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Lambek’'s Non-Emptiness Restriction

In the original Lambek calculus, all antecedents are forced to be
non-empty. L* stands for the Lambek calculus without this

restriction.
book > n (noun)
interesting > n/n (adjective = left noun modifier)

very > (n/n)/(n/n) (adverb = left adjective modifier)

LE (n/n)/(n/n), n/n, n —=n
very interesting  book

L'+ (n/n)/(n/n), n —n
very book

But, Lambek’s restriction sometimes leads to problems...
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Theorem (M. Pentus 1995)

The Lambek calculus is sound and complete w.r.t. L-models, i.e.,
A — B is derivable iff w(A) C w(B) for any w.

Theorem (M. Pentus 1996; Yu. Savateev 2007)

The derivability problem for the Lambek calculus is NP-complete.
The derivability problem for the Lambek calculus with only one
operation (/) is decidable in polynomial time (O(n3%)).

This all works both for L and L*.
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) =) =\ (/=) =/) (=) (=)
Al ..., An = C (RS A, ARR A, — C
AR AR — CR A, ANy — C

[ — CRR
(RR_>) ﬁ (—>RR)E

L-interpretation: w(AR) = {a,...a; | a1...a, € w(A)}.

Theorem (S. K. 2012)

» LR s sound and complete w.r.t. L-models.
» LR-grammars generate precisely the class of context-free
languages.

» The derivability problem in L} (even with only one division) is
NP-complete.
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Al,A2 — C
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(permy)

(weak)

=/ (=) (=) A=) (=1

A1, ... Ay — C -
AL, .. A, > 1C

Al,AQ,!A,A3—>C ( )
ALA Ay As —5 C P2

AL IAA Ay — C
Al,!A,AQ — C

(contr)

DANGER!
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Undecidability

Theorem
The Lambek calculus with the exponential is undecidable.

Proof idea: (P. Lincoln et al. 1992)

>

Encode Lambek theories using !: for an extra non-logical
axioms of the form A — B add !(B/ A) to the antecedent.
Encode semi-Thue systems (type-0 grammars) as Lambek
theories: for rewriting rule uy ... ux = vi... vy, add
non-logical axiom vy, ..., vy, — Uy - ... - Ug.

(W. Buszkowski 1982) A trick allows to use only / in this
encoding.

(M. Kanovich 1994) A substitution that reduces to the
one-variable fragment (needs checking for the Lambek
calculus...)

Corollary: derivability from finite theories is undecidable even
in the one-variable fragment.



Issues with Lambek’'s Restriction

1.IfFLFT — A, then ELF -1 — A

NosA ALAA —C
Al, H, Ny — C
n—A
Mg := Q] — Alg := Q]
Al—)A2 Bl—)Bg A1—>A2 Bl—)Bz
Bl/A2—>52/A1 A2\51—>A1\BQ
5. The rules (weak), (contr), and (perm, ,) are admissible in

EL'.
6. The rules (/ —), (\ =), (- =), and (— ) are admissible in
EL" without restrictions.

(cut)

(subst)

(mony )

(mon /)

7. If I contains a formula without occurrences of ! (and
therefore is non-empty) and B does not contain occurrences
of I, than the rules (— /) and (— \) are admissible in EL'.



Theorem
If EL satisfies 1-7, then

L'FN— C=ELF!q,NM— C.
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Subexponentials

Leave only some of the structural rules.

L L
(weak), (contr), (permy ,) undecidable
(contr), (perm, ,) undecidable
(ncontry 2) undecidable ?
no (sub)exponentials NP-complete polynomial
(Pentus 2006) | (Savateev 2007)

(permy 5) NP-complete
(weak), (perm, ,) NP-complete ‘ ?
(contr) ?
(weak), (contr)




Undecidability for Subexponentials

(M. Kanovich, S. K., A. Scedrov, 2015-2016)

» Without weakening: include (B / A) only for axioms (A — B)
actually used in the derivation (relevant logic style).



Undecidability for Subexponentials

(M. Kanovich, S. K., A. Scedrov, 2015-2016)

» Without weakening: include (B / A) only for axioms (A — B)
actually used in the derivation (relevant logic style).

