Strategic reasoning in conversations under imperfect information

Nicholas Asher and Soumya Paul

IRIT, Équipe MELODI Toulouse, France

Logic and Applications (LAP 2016) IUC, Dubrovnik

19 September 2016

Bensten-Quayle 1988 Vice Presidential debate

Christie-Rubio 2016 Republican primary debate

Coleman's spokesman Sheehan's 2008 press conference

1. **Prosecutor**: Do you have any bank accounts in Swiss banks, Mr. Bronston?

2. **Bronston**: No, sir.

3. **Prosecutor**: Have you ever?

4. **Bronston**: The company had an account there for about six months, in Zurich.

5. **Prosecutor**: Thank you Mr. Bronston.

[Solan-Tiersma'05, Speaking of crime: the language of criminal justice]

1. **Prosecutor**: Do you have any bank accounts in Swiss banks, Mr. Bronston?

2. Bronston: No, sir.

3. **Prosecutor**: Have you ever?

4. **Bronston**: The company had an account there for about six months, in Zurich.

5. **Prosecutor**: Thank you Mr. Bronston.

[Solan-Tiersma'05, Speaking of crime: the language of criminal justice]

- ▶ **Justin**: Have you been seeing Valentino this past week?
- ▶ **Janet**: *Valentino has mononucleosis.*

Puzzling observations

- ► In situations where the agents' interests are broadly opposed (eg. political debates, marital disputes), people still act somewhat cooperatively.
- They answer more often than not their interlocutor's questions.
- You'd better attend to what your opponent says and gauge exactly what might be meant if you hope to win a debate.
- ► For eg. Bronston's overall interests are opposed to that of the Prosecutor. Yet he is somewhat cooperative, and exploits the implicatures of (4) to answer his questions.

- ▶ Inherently 'turn-based' it matters who says what.
- ► Can be either symmetric or asymmetric.
- A move carries more semantic content than is usually assumed:

- ▶ Inherently 'turn-based' it matters who says what.
- ► Can be either symmetric or asymmetric.
- A move carries more semantic content than is usually assumed:
 - Misdirection: The company had an account there for about six months, in Zurich.
 - ► Ambiguity: Are you coming to the party? I'm tired.
 - ► Implicature: *I brought my umbrella today*.
 - ▶ Credibility, lying: *I proved* $P \neq NP$.

- ▶ Inherently 'turn-based' it matters who says what.
- ► Can be either symmetric or asymmetric.
- A move carries more semantic content than is usually assumed:
 - Misdirection: The company had an account there for about six months, in Zurich.
 - ► Ambiguity: Are you coming to the party? I'm tired.
 - ► Implicature: *I brought my umbrella today*.
 - ▶ Credibility, lying: I proved $P \neq NP.I$ proved P = NP.I

- ▶ Inherently 'turn-based' it matters who says what.
- ► Can be either symmetric or asymmetric.
- A move carries more semantic content than is usually assumed:
 - ▶ Misdirection: The company had an account there for about six months, in Zurich.
 - ► Ambiguity: Are you coming to the party? I'm tired.
 - ► Implicature: *I brought my umbrella today*.
 - ▶ Credibility, lying: I proved $P \neq NP.I$ proved P = NP.I
- ► The presense of a 'Jury'.
- ▶ Absence of a set-end or horizon.

$$x_3 \ y_3 \ x_4 \cdots$$

 $x_1 \ y_1 \ x_2 \ y_2$
 $x_3' \ y_3' \ x_4' \cdots$

- ▶ $x_j \in V_0^+$, V_0 : vocabulary of Player 0
- ▶ $y_i \in V_1^+$, V_1 : vocabulary of Player 1

$$x_3 \ y_3 \ x_4 \cdots$$

 $x_1 \ y_1 \ x_2 \ y_2$
 $x_3' \ y_3' \ x_4' \cdots$

- ▶ $x_j \in V_0^+$, V_0 : vocabulary of Player 0
- $y_j \in V_1^+$, V_1 : vocabulary of Player 1
- win_0 , $win_1 \subset (V_0 \cup V_1)^{\omega}$ fixed by the Jury.

$$x_3 \ y_3 \ x_4 \cdots \in win_0$$

 $x_1 \ y_1 \ x_2 \ y_2$
 $x_3' \ y_3' \ x_4' \cdots \notin win_0$

- ▶ $x_i \in V_0^+$, V_0 : vocabulary of Player 0
- ▶ $y_j \in V_1^+$, V_1 : vocabulary of Player 1
- win_0 , $win_1 \subset (V_0 \cup V_1)^{\omega}$ fixed by the Jury.

$$x_3 \ y_3 \ x_4 \cdots \in win_0$$

 $x_1 \ y_1 \ x_2 \ y_2$
 $x_3' \ y_3' \ x_4' \cdots \notin win_0$

- ▶ $x_i \in V_0^+$, V_0 : vocabulary of Player 0
- ▶ $y_j \in V_1^+$, V_1 : vocabulary of Player 1
- win_0 , $win_1 \subset (V_0 \cup V_1)^{\omega}$ fixed by the Jury.
- Strategy $\sigma_0: (V_0 \cup V_1)^*V_1^+ o V_0^+$

The vocabulary is defined using the theory of SDRT [Asher, Lascarides '03].

- ▶ V is of the form π : ϕ where
 - $\pi \in DU$: the set of discourse constituent labels.
 - lacktriangledown ϕ is a formula from some fixed language eg. some higher order logic for describing elementary discourse move contents.
- ▶ There is also a set of relations $\mathcal{R} \subset \mathsf{DU} \times \mathsf{DU}$, eg. question-answer-pair (qap).
- ► These relations specify when a discourse move can be played 'coherently' in a context.
- ► Can be described as a graph structure.

