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A fundamental question: which symbols (or words) of a formal
language are logical?
Some approaches to answer this:

» grammatical (atomic sentences are non-logical, while complex
sentences are built using logical constants)

» proof-theoretical (applied to any reasoning, regardless of its
subject: definability by inferential rules)

» semantical (fixed meaning, not depending on properties of
individuals: invariance under permutations, isomorphisms etc.)
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Logical constants and logical consequence

We focus on a recent development (Bonnay-Westerstahl 2012) in
the semantical approach, which explores the close relation between
logical constants and logical consequence (S = F iff there is no

interpretation of non-logical symbols such that S is true and F is
false). Goals:

» ambitious: find the proper notion of logical constants —
probably no answer

» less ambitious: understand how a choice of constants
generates a consequence relation, and vice versa.
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Abstract definition of consequence relation

To reason about fundamental question of logical constants, we
need an abstract definition of logical consequence.
Definition
A language is a triple L = (Symb, Sent, Tr), where:
» Symb is a countable set of symbols, partitioned into categories
> Sent is a set of sentences over an alphabet containing Symb
» Tr C Sent is the set of true sentences.
A consequence relation is = C P(Sent) x Sent s.t.
> ifpoel, thenl = ¢
>» if A= pand = forall p € A, then [ = ¢.

A consequence relation is truth-preserving if for all  C Tr we
have: if [ = ¢, then p € Tr.
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Consequence from constants

In this abstract setting we use replacement instead of
reinterpretation.

Definition

A replacement is a function p : Symb — Symb which respects
categories, i.e. p(u) is in the same category as u for all u € Symb.
Denote by ¢[p] the result of replacing each occurence of any

u € Symb in ¢ by p(¢). Analogously, we use notation I'[p].

Fix X C Symb (a choice of constants). Put I =x ¢ iff for each
replacement p s.t. p|x = idx we have: if ['[p] C Tr, then
©lp] € Tr. Then =x is a truth-preserving consequence relation.

Examples

» the standard consequence relation of propositional logic =p;
equals =y A}

» the standard consequence relation of first-order logic =pp is a
subset of =\, A v,3)
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Idea: given a language and a consequence relation, a symbol is a
constant if replacing it with another symbol of the same category
destroys at least one valid inference of that consequence relation.

Definition
Let = be a truth-preserving consequence relation. We define the

set of constants C.. by putting u € C, iff there are I', p and p
which is identity on Symb \ {u} s.t. [ = ¢ and I'[p] % ¢[p].

It is easy to see that for all X C Symb we have C., C X.

Examples

» C_,, is the standard set of logical constants of propositional
logic

» C,, is the standard set of logical constants of first-order logic
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A technical difficulty

Example
To see that V isin Cp,, , note that p =p. pV q, but p Fp p A q.

But often there is only one symbol of a given category in the
alphabet. It is usually convenient not to have too many primitive
symbols. Notably, regarding our example, we often have only one
binary Boolean connective in the alphabet, while the others are
defined as abbreviations.

There is a simple solution: in this case it is more convenient to
have more symbols (at least two of each category), so we let them
be in Symb — this does not essentially change the language, while
it provides what we need to prove that a symbol is a constant.
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Dual symbols

Recall we proved V is a constant by replacing it with A, which is
its dual, i.e. ¢ A9 is equivalent to —(—p V —1)).

Idea: if a symbol is unique of its category, introduce its dual to the
language and use it to show it is a constant.

More general idea: why not always use duals, whether a symbol is
unique of its category or not?

Consider further examples.

Examples

» Consider the basic modal logic with the standard (local)
consequence relation I-py.. To show that O € ., , include
its dual ¢ in the language. From duality itself we have
Op IFpe =0—p, but Op IFa ~O—p.

» We have V € C_, since VxA Ero ~3x—A, but
XA Fpo 73Ix—A.
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Arity of a symbol

To apply the idea, we need more structure in the abstract
definition of language.

Definition

Let L = (Symb, Sent, Tr) and let u € Symb. For any ¢ € Sent in
which u occurs, and for any occurrence of u in ¢, let 1) be the
subsentence which contains this occurrence of u, but no
subsentence of 1) contains this occurrence of w.

Arity of u € Symb is k € N s.t. each such 1) has exactly k maximal
proper subsentences 11, ...,%x. We denote 9 by u(t1, ..., ¥k).

Examples

In the sense of the above definition:
» —, O, 0, V, d are unary
» V, A, — are binary



Languages with duals

Definition

We say that L = (Symb, Sent, Tr) is a language with (classical)
negation if there is = € Symb s.t. for all ¢ € Sent we have also
—p € Sent and p € Triff ~p & Tr.



Languages with duals

Definition

We say that L = (Symb, Sent, Tr) is a language with (classical)
negation if there is = € Symb s.t. for all ¢ € Sent we have also
—p € Sent and p € Triff ~p & Tr.

We say that a language with negation L is a language with duals if
for all k > 0 and for each k-ary symbol u, there is a k-ary symbol
u’ of the same category s.t. u'(¢1,...,1%x) € Triff

—u(—r1, ..., y) € Tr.



Languages with duals

Definition

We say that L = (Symb, Sent, Tr) is a language with (classical)
negation if there is = € Symb s.t. for all ¢ € Sent we have also
—p € Sent and p € Triff ~p & Tr.

We say that a language with negation L is a language with duals if
for all k > 0 and for each k-ary symbol u, there is a k-ary symbol
u’ of the same category s.t. u'(¢1,...,1%x) € Triff

—u(—r1, ..., y) € Tr.

Examples

» propositional logic: V and A, — and ¢
> first-order logic: V and 3
» basic modal logic: (0 and ¢
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Conclusion

Theorem
Let L be a language with duals, k > 0, and u any k-ary symbol.
Let = be s.t. U'(Y1,...,0k) & —u(—11,...,k) (in particular,

this holds for the maximal truth-preserving = on L). If u is not
self-dual, then it is a constant.

Proof.
Let p be a replacement s.t. p(u) = u’ which is identity on
Symb\ {u}. Then /' (¢1,...,¢x) # —u' (=1, ..., =) or
= (21, k) A U (Y1, .., Wk) (otherwise u s
self-dual). O
Questions:
» What about self-duals? Idea: replace by a symbol of the same
type which is not self-dual to prove it is a constant.
» What about 0-ary symbols? Example: T |=p; =L, but
1 F=pp =L (we can say T and L are dual if we allow k = 0).



