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Linear Logic Basics

Multiplicative Fragment

Γ, F,G −→ H
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Γ1 −→ F Γ2 −→ G

Γ1,Γ2 −→ F ⊗G
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Γ1,Γ2, F ( G −→ H
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Γ −→ F ( G
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Linear Logic Basics

Multiplicative Fragment

Γ, F,G −→ H
Γ, F ⊗G −→ H

⊗L
Γ1 −→ F Γ2 −→ G

Γ1,Γ2 −→ F ⊗G
⊗R

Γ1 −→ F Γ2,G −→ H
Γ1,Γ2, F ( G −→ H

(L
Γ, F −→ G

Γ −→ F ( G
(R

Contraction and weakening are controled by the
exponentials ! and ?.

Γ, ! P, ! P −→ G
Γ, ! P −→ G C Γ −→ G

Γ, ! P −→ G W
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Subexponentials
Linear Logic Exponentials are Not Canonical
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Subexponentials
Linear Logic Exponentials are Not Canonical

!b, !r and ?b, ?r:!b, !r and ?b, ?r:
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Subexponentials
Linear Logic Exponentials are Not Canonical

!bF . !rF ?bF . ?rF
!b, !r and ?b, ?r:

!bF . !rF ?bF . ?rF
!b, !r and ?b, ?r:



7

Subexponentials
Linear Logic Exponentials are Not Canonical

!bF . !rF ?bF . ?rF
!b, !r and ?b, ?r: Subexponentials

All other
connectives are

canonical.!bF . !rF ?bF . ?rF
!b, !r and ?b, ?r: Subexponentials
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Subexponentials
Linear Logic Exponentials are Not Canonical

!bF . !rF ?bF . ?rF
!b, !r and ?b, ?r: Subexponentials

All other
connectives are

canonical.

Subexponential Signature

〈I,�,U〉
where U ⊆ I and is closed under �.

Γ, !aP, !aP −→ G
Γ, !aP −→ G C

Subexponentials with index a ∈ U
can weaken and contract:

Γ −→ G
Γ, !aP −→ G W

!bF . !rF ?bF . ?rF
!b, !r and ?b, ?r: Subexponentials

All other
connectives are

canonical.
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Subexponentials
Linear Logic Exponentials are Not Canonical

!bF . !rF ?bF . ?rF
!b, !r and ?b, ?r: Subexponentials

All other
connectives are

canonical.

Subexponential Signature

〈I,�,U〉
where U ⊆ I and is closed under �.

Γ, !aP, !aP −→ G
Γ, !aP −→ G C

Subexponentials with index a ∈ U
can weaken and contract:

Γ −→ G
Γ, !aP −→ G W

!bF . !rF ?bF . ?rF
!b, !r and ?b, ?r: Subexponentials

All other
connectives are

canonical.

In fact, signatures are
of the form:

〈I,�,C,W〉
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Subexponentials
Linear Logic Exponentials are Not Canonical

!bF . !rF ?bF . ?rF
!b, !r and ?b, ?r: Subexponentials

All other
connectives are

canonical.

Subexponential Signature

〈I,�,U〉
where U ⊆ I and is closed under �.

Γ, !aP, !aP −→ G
Γ, !aP −→ G C

Subexponentials with index a ∈ U
can weaken and contract:

Introduction Rules

!x1 F1, . . . !xn Fn −→ G
!x1 F1, . . . !xn Fn −→ !aG

!a
R

!x1 F1, . . . !xn Fn, F −→ ?xn+1G
!x1 F1, . . . !xn Fn, ?aF −→ ?xn+1G

?a
L

where a � xi for all i.
Γ −→ G

Γ, !aP −→ G W

!bF . !rF ?bF . ?rF
!b, !r and ?b, ?r: Subexponentials

All other
connectives are

canonical.
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Subexponentials
Linear Logic Exponentials are Not Canonical

!bF . !rF ?bF . ?rF
!b, !r and ?b, ?r: Subexponentials

All other
connectives are

canonical.

Subexponential Signature

〈I,�,U〉
where U ⊆ I and is closed under �.