Example of an ME game

Example of an ME game

Example of an ME game

Prosecutor has a winning strategy!

Properties of ME games I

- ▶ Potentially unbounded, no set end.
- Messages come with a conventionally associated meaning due to the constraints enforced by the Jury: an agent who asserts φ commits to its content.
- ► We can add a language of simple propositional modal logic over the language of SDRT [Asher, Venant'15]:

$$\neg \phi \mid \phi_1 \lor \phi_2 \mid C_i \phi, \ i \in \{0, 1\} \mid C^* \phi$$

► Commitment is modeled as a Kripke modal operator via an alternativeness relation in a pointed model with a distinguished (actual) world w₀.

Properties of ME games II

- ► Each discourse move defines an action, that updates the model's commitment structure in the style of PAL.
- ▶ Entailment relation \models that ensures $\phi \models C^*C_i\phi$.
- ▶ Usual axioms.
- Allows movement from sequence of discourse moves to sequence of updates on the model.

Past approaches

- Signaling games and its cousins
 - ► Signaling Games [Spence'73].
 - ► Persuasion Games [Rubinstein-Glazer'04].
 - ► Cheap Talk [Crawford-Sobel'82, Farrell'87].
 - ► Long Cheap Talk [Aumann-Hart'03, Aumann-Maschler'95, Forges'90].
- ► Limitations of the signaling framework
 - ▶ Does not take into account the linguistic structure of messages.
 - Works well when the interests are aligned (Gricean players) or partially aligned.
 - ▶ Non-cooperative setting: problem of interpretation.
 - ► With costs: no exchange in equilibrium; without costs: 'babbling equilibrium' [Crawford-Sobel'82].
 - ► Inherently asymmetric.

Advantages of our approach

- Exploits the rich linguistic content of messages.
- ► The interpretation problem is solved extrinsically **Prosecutor**: I want to know if **you** ever had an account in Swiss banks. Answer my question directly.
- ► Avoids undesirable backward induction arguments.
- ► The set of plays has a rich topological structure.
- ► The player goals based on linguistic evaluations by the Jury can be characterized in terms of their structural complexity
 - Consistency, Coherence, Responsiveness etc. are all FO(<) definable.
 - ► CNEC is not FO(<) definable.
- ► Indicative of the strategic complexity of the player goals.

Deciding the winner finitely

Questions

- ► How does the Jury determine the winning sets?
- ▶ When and how does the Jury decide to stop the game?

Enter Weighted ME games

- ► The Jury assigns a score or weight to every move of each player.
- ► The weights are history dependent.
- ► The final score is the 'discounted sum' of the individual weights.
- ▶ Discounting reflects the fact: "play your best cards first".
- Permits the Jury to stop the game after a fixed finite number of turns with the assurance that neither player can gain or lose more than a certain amount.

Imperfect information

- ► It is crucial that the players are uncertain about the Jury conditions.
- They are also uncertain about the strategies of the other players.
- ► What constitutes rational play? equilibrium concepts?
- ► Type theory [Harsanyi '68].

Types and beliefs I

- ► Each player *i* has a (possibly infinite) set of types *T_i*.
- ▶ Each type t_i of Player i has a (first-order) belief function $\beta_i(t_i)$ which assigns to t_i a probability distribution over the types of the other players and the Jury.
- ► The higher-order beliefs can be defined in a standard way.
- ► Each type *t_i* starts the game with an initial belief, called the 'prior belief'.

Types and beliefs II

- ► After each move, all the players dynamically update their beliefs through Bayesian updates.
- ▶ 'optimal strategies', 'best-response', 'rationality', 'common belief in rationality' etc. can then be defined.
- ► Equilibrium concepts: NE, iterated removal of dominated strategies, correlated equilibrium, rationalizability etc. can be explored in terms of the beliefs.

Back to Bronston-Prosecutor

(I) The company had an account in the Swiss banks **but** Bronston himself did not.

Types of the Jury:

	tj_1	accepts (I) and clears him of all charges				
		does not accept (I) and he is charged with contempt of court				
Ì	tj ₃	does not accept (I) but does not charge him yet either				

Beliefs of the players:

	tp_1	tp ₂	tp ₃	tj ₁	tj ₂	tj ₃
tb_1	0	1	0	1	0	0
tb ₂	0	0	1	0	1	0
tb ₂	0	1	0	0	0	1

	tb ₁	tb ₂	tb ₃	tj ₁	tj ₂	tj ₃
tp_1	1	0	0	1	0	0
tp ₂	1	0	0	0	1	0
tp ₂	0	0	1	0	0	1

σ_1	yes
σ_2	no
σ_3	indirect

τ_1	followup
τ_2	acknowledgement

Rational type-strategies:

Bronston: (\cdot, σ_3)

Prosecutor: $(tp_1, \tau_2), (tp_2, \tau_1), (tp_2, \tau_2), (tp_3, \tau_2)$

Inexistence results

Theorem (Hellman, Levy '03,'12,'13)

A Bayesian game with a non-separable type space may not have a (measurable) equilibrium.

- ► Guaranteeing equilibria:
 - Restricting types to subsets definable in a countable language (FO definable, natural language).
 - Restricting types to subsets generated by resource bounded agents.
 - ► Limited memory.
 - Limited computation power.
 - Debates usually have a 'moderator' to assign turns.