Remarks on Reversible Circuit Synthesis from Decision Diagrams

An Informal Research Group

Periliter:

Suzana Stojković Milena Stanković Radomir S. Stanković

Claudio Moraga

U technische universität dortmund

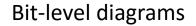
Decision Diagrams

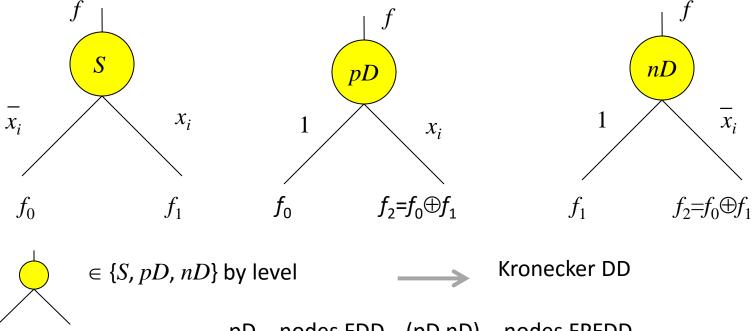
Data structure for representation of discrete functions

Directed acyclic graph consisting of a set of non-terminal nodes and constant nodes connected with edges

Graphic representation of function expressions for discrete functions

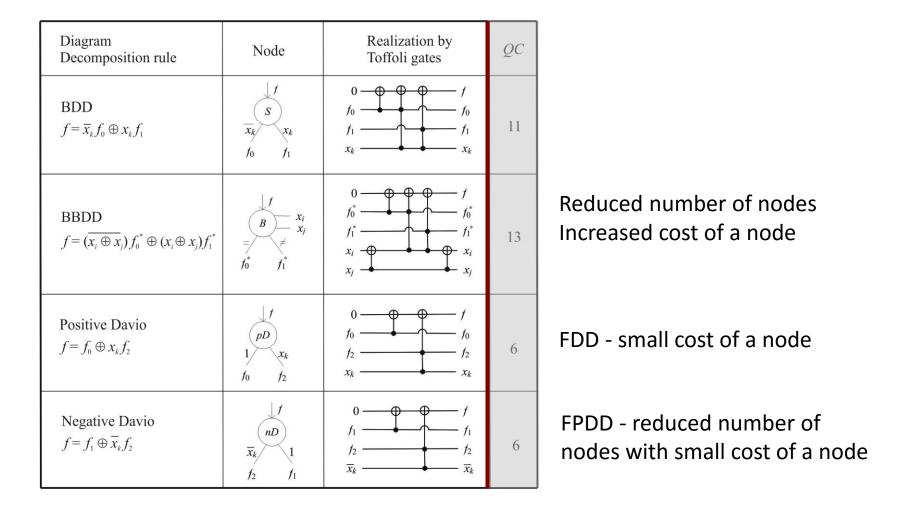
Binary Decision Diagrams

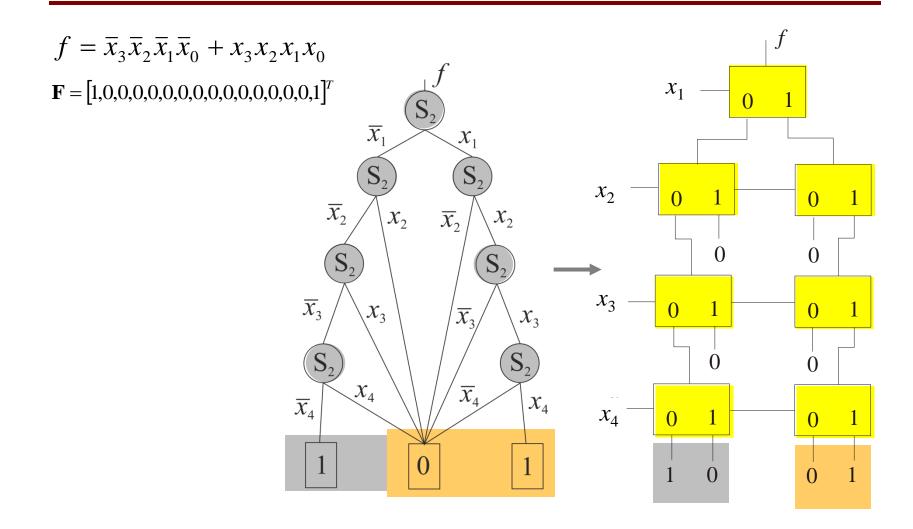

S - node


pD - node

 $f = \overline{x}_i f_0 \oplus x_i f_1$ $f = 1 \cdot f_0 \oplus x_i (f_0 \oplus f_1)$

