.



An example: Kexp,3

G ∖ M m0 m1 m2 m3 m4 m5 m6

g1 × × × ×
g2 × × × ×
g3 × × × ×
g4 × × × × × ×
g5 × × × × × ×
g6 × × × × × ×
g7 × × × × × ×
g8 × × × × × ×
g9 × × × × × ×

Here, we have 23 = 8 pseudo-intents: {m1,m2,m3}, {m1,m2,m6},
{m1,m5,m3}, {m1,m5,m6}, {m4,m2,m3}, {m4,m2,m6},

{m4,m5,m3}, {m4,m5,m6}.



Complexity of Computing Minimal Implication Bases

Recall that pseudo-intents are premises of the cardinality-minimal
implication base (Duquenne-Guigue base).

I The number of pseudo-intents can be exponential, the problem
of counting pseudo-intents is #P-hard [Kuznetsov 2004].

I Pseudo-intents cannot be generated in lexicographic order with
polynomial delay unless P=NP, generating pseudo-intents is
TRANSENUM-hard [F.Distel, B.Sertkaya 2010]

I Recognizing whether a subset of attributes is a pseudo-intent
is coNP-complete [Kuznetsov, Obiedkov 2006], [Babin,
Kuznetsov 2010]



Efficient lazy classification
with implications



Lazy evaluation vs. computing bases

If you need implications for classification, make classification
directly from data

If you need "understanding" data, compute a subbase:
small-premise implications or those implicitly used for classification
(anecdotal base)

Short-Premise Base

a → . . .

ab → . . .

abc → . . .

abcd → . . .



Good News: Classification with (·)′′-closure

For an arbitrary subset of attributes A ⊆ M the maximal set
which can be deduced with implications of the context is A′′

What is A′′? Take all objects that contain A and intersect
them.
This takes O(|G | · |M|) time.



Lazy classification: An example

G ∖ M target m1 m2 m3 m4 m5 m6

g1 × × × ×
g2 × × × ×
g3 × × × ×
g4 × × × × × ×
g5 × × × × × ×
g6 × × × × × ×
g7 × × × × × ×
g8 × × × × × ×
g9 × × × × × ×

2|M|/2 = 8 implications in the minimal base, with the premises

{m1,m2,m3}, {m1,m2,m6}, {m1,m5,m3}, {m1,m5,m6},
{m4,m2,m3}, {m4,m2,m6}, {m4,m5,m3}, {m4,m5,m6}.

To classify a new object g w.r.t. target t, compute (g ′ ∩ g ′
i )

′′, which takes
O(|G |2 · |M|) time.
If g ′ = {m1,m2,m5}, then for all gi one has
t ̸⊆ (g ′

i ∩ {m1,m2,m5})′′, hence g is classified negatively.



Lazy classification: An example

G ∖ M target m1 m2 m3 m4 m5 m6

g1 × × × ×
g2 × × × ×
g3 × × × ×
g4 × × × × × ×
g5 × × × × × ×
g6 × × × × × ×
g7 × × × × × ×
g8 × × × × × ×
g9 × × × × × ×

2|M|/2 = 8 implications in the minimal base, with the premises

{m1,m2,m3}, {m1,m2,m6}, {m1,m5,m3}, {m1,m5,m6},
{m4,m2,m3}, {m4,m2,m6}, {m4,m5,m3}, {m4,m5,m6}.

To classify a new object h w.r.t. target t, compute (h′ ∩ g ′
i )

′′, which takes
O(|G |2 · |M|) time. If h′ = {m1,m2,m3, }, then
for g7 one has (g7 ∩{m1,m2,m3})′′ = {m1,m2,m3, t}, hence h is classified positively.



Data Mining. Learning
Association Rules



Outline

I Learning association rules
I Learning JSM-hypotheses
I Relational learning with pattern structures
I Applications



Lattices in Data Mining. Association rules

In mid 1990s in papers of R. Agrawal et al. on association rules "partial implications"
from FCA were rediscovered.