> Use the unit constant to imitate weakening for !C by adding

I(1/!C): works for the fragment with only non-local
contraction.



Undecidability for Subexponentials

(M. Kanovich, S. K., A. Scedrov, 2015-2016)

» Without weakening: include (B / A) only for axioms (A — B)
actually used in the derivation (relevant logic style).

> Use the unit constant to imitate weakening for !C by adding

I(1/!C): works for the fragment with only non-local
contraction.



Undecidability for Subexponentials

(M. Kanovich, S. K., A. Scedrov, 2015-2016)

» Without weakening: include (B / A) only for axioms (A — B)
actually used in the derivation (relevant logic style).

> Use the unit constant to imitate weakening for !C by adding

I(1/!C): works for the fragment with only non-local
contraction.

Al,AQ — C

GV aia s

—1



Undecidability for Subexponentials

(M. Kanovich, S. K., A. Scedrov, 2015-2016)

» Without weakening: include (B / A) only for axioms (A — B)
actually used in the derivation (relevant logic style).

> Use the unit constant to imitate weakening for !C by adding

I(1/!C): works for the fragment with only non-local
contraction.

Al,AQ — C

Y a1

—

NB: the 1 constant breaks L-completeness!



Undecidability for Subexponentials

(M. Kanovich, S. K., A. Scedrov, 2015-2016)

» Without weakening: include (B / A) only for axioms (A — B)
actually used in the derivation (relevant logic style).
> Use the unit constant to imitate weakening for !C by adding

I(1/!C): works for the fragment with only non-local
contraction.

Al,AQ — C

GV aia s

-1
NB: the 1 constant breaks L-completeness!

» Conjecture. One could eliminate 1 by means of substitution
1:=q/q, pi:=(qa/p)/(a/q) (cf. SK. 2011 for L)
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(contr)

A conservative fragment of Db! by Morrill and Valentin (2015).
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Decidable Fragments

» If Iis applied only to variables (e.g., 'np), the calculus is
NP-complete.
> Morrill and Valentin 2015. Controlled non-associativity:
» bans illegal extractions such as * “the girl whom; John loves ¢;
and Pete loves Kate”;
» contraction is allowed only from nested brackets
(...1A. . [...TA.]...), for precise modelling of parasitic
extraction).
Decidable with the bracket non-negative condition for
formulae under !. In general case also undecidable.
Complexity... unknown.
» The latter system is actually implemented in CatlLog
(exponential-time proof search algorithm using the focusing
technique).
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John, Bill, Mary, and Suzy
npnp  np np*\np/np np —np

Kleene star:

Mh—-A ... IT,—A
oA (0




The Lambek Calculus with the Kleene Star

Along with (— *),, we need a left rule for *.
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The Lambek Calculus with the Kleene Star
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L-interpretation: w(A*) ={a;...a,| n>0,a; € w(A)}.
L-completeness: open problem.

Restricted fragment: no -, * is allowed only in the following
combinations: A*\ B, B / A*. This fragment is L-complete
(N. Ryzhkova 2013).

For the case with Lambek’s nonemptiness restriction, consider the
Kleene plus instead of the Kleene star.



Complexity

l'and * N9-hard (Mi-complete?)

! r.e.-complete [P. Lincoln, J. Mitchell, A. Scedrov, N. Shankar 1992;
M. Kanovich, S. K., A. Scedrov 2016]

*. N, and U I'I(l’—hard [W. Buszkowski, E. Palka 2008]

pure L1 NP-complete [M. Pentus 2003]

* ?




Complexity

l'and * N9-hard (Mi-complete?)
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pure L1 NP-complete [M. Pentus 2003]

* ?

Technique for * and !: encode Kozen's complexity results about
Horn theories on Kleene algebras.
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> Pregroups. Instead of Lambek divisions (\, /) here we have
left and right adjoints (p’, p"). And also could add the
(sub)exponential and the Kleene star.

» Non-associative Lambek calculus (NL): open problem. (cf.
Buszkowski 2005: finite NL theories do not increase the
expressive power of NL)

» Other formats for the Lambek calculus with the Kleene star:
infinite and cyclic derivation branches (*-continuity vs
induction); equivalent Hilbert-style systems for the cyclic
calculus.

» Cut elimination.
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