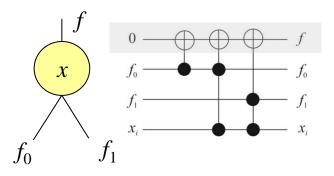
nD - node


 $f = 1 \cdot f_1 \oplus \overline{x}_i (f_0 \oplus f_1)$



pD – nodes FDD (pD,nD) – nodes FPFDD

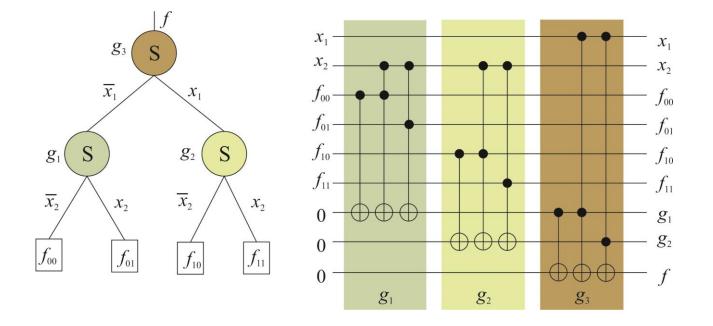
Realization of BDD, BBDD, and FDD


Network from BDD

Reversible Circuit Synthesis

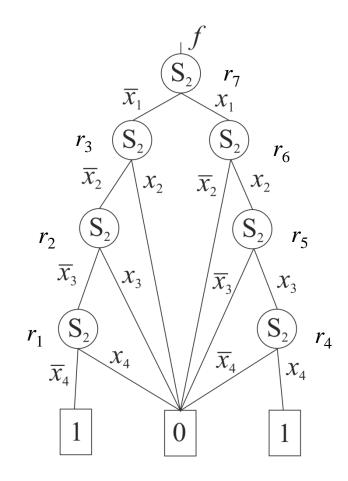
Traverse the decision diagram (bottom-up and post-order)

Replace each non-terminal node by a reversible circuit realizing the decomposition rule in the diagram

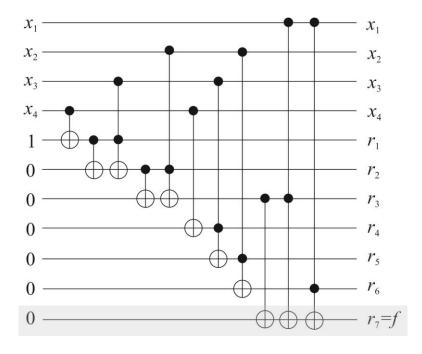


$$f = \overline{x}_i f_0 \oplus x_i f_1 = (1 \oplus x_i) f_0 \oplus x_i f_1 = f_0 \oplus x_i f_0 \oplus x_i f_1$$

Preserve all the input lines and constant nodes for the usage in next levels in the cascade


Main drawback – large number of lines

Reversible Circuit from BDD



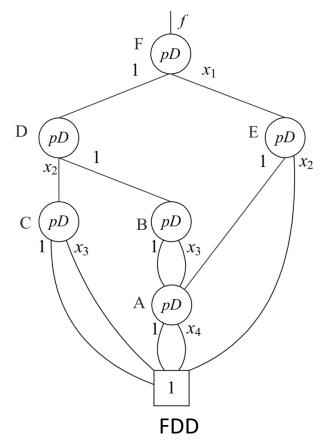
 $g_{1} = \overline{x}_{2}f_{00} \oplus x_{2}f_{01} = f_{00} \oplus x_{2}f_{00} \oplus x_{2}f_{01}$ $g_{2} = \overline{x}_{2}f_{10} \oplus x_{2}f_{11} = f_{10} \oplus x_{2}f_{10} \oplus x_{2}f_{11}$ $g_{3} = \overline{x}_{1}g_{1} \oplus x_{1}g_{2} = g_{1} \oplus x_{1}g_{1} \oplus x_{1}g_{2}$