A partial implication (association rule) of context (G ,M, I ) is an expression A →c,s B,
where

I c, s ∈ [0, 1];

I c = |(A∪B)′|
|A′| , called confidence, conf(A → B);

I s = |(A∪B)′|
|G | , called support, supp(A → B).



Covers of association rules

What is a minimal representation of the set of association rules, from which one can
obtain all association rules of a context using "admissible transformations"?
Consider an association rule A →c,s B. Under fixed confidence c = |(A∪B)′|

|A′| and

support s = |(A∪B)′|
|G | we try to reduce its premise and increase its conclusion.

1. Decreasing premise. For fixed c and s one can decrease premise from A to a
certain subset D ⊆ A such that (D ∪ B)′ = (A ∪ B)′ = A′ ∩ B′ = D′ ∩ B′, that is
D′ = A′ = A′′′. Thus, minimal D is by definition a minimal generator of A′′, i.e. D ∈
mingen(A′′).

Recall that a subset of attributes D ⊆ M is a generator of a closed subset of
attributes B ⊆ M, B′′ = B if D ⊆ B, D′′ = B = B′′. A subset D ⊆ M is a minimal
generator if for any E ⊂ D one has E ′′ ̸= D′′ = B′′.



Covers of association rules

2. Increasing conclusion. Conclusion B can be increased by a set Δ such that
(A∪B)′ = (A∪B ∪Δ)′ = (A∪B)′ ∩Δ′, which is possible only when (A∪B)′ ⊆ Δ′,
which is equivalent to A ∪ B → Δ and to Δ ⊆ (A ∪ B)′′. Thus, conclusion of the
association rule can be increased up to (A ∪ B)′′.
Thus, the rules from the set

CP(K) = {D → (A ∪ B)′′ | D ∈ mingen (A′′)}

make a cover of the set of all association rules. We can obtain all other rules by
admissible transformations – increasing premises and decreasing conclusions (these
operations do not decrease confidence and support) – of rules from CP(K). In terms
of these admissible transformations, CP(K) makes a cover of association rules.



Base of association rules

Consider an association rule of the form D → (A ∪ B)′′, where D ∈ mingen(A′′). In
the concept lattice diagram this rule corresponds to a path from the concept (A′,A′′)
to the concept ((A ∪ B)′, (A ∪ B)′′). If (A′,A′′) ̸≻ ((A ∪ B)′, (A ∪ B)′′), i.e., if the
vertex of the diagram corresponding to the concept (A′,A′′) is not an upper neighbor
of the vertex corresponding to ((A ∪ B)′, (A ∪ B)′′), then there is a concept (E ′,E ′′)
such that (A′,A′′) ≻ (E ′,E ′′) > ((A ∪ B)′, (A ∪ B)′′).
Consider D → E ′′, where D ∈ mingen(A′′) and F → (A ∪ B)′′, where F ∈
mingen(E ′′). The confidence of the first rule is c1 = |E ′|

|A′| , and the confidence of the

second rule is c2 = |(A∪B)′|
|E ′| . The confidence of the rule D → (A ∪ B)′′, where D ∈

mingen(A′′) is

c =
|(A ∪ B)′|

|A′|
=

|E ′|
|A′|

·
|(A ∪ B)′|

|E ′|
= c1 · c2.



Base of association rules

Hence, the cover of the set of association rules can be made even smaller by
restricting to the set of rules

{F → (′′ ∖ F ′′) | F ⊆ M,F ∈ mingen (F ′′), (F ′,F ′′) ≻ (E ′,E ′′)},

which correspond to the arcs of the diagram. Supports and confidence of other rules
from the cover can be obtained by multiplying supports along the respective paths in
the diagram.

To minimize the cover of association rules, making it a basis, one can retain only

those rules from CP(K) that correspond to edges from a spanning tree of the lattice

diagram.