Γ, !aP, !aP −→ G
Γ, !aP −→ G C

Subexponentials with index a ∈ U
can weaken and contract:

Introduction Rules

!x1 F1, . . . !xn Fn −→ G
!x1 F1, . . . !xn Fn −→ !aG

!a
R

!x1 F1, . . . !xn Fn, F −→ ?xn+1G
!x1 F1, . . . !xn Fn, ?aF −→ ?xn+1G

?a
L

where a � xi for all i.

Theorem: For any subexponential signature, Σ, SELLΣ

admits cut-elimination.

Γ −→ G
Γ, !aP −→ G W

!bF . !rF ?bF . ?rF
!b, !r and ?b, ?r: Subexponentials

All other
connectives are

canonical.
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Differences to Linear Logic

• The combination of subexponentials yields an unbounded
number of logically distinct prefixes as one can combine
subexponentials with different labels, e.g.,
!l1 , !l2 , . . . , !l1 ?l1 , !l1 ?l2 , !l1 ?l3 , . . .;

• Subexponential labels can be quantified over leading to new
universal and existential quantifiers e and d;

• The preorder � among subexponentials can be constructed using
more involved structures, e.g, c-semirings.
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Some Applications

• A framework for proof systems;

• A framework for authorization logics;

• A framework for concurrent constraint programming
languages.
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Sequents
In linear logic, there are two types of fórmulas bounded
and unbounded. Sequents normally have the form:

Θ | Γ −→ F
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Sequents
In linear logic, there are two types of fórmulas bounded
and unbounded. Sequents normally have the form:

Θ | Γ −→ F

Θ1 | · · · | Θn | Γn+1 | · · · | Γn+m | Γ −→ F

I = {l1, . . . , ln, . . . , lm+n} U = {l1, . . . , ln}

Unbounded Bounded

SELL has as many contexts as subexponential labels:
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Sequents
In linear logic, there are two types of fórmulas bounded
and unbounded. Sequents normally have the form:

Θ | Γ −→ F

LL is an instance of SELL, where I = U = {u}. For the
Linear K system from Frank’s talk set I = {u} and U = ∅.

Θ1 | · · · | Θn | Γn+1 | · · · | Γn+m | Γ −→ F

I = {l1, . . . , ln, . . . , lm+n} U = {l1, . . . , ln}

Unbounded Bounded

SELL has as many contexts as subexponential labels:

We also have a focused proof system for SELL.
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Rules

Bounded contexts are split, while unbounded are
contracted:

Θ1..n | Γn+1 | · · · | Γn+m | Γ −→ F1 Θ1..n | Γ
′
n+1 | · · · | Γ

′
n+m | Γ −→ F2

Θ1..n | Γn+1Γ′n+1 | · · · | Γn+mΓ′n+m | ΓΓ′ −→ F1 ⊗ F2
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Rules

Bounded contexts are split, while unbounded are
contracted:

Θ1..n | Γn+1 | · · · | Γn+m | Γ −→ F1 Θ1..n | Γ
′
n+1 | · · · | Γ

′
n+m | Γ −→ F2

Θ1..n | Γn+1Γ′n+1 | · · · | Γn+mΓ′n+m | ΓΓ′ −→ F1 ⊗ F2

Unbounded contexts may be contracted when necessary:

Θ1..n | · | · · · | A | · | · −→ A I
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Preorder
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Preorder

u

l

r

Consider I = {u, l, r}, U = {u} and the pre-order:
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Preorder

u

l

r
Θu | Γl | · | · −→ F

Θu | Γl | · | · −→ !lF
!R

· | · | Γr | · −→ F
Θu | · | Γr | · −→ !rF

!R

Θu | · | · | · −→ F
Θu | · | · | · −→ !uF

!R

Consider I = {u, l, r}, U = {u} and the pre-order:
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Preorder

Similarly with left ? introduction rules:

u

l

r
Θu | Γl | · | · −→ F

Θu | Γl | · | · −→ !lF
!R

· | · | Γr | · −→ F
Θu | · | Γr | · −→ !rF

!R

Θu | · | · | · −→ F
Θu | · | · | · −→ !uF

!R

Consider I = {u, l, r}, U = {u} and the pre-order:

Θu | Γl | · | G −→ ?lF
Θu | ?lG,Γl | · | · −→ ?lF

!R
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Classical SELL
Sometimes it will be convenient to use the classical
version of SELL.
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Classical SELL

` Θu | Γl | · | F
` Θu | !lF,Γl | · | ·

!R

Sometimes it will be convenient to use the classical
version of SELL.

Sequents

` Θ1 | · · · | Θn | Γn+1 | · · · | Γn+m | Γ

Rules

u

l

r

I = {l1, . . . , ln, . . . , lm+n} U = {l1, . . . , ln}

` Θ1..n | · | · · · | A | · | A⊥
I
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� Subexponential Prefixes

� Subexponential Quantification

� Algebras for Subexponential Relations

� Conclusions and Future Work

Agenda
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Prefixes

• We are able to check whether only some types of
formulas are present in the context.

u

l

r
Θu | Γl | · | · −→ F

Θu | Γl | · | · −→ !lF
!R

· | · | Γr | · −→ F
Θu | · | Γr | · −→ !rF

!R

Θu | · | · | · −→ F
Θu | · | · | · −→ !uF

!R

• We are able to erase some types of unbounded
formulas in the context;
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Prefixes

Classical SELL as a Framework for Proof Systems
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Prefixes

Classical SELL as a Framework for Proof Systems

F1, . . . , Fn −→ G1, . . . ,Gm

` Θ | bF1c, . . . bFnc | dG1e, . . . , dGne | ·

Encoding of the rules of the proof system, like a
logic program.

I = {u, l, r} b·c, d·e : f orm→ o

Object Sequent

Meta Sequent
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Prefixes
• We are able to erase some types of unbounded

formulas in the context.
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Prefixes
• We are able to erase some types of unbounded

formulas in the context.

Γ, F −→ G
Γ −→ ∆, F ⊃ G

⇒R

Consider the following rule from the multi-conclusion
proof system for intuitionistic logic:
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Prefixes
• We are able to erase some types of unbounded

formulas in the context.

Γ, F −→ G
Γ −→ ∆, F ⊃ G

⇒R

Consider the following rule from the multi-conclusion
proof system for intuitionistic logic:

∃A.∃B.dA ⊃ Be⊥ ⊗ !l(?lbAc O ?rdBe)

SELL Encoding
u, l, r ∈ U u

l r
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Prefixes

• We are able to erase some types of unbounded
formulas in the context.

Ξ

` Θ | bΓ, Fc | dGe |
` Θ | bΓc | · | bFc O ?rdGe

` Θ | bΓc | dF ⊃ G,∆e | !l(?lbFc O ?rdGe)
` Θ | bΓc | dF ⊃ G,∆e | dF ⊃ Ge⊥ ⊗ !l(?lbFc O ?rdGe)

` Θ | bΓc | dF ⊃ G,∆e | ∃A.∃B.dA ⊃ Be⊥ ⊗ !l(?lbAc O ?rdBe)
` Θ | bΓc | dF ⊃ G,∆e | ·

The r-context is
erased.
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Prefixes

• We are able to erase some types of unbounded
formulas in the context.

Ξ

` Θ | bΓ, Fc | dGe |
` Θ | bΓc | · | bFc O ?rdGe

` Θ | bΓc | dF ⊃ G,∆e | !l(?lbFc O ?rdGe)
` Θ | bΓc | dF ⊃ G,∆e | dF ⊃ Ge⊥ ⊗ !l(?lbFc O ?rdGe)

` Θ | bΓc | dF ⊃ G,∆e | ∃A.∃B.dA ⊃ Be⊥ ⊗ !l(?lbAc O ?rdBe)
` Θ | bΓc | dF ⊃ G,∆e | ·

The r-context is
erased.

From the focusing discipline, in fact, this is the only way
to introduce this formula. Adequacy on the Level of

Derivations.
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Prefixes
• We are able to check whether only some types of

formulas are present in the context.
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Prefixes

Γ,©F, F −→ ©G
Γ,©F −→ ©G ©L

Consider the following rule from the multi-conclusion
proof system for intuitionistic logic:

• We are able to check whether only some types of
formulas are present in the context.
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Prefixes

Γ,©F, F −→ ©G
Γ,©F −→ ©G ©L

Consider the following rule from the multi-conclusion
proof system for intuitionistic logic:

∃A.b©Ac⊥ ⊗ !◦r ?lbAc

SELL Encoding
u, l ∈ U

• We are able to check whether only some types of
formulas are present in the context.

l◦rr u

Both can store the formula
on the r.h.s, but only ◦r

can store a © formula.
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Prefixes

Ξ

` Θ | bΓ,©F, Fc | · | d©Ge | ·
` Θ | bΓ,©Fc | · | d©Ge | ?lbFc
` Θ | bΓ,©Fc | · | d©Ge | !◦r ?lbFc

` Θ | bΓ,©Fc | · | d©Ge | b©Fc⊥ ⊗ !◦r ?lbFc
` Θ | bΓ,©Fc | · | d©Ge | ∃A.b©Ac⊥ ⊗ !◦r ?lbAc

` Θ | bΓ,©Fc | · | d©Ge | ·

Only if the right
formula is in

the ◦r context.