General task of finding association rules

Find all “frequent” (with support greater than a threshold) association rules with
confidence greater than a threshold.
Solution stages

I Find all frequent "closed itemsets" (frequent intents)
I For each frequent intent B find all its maximal subintents A1, . . . ,An

I Retain only those Ai for which conf(Ai → B) ≥ 𝜃, where 𝜃 is confidence
threshold

I Find minimal generators of the remaining Ai , compose rules of the form
mingen(Ai ) → B.

Luxenburger basis

I Spanning tree of the concept lattice diagram
I Duquenne-Guigues implication base



Example. Confidence of association rules

({1,2,3,4},∅)

({1,4},{d}) ({2,3,4},{c}) ({1,2},{a})

({3,4},{b,c})

({1},{a,d})

(∅,M)

({4},{b,c,d}) ({2},{a,c})

1/2
3/4

1/2

2/3

1/2 1/2

0
0 0

1/2
1/2

1/2

1/3

G ∖ M a b c d

1 × ×

2 × ×

3 × ×

4 × × ×

Good rules with supp ≥ 1/2 and minconf ≥ 3/4
1. ∅ → c, sup(∅ → c) = conf(∅ → c) = 3/4;
2. c → b, sup(c → b)= 1/2, conf(c → b) =
2/3.



Example. Support of association rules

({1,2,3,4},∅)

({1,4},{d}) ({2,3,4},{c}) ({1,2},{a})

({3,4},{b,c})

({1},{a,d})

(∅,M)

({4},{b,c,d}) ({2},{a,c})

1/2
3/4

1/2

1/2

1/4 1/4

0
0 0

1/4
1/4

1/4

1/4

G ∖ M a b c d

1 × ×

2 × ×

3 × ×

4 × × ×

Good rules with supp ≥ 1/2 and minconf ≥ 3/4
1. ∅ → c, sup(∅ → c) = conf(∅ → c) = 3/4;
2. c → b, sup(c → b)= 1/2, conf(c → b) =
2/3.



Pattern Structures. Relational
Knowledge Discovery



Learning with labeled graphs: A motivation

I Structure-Activity Relationship problems for chemicals given by molecular
graphs

I Learning semantics from graph-based (XML, syntactic tree) text
representation



Starting point

To proceed with graphs like it was done for objects described by binary sets of
attributes (i.e., for contexts), one should define for graphs an operation ⊓
similar to that of set-theoretic ∩ (since then a closure operator ′′ can be
defined).

The first natural attempt to do this, like introducing an operation “take the
largest common subgraph of two graphs” fails, since there can be several
subgraphs of this type.

Perhaps operation should be defined not for graphs, but for sets of graphs?
The attempt even fails if we take all largest (in the number of vertices)
common subgraphs of two graphs.



Order on labeled graphs

Let (ℒ,⪯) be an ordered set of vertex labels.
Γ1 := ((V1, l1),E1) dominates Γ2 := ((V2, l2),E2) or Γ2 ≤ Γ1
if there exists a one-to-one mapping 𝜙 : V2 → V1 such that

I respects edges: (v ,w) ∈ E2 ⇒ (𝜙(v), 𝜙(w)) ∈ E1,
I fits under labels: l2(v) ⪯ l1(𝜙(v)).

Example: ℒ = {x ,NH2,Cl ,CH3,C ,OH}
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Semilattice on graph sets

{X} ⊓ {Y } := {Z | Z ≤ X ,Y , ∀Z* ≤ X ,Y Z* ̸< Z}

= The set of all maximal common subgraphs of X and Y .

Example:
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Meet of graph sets

For sets of graphs
𝒳 = {X1, . . . ,Xk} and 𝒴 = {Y1, . . . ,Yn}

𝒳 ⊓ 𝒴 := MAX ≤(
⋃︀

i,j ({Xi} ⊓ {Yj}))

⊓ is idempotent, commutative, and associative.

Example:

� � � � � � � � � � � �

� - * 3 ) ; 3 - / ' * 9 � ( 3
� 
 - � � � � � � �

� � 4 9 1 = � 
 - � � � � � � �
�
�

4

� � � � 
 C 5 � � �
	


�
� - � 	 4 � - � � 4 � �

� & 3 & = ) 2 � - ; ) 1 ; 4 , - 2 2 8 ; 9 ; & � )4 9 1 = 9 3 3 - , &9 ; & � )	

% & ' ( ) * + ,

5 6 7 5 9 6

5

= 6 >

�
������

�������

�
�������
�������

5 6 7 5 5 8

5

9 6

�

5 5 6 7

5

5 8

�
������

�������

�
�������
�������

5

5

9 6

�

5 5 6 7

5

�
������

�������

�
�������
�������

E F F G H I J � L



Examples
� � � � �

� � �

� � � � � � 	 + + & ' ( ) * + � 


5 6 7 5 9 6

5

= 6 > = 6 >

� � �

5 6 7 5 9 6

5

= 6 > 9 6

� � �

5 6 7 5 9 6

5

5 8 5 6 7

� 
 �

5 6 7 5 5 8

5

9 6 5 8

� � �

� + � ' � � 	 + + & ' ( ) * + � 


5 6 7 5 = 6 >

5

= 6 > = 6 >

� � �

= 6 > 5 9 6

5

5 6 7 5 8

� � �

= 6 > 5 9 6

5

= 6 > 5 8

E F F G H I J � L

� � � � �

� � �

� � � � � � 	 + + & ' ( ) * + � 


5 6 7 5 9 6

5

= 6 > = 6 >

� � �

5 6 7 5 9 6

5

= 6 > 9 6

� � �

5 6 7 5 9 6

5

5 8 5 6 7

� 
 �

5 6 7 5 5 8

5

9 6 5 8

� � �

� + � ' � � 	 + + & ' ( ) * + � 


5 6 7 5 = 6 >

5

= 6 > = 6 >

� � �

= 6 > 5 9 6

5

5 6 7 5 8

� � �

= 6 > 5 9 6

5

= 6 > 5 8

E F F G H I J � L



Positive lattice {1,2,3,4}{1,2,3} {2,3,4}{1,2} {2,3} {3,4}{1} {2} {3} {4}
∅

CH3 C OH

C

NH2 NH2









CH3 C OH

C

NH2 OH









CH3 C OH

C

Cl CH3









CH3 C Cl

C

OH Cl









NH2 C OH

C

CH3 Cl









CH3 C OH

C

NH2









CH3 C OH

C

,

C CH3

C

OH









CH3 C Cl

C

OH

,

Cl C

C

CH3









CH3 C OH

C







CH3 C

C

OH









C

C

OH

,

C CH3

C









positive examples 1, 2, 3, 4

(-)-example 6
⊑

⊑

1



Pattern Structures
[Ganter, Kuznetsov 2001]

(G ,D, 𝛿) is a pattern structure if
I G is a set (“set of objects”);
I D = (D,⊓) is a meet-semilattice;
I 𝛿 : G → D is a mapping;
I the set 𝛿(G) := {𝛿(g) | g ∈ G} generates a complete subsemilattice (D𝛿,⊓) of

(D,⊓).

Possible origin of ⊓ operation:
I A set of objects G , each with description from P;
I Partially ordered set (P,≤) of “descriptions” (≤ is a “more general than”

relation);
I The (distributive) lattice of order ideals of the ordered set (P,≤).



Pattern Structures

Let (G , (D,⊓), 𝛿) be a pattern structure, then

the subsumption order is defined as c ⊑ d : = c ⊓ d = c.

Derivation operators:
A◇ := ⊓g∈A𝛿(g) for A ⊆ G

c◇ := {g ∈ G | c ⊑ 𝛿(g)} for c ∈ C .

A pair (A, c) is a pattern concept of (G , (C ,⊓), 𝛿) if

A ⊆ G , c ∈ C ,A◇ = c, c◇ = A

A is extent and c is pattern intent.
A ⊆ G is closed if A◇◇ = A.
d ∈ D is closed if d◇◇ = d .