• We are able to check whether only some types of
formulas are present in the context.

More details in our JLC 2016 paper.
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Putting this together

Intuitionistic SELL as a Framework for Linear
Authorization Logics
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Putting this together

Three Families of Modalities [Garg et al.]

K says P K knows P K has P

Intuitionistic SELL as a Framework for Linear
Authorization Logics
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Putting this together

Three Families of Modalities [Garg et al.]

K says P K knows P K has P

A lax modality denoting that the principal K affirms the
formula P:

Γ, P −→ K says G
Γ,K says P −→ K says G

saysL
Γ −→ P

Γ −→ K says P
saysR

Intuitionistic SELL as a Framework for Linear
Authorization Logics
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Putting this together

Three Families of Modalities [Garg et al.]

K says P K knows P K has P

Since knowledge is unrestricted, one is allowed to contract
as well as weaken it:

Γ −→ G
Γ,K knows P −→ G W

Γ,K knows P,K knows P −→ G
Γ,K knows P −→ G C

Intuitionistic SELL as a Framework for Linear
Authorization Logics



42

Putting this together

Intuitionistic SELL as a Framework for Linear
Authorization Logics

Three Families of Modalities [Garg et al.]

K says P K knows P K has P
An unbounded modality denoting that the principal K has
the consumable resource P:

Γ, P −→ G
Γ,K has P −→ G

hasL
Ψ,∆ −→ P

Ψ,∆ −→ K has P
hasR

where Ψ contains only formulas of the form K knows F,
while ∆ contains only formulas of the form K has F.
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Putting this together

gl

global
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Putting this together

gl

kk1

· · ·

· · ·

kki

kkn

knowsglobal
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Putting this together

gl

kk1

· · ·

· · ·

kki

kkn

knowsglobal has

hk1

· · ·

· · ·

hki

hkn
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Putting this together

gl

kk1

· · ·

· · ·

kki

kkn

knowsglobal has sayslinear

hk1

· · ·

· · ·

hki

hkn

lin

sk1

· · ·

· · ·

ski

skn
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Putting this together

gl

kk1

· · ·

· · ·

kki

kkn

knowsglobal has sayslinear

hk1

· · ·

· · ·

hki

hkn

lin

sk1

· · ·

· · ·

ski

skn

~F knows K�L = !kK~F�L ~F knows K�R = !kK~F�R

~F has K�L = !hK~F�L ~F has K�R = !hK~F�R

~F says K�L = !lin?sk~F�L

~F says K�R = ?sk~F�R
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Putting this together

gl

kk1

· · ·

· · ·

kki

kkn

knowsglobal has sayslinear

hk1

· · ·

· · ·

hki

hkn

lin

sk1

· · ·

· · ·

ski

skn

Theorem: The sequent Γ −→ F is provable in linear authorization
logic if and only if the sequent ~Γ�L −→ ~F�R is provable in SELL.
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Putting this together

says

sRk1

· · ·

· · ·

sRki

sRkn

gl

kk1

· · ·

· · ·

kki

kkn

knowsglobal

· · ·

· · ·

· · ·
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Putting this together

says

sRk1

· · ·

· · ·

sRki

sRkn

gl

kk1

· · ·

· · ·

kki

kkn

knowsglobal

· · ·

· · ·

· · ·

el

eh

e

l

h

Trigger

Lower
Ranked
Policies

Higher
Ranked
Policies
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Putting this together

says

sRk1

· · ·

· · ·

sRki

sRkn

gl

kk1

· · ·

· · ·

kki

kkn

knowsglobal

· · ·

· · ·

· · ·

el

eh

e

l

h

Trigger

Lower
Ranked
Policies

Higher
Ranked
Policies

Γ −→ F
Γ −→ !elF

!el
R

Γ, !l{ΓL} −→ !elF
n ×W

More details in my TCS 2014 paper.
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� Subexponential Prefixes