Reinventing the closure: Data mining

Late 1990s: a wave of interest in graph mining, with application in chemistry, protein
analysis, analysis of XML documents, etc. First Apriori-like algorithm gSpan was fairly
efficient.

X. Yan and J. Han, gSpan: Graph-Based Substructure Pattern Mining, Proc. IEEE Int. Conf. on Data
Mining, ICDM’02, 2002, pp.721–724, IEEE Computer Society

However, it was outperformed by CloseGraph from

X. Yan and J. Han, CloseGraph: mining closed frequent graph patterns, Proc. of the 9th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining, KDD’03

where closed graphs are defined in terms of “counting inference”:
Given a labeled graph dataset D and a graph g ∈ D
support(g) is a set (or number) of graphs in D, in which g is a subgraph.

A graph g is called closed if no supergraph f of g (i.e., a graph such that g is
isomorphic to its subgraph) has the same support.



Closed graphs and closed sets of graphs

Remark: Unlike closed subsets of attributes, closed graphs, ordered by subgraph
isomorphism, do not make a lattice (there can be multiple sups and infs).

However, closed graphs are related to closed sets of graphs (i.e., sets 𝒢 such that
𝒢◇◇ = 𝒢) as follows:

Proposition. Let a labeled graph dataset D be given, then

1. For a closed graph g there is a closed set of graphs 𝒢 such that g ∈ 𝒢.

2. For a closed set of graphs 𝒢 and an arbitrary g ∈ 𝒢, graph g is closed.



Projections as Approximation Tool

Motivation: Complexity of computations in (G ,D, 𝛿), e.g.,
testing SUBGRAPH ISOMORPHISM, i.e., relation ≤ for graphs, is NP-complete.

𝜓 is projection on an ordered set (D,⊑) if 𝜓 is

monotone: if x ⊑ y , then 𝜓(x) ⊑ 𝜓(y),

contractive:

a. 𝜓(x) ⊑ x
b. ∀x ,∀y ,∃z : y ⊑ 𝜓(x) ⇒ y = 𝜓(z)

idempotent: 𝜓(𝜓(x)) = 𝜓(x).



Projections as Approximation Tool
Example. Projection 𝜓3(Γ) takes Γ1 and Γ2 to the sets of their connected 3-vertex
subgraphs.
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Property of projections

Any projection of a complete semilattice (D,⊓) is ⊓-preserving, i.e., for any X ,Y ∈ D

𝜓(X ⊓ Y ) = 𝜓(X ) ⊓ 𝜓(Y ).

Example. A projection 𝜓n(Γ) takes Γ to the set of its n-chains not dominated by
other n-chains. Here n = 3, the label x is smaller than other labels, other labels are
pairwise incomparable.
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Projections and Representation Context
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Projection types used in chemical applications

We used several types of projections of labeled graph sets that are natural in chemical
applications:

I k-chain projection: a set of graphs X is taken to the set of all chains with k
vertices that are subgraphs of at least one graph of the set X ;

I k-vertex projection: a set of graphs X is taken to the set of all subgraphs with k
vertices that are subgraphs of at least one graph of the set X ;

I k-cycles projection: a set of graphs X is taken to the set of all subgraphs
consisting of k adjacent cycles of a minimal cyclic basis of at least one graph of
the set X .

Mixed projections (with same algebraical properties of simple projections) are also
possible.
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3-Projections
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2-Projections
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Pattern Structure with
Description Logic



Description Logic ℰℒ⊥. Syntax

Description Logics: a well-founded logical means for efficient knowledge
representation and reasoning [Baader, Calvanese, Horrocks, McGuiness,. . . ].
Plenty of DLs: ℰℒ, ℰℒ++ (OWL 2 EL), (OWL 2 DL), . . . .

Basic notions of ℰℒ⊥.
A signature is a pair (NC ,NR):
NC , a set of concept names,
NR , a set of role names.
Concept descriptions: each concept name A ∈ NC is a concept description;
the bottom concept ⊥ and the top concept ⊤ are concept descriptions;
if C and D are concept descriptions, then their conjunction C ⊓ D is a concept
description;
if r ∈ NR is a role name, and C is a concept description, then the existential
restriction ∃r .C is a concept description.