� Subexponential Quantification

� Algebras for Subexponential Relations

� Conclusions and Future Work

Agenda
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Adding Subexponential Quantifiers

Subexponential quantification adds expressiveness to
SELL, but one needs to be careful that SELL’s nice
properties, e.g., cut-elimination and focusing discipline, are
still preserved.
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Adding Subexponential Quantifiers

Subexponential quantification adds expressiveness to
SELL, but one needs to be careful that SELL’s nice
properties, e.g., cut-elimination and focusing discipline, are
still preserved.

• The ideia is to emulate the cut-elimination reductions
for the first-order quantifiers.

• Quantification may create generic variables, we call
Subexponential Variables;

• However, subexponentials are organized into a
pre-order, so we need more information on the
variables. We add a typing to subexponentials.
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Adding Subexponential Quantifiers

Signatures are of the form:

〈I,�, F,U〉
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Adding Subexponential Quantifiers

Signatures are of the form:

• Subexponential variables are typed: l : a means that l
is in the ideal of a, i.e., l ∈↓ a.

〈I,�, F,U〉
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Adding Subexponential Quantifiers

Signatures are of the form:

• Subexponential variables are typed: l : a means that l
is in the ideal of a, i.e., l ∈↓ a.

〈I,�, F,U〉

• F = {f1, . . . , fn} is a set of subexponential index
families. In particular, f ∈ F takes an element a ∈ I and
returns a subexponential index f(a).
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Adding Subexponential Quantifiers

Signatures are of the form:

• Subexponential variables are typed: l : a means that l
is in the ideal of a, i.e., l ∈↓ a.

〈I,�, F,U〉

• F = {f1, . . . , fn} is a set of subexponential index
families. In particular, f ∈ F takes an element a ∈ I and
returns a subexponential index f(a).

• U ⊆ {f(a) | a ∈ I, f ∈ F} is a set of unbounded
subexponentials. As before, it is upwardly closed with
respect to �: if b � a, where a, b ∈ I, and f(b) ∈ U then
f(a) ∈ U.



59

Adding Subexponential Quantifiers
e – Universal quantifier;
d – Existential quantifier;



60

Adding Subexponential Quantifiers
e – Universal quantifier;
d – Existential quantifier;

A; Γ, P[l/x] ` G
A; Γ,ex : a.P ` G

eL
A, le : a; Γ ` P[le/x]
A; Γ ` ex : a.P

eR

A, le : a; Γ, P[le/x] ` G
A; Γ,dx : a.P ` G

dL
A; Γ ` P[l/x]
A; Γ ` dx : a.P

dR
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Adding Subexponential Quantifiers
e – Universal quantifier;
d – Existential quantifier;

A; Γ, P[l/x] ` G
A; Γ,ex : a.P ` G

eL
A, le : a; Γ ` P[le/x]
A; Γ ` ex : a.P

eR

A, le : a; Γ, P[le/x] ` G
A; Γ,dx : a.P ` G

dL
A; Γ ` P[l/x]
A; Γ ` dx : a.P

dR

A; !f(l1: a1)F1, . . . !f(ln: an)Fn −→ G
A; !f(l1: a1)F1, . . . , !f(ln: an)Fn −→ !f(l : a)G

f(l : a) �A f(li : ai)

where f(l : a) �A f(li : ai) means li ∈↑ l.
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Adding Subexponential Quantifiers

Theorem For any signature Σ, the proof system SELLe

admits cut-elimination.

SELLe also has a complete focused proof system.
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Adding Subexponential Quantifiers
Intuitionistic SELL as a Framework for Concurrent

Constraint Programming
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Adding Subexponential Quantifiers
Intuitionistic SELL as a Framework for Concurrent

Constraint Programming

A simple and powerful model of concurrency tied to logic:
• Systems are specified by constraints representing

partial information on the variables of the system.
• Agents tell and ask constraints on a shared store of

constraints.
• CCP is parametric in a Constraint System (e.g.

x > 42 `∆ x > 0).



65

Adding Subexponential Quantifiers
Intuitionistic SELL as a Framework for Concurrent

Constraint Programming

CCP has been extended to deal with different application
domains:
• tcc: Reactive and timed systems;
• lccp: Linearity and resources;
• ntcc: Time, non-determinsim and asynchrony;
• utcc: Mobility;
• eccp and sccp: Epistemic and Spatial reasoning.
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Adding Subexponential Quantifiers
Intuitionistic SELL as a Framework for Concurrent

Constraint Programming

CCP has been extended to deal with different application
domains:
• tcc: Reactive and timed systems;
• lccp: Linearity and resources;
• ntcc: Time, non-determinsim and asynchrony;
• utcc: Mobility;
• eccp and sccp: Epistemic and Spatial reasoning.

All these systems can be encoded in SELLe. In fact, we
show how to combine some of them.
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Adding Subexponential Quantifiers
Intuitionistic SELL as a Framework for Concurrent

Constraint Programming

• !sP is located at s (epistemic and temporal);

• !s?sP is confined to s (spatial);

• el : a P – P can move to locations below (outside) a
(mobility).
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Adding Subexponential Quantifiers
Intuitionistic SELL as a Framework for Concurrent

Constraint Programming

All our encodings have a strong level of adequacy: proof
search and the execution of encoded programs match
exactly.
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Adding Subexponential Quantifiers
Intuitionistic SELL as a Framework for Concurrent

Constraint Programming

All our encodings have a strong level of adequacy: proof
search and the execution of encoded programs match
exactly.

More details in our CONCUR 2013 paper.
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� Subexponential Prefixes

� Subexponential Quantification

� Algebras for Subexponential Relations

� Conclusions and Future Work

Agenda
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Algebra for Subexponential Relations

Until now, � was quite simple. We can add more structure
it to capture even more computational behaviors.
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Algebra for Subexponential Relations

C-Semiring is a tuple 〈A,+,×,⊥A,>A〉

• +: commutative, associative, idempotent,⊥A-unit,
>A-absorbing

• × is associative, commutative, distribute over +, >A-unit,
⊥A-absorbing

Let ≤A be defined as a ≤A b iff a + b = b. Then, 〈A,≤A〉 is a
complete lattice where:

• + and × are monotone on ≤A, + is the lub operator.
If × is idempotent, then
• 〈A,≤A〉 is a complete distribute lattice, × is its glb.
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Algebra for Subexponential Relations
C-Semiring is a tuple 〈A,+,×,⊥A,>A〉

Choses the "best"valuation. Combines constraints
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Algebra for Subexponential Relations
C-Semiring is a tuple 〈A,+,×,⊥A,>A〉

Choses the "best"valuation. Combines constraints

• Crisp: S c = 〈{true, false},∨,∧, false, true〉
• Fuzzy: S F = 〈[0, 1],max,min, 0, 1〉 – Preferences
• Probabilistic: S P = 〈[0, 1],max,×, 0, 1〉
• Weighted: S w = 〈R−,max,+,−∞, 0〉 – Costs

An example of Fuzzy constraints:
x y x < y x > 1 c1 ⊗ c2

1 1 0.5 0.2 0.2
1 2 1.0 0.2 0.2
2 1 0.2 1.0 0.2
2 2 0.5 1.0 0.5

∑
vi = 0.5. Best solution=0.5
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Algebra for Subexponential Relations

The encodings

All the nice properties are preserved, i.e.,
cut-elimination, focusing discipline, adequacy, etc.

More details in our ICLP 2014 paper. In our TCS paper,
we show how soft constraints can be combined with

spatial, epistemic and temporal modalities.
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Conclusions and Future Work

The encodings

• We reviewed SELL a linear logic framework with
subexponentials and its extensions.

• We briefly explained how SELL can be used as a
framework for Proof Systems, Authorization Logics, and
CCP.
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Conclusions and Future Work

The encodings

As future work, we are investigating:

• Verification of SELL specifications: Linear logic does
help in proving properties about proof systems, such as
cut-elimination, when rules permute, etc. More is
needed to understand how one can profit when
specifying other types of systems.

• Other algebras for �: Investigate mechanisms to
combine modalities in a more systematic fashion.

• Other applications: Cyber-Physical security protocols,
verification of drone strategies.

• Other forms of quantification: There seems to be a
number of forms of quantifying subexponentials. We
need to understand these better.
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Questions

The encodings