The set of all ℰℒ⊥-concept descriptions (w.r.t. signature (NC ,NR)) is symbolized as

ℰℒ⊥(NC ,NR).



Description Logic ℰℒ⊥. Semantics

An interpretation is a pair ℐ = (Δℐ , (·)ℐ) where Δℐ is a non-empty set (domain),
and (·)ℐ is an extension function that maps concept names A ∈ NC to subsets
Aℐ ⊆ Δℐ , and role names r ∈ NR to binary relations rℐ ⊆ Δℐ ×Δℐ . The extension
function is canonically extended to all concept descriptions as follows:

⊥ℐ :=∅

⊤ℐ :=Δℐ

(C ⊓ D)ℐ :=Cℐ ∩ Dℐ

(∃r .C)ℐ :={d ∈ Δℐ | ∃e ∈ Δℐ : (d , e) ∈ Rℐ ∧ e ∈ Cℐ}



Description logic. Implication (GCI)

A general concept inclusion (GCI) is of the form C ⊑ D where C and D are concept

descriptions. A GCI C ⊑ D is valid in an interpretation Iif Cℐ ⊆ Dℐ . We shall denote

this by ℐ |= C ⊑ D, and call Ia model of C ⊑ D. A TBox is a set of GCIs, and a

model of a TBox is a model of all its GCIs. Furthermore, a concept description C is

subsumed by a concept description D if it is valid in all interpretations. We shall

denote this by C ⊑ D, and call C a subsumee of D, and D a subsumer of C . It is

easily verified that ⊑ is a quasi-order on ℰℒ⊥(NC ,NR).



Description logic. LCS and MMSC

Definition (Least Common Subsumer)
Let C and D be two concept descriptions. Then a concept description E is called
least common subsumer (lcs) of C and D if it satisfies the following properties:

1. E is a common subsumer of C and D, i.e., C ⊑ E and D ⊑ E , and

2. for all concept descriptions F , if C ⊑ F and D ⊑ F , then E ⊑ F .

Definition (Model-Based Most-Specific Concept Description)
Let ℐ = (Δℐ , (·)ℐ) be an interpretation, and X ⊆ Δℐ be a subset of its domain. Then
a concept description C is called model-based most-specific concept description
(mmsc) of X in ℐ if it satisfies the following conditions:

1. X ⊆ Cℐ , and

2. for all concept descriptions D, if X ⊆ Dℐ , then C ⊑ D.



Pattern structure with a description logic (ℰℒ⊥)

Let ℐ = (Δℐ , ·ℐ) be an interpretation. Then the following triple is a pattern structure:

(Δℐ , (ℰℒ⊥(NC ,NR),⊓), (·)ℐ),

where ⊓ : ℰℒ⊥(NC ,NR)× ℰℒ⊥(NC ,NR) → ℰℒ⊥(NC ,NR) is the least common
subsumer operation,
(·)ℐ : ℘(Δℐ) → ℰℒ⊥(NC ,NR) is the model-based most specific concept (mmsc)
description mapping.

Interpretation operator and mmsc define a Galois connection between the powerset of
objects and the set of “descriptions”, i.e., ℰℒ⊥-formulas.

Having this, one has closure operator, (pattern) concepts, taxonomy (given by the

lattice of pattern concepts), implications, hypotheses, association rules, . . .



Conclusions

FCA and pattern structures give convenient tools for

1. construction and visualization of taxonomies of subject
domains

2. representation of implicative dependencies: implications,
association rules, hypotheses

3. knowledge discovery (taxonomies, implications, association
rules, hypotheses) with relational data



Conclusions

FCA and pattern structures give convenient tools for

1. construction and visualization of taxonomies of subject
domains

2. representation of implicative dependencies: implications,
association rules, hypotheses

3. knowledge discovery (taxonomies, implications, association
rules, hypotheses) with relational data

Thank you!
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