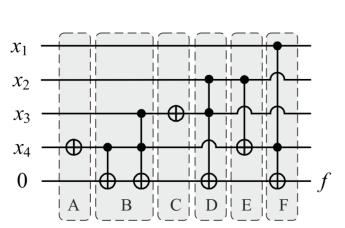
Reversible Circuit from BDD

$$\begin{aligned} r_1 &= \overline{x}_4 = 1 \oplus x_4 & r_4 = x_4 \\ r_2 &= \overline{x}_3 = r_1 \oplus x_3 r_1 & r_5 = x_3 \cdot r_4 \\ r_3 &= \overline{x}_2 \cdot r_2 = r_2 \oplus x_2 r_2 & r_6 = x_2 \cdot r_5 \\ r_7 &= \overline{x}_1 \cdot r_3 \oplus x_1 r_6 = r_3 \oplus x_1 r_3 \oplus x_1 r_6 \end{aligned}$$

Optimization Possibilities

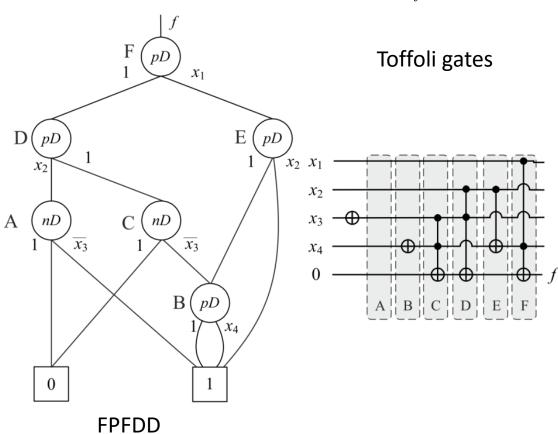
Decision diagrams defined with respect to different decomposition rules


Reduce diagrams from the selected class by different methods


Variable ordering Linearization of variables Change of the underlying algebraic structure

Template based post-processing

FDD - 4mod5_8


 $\mathbf{F} = [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]^T \quad \mathbf{S}_{f} = [1,1,1,1,1,0,1,0,1,1,0,0,1,0,0,0]^T$

$FPFDD - 4mod5_8$

 $\mathbf{F} = [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]^T$

$\mathbf{S}_{f} = [0,0,1,1,0,0,1,0,1,1,0,0,1,0,0,0]^{T}$

Optimization Possibilities

Positive Davio nodes

Node in FDD	Realization by Toffoli gates	Simplified realization	Condition for simplification
$ \begin{array}{c} $	x _k f		
$ \begin{array}{c} f \\ pD \\ 1 \\ 1 \\ 1 \end{array} $	$\begin{array}{c}1 \\ x_k \end{array} \begin{array}{c} f \\ x_k \end{array}$	$x_k \longrightarrow f$	The last usage of line x_k
$ \begin{array}{c} $	$\begin{array}{c} 0 & & & f \\ f_0 & & & f_0 \\ x_k & & & x_k \end{array}$	$f_{0} \xrightarrow{f_{0}} f_{x_{k}}$ or $f_{0} \xrightarrow{f_{0}} f_{0}$ $x_{k} \xrightarrow{f_{0}} f_{0}$	The last usage of line f_0 The last usage of line x_k
$ \begin{array}{c} $	$\begin{array}{c} 0 & & & f \\ f_2 & & & f_2 \\ x_k & & & x_k \end{array}$		
$ \begin{array}{c} \downarrow f \\ pD \\ 1 \\ 1 \\ f_2 \end{array} $	$\begin{array}{c}1 & & f\\f_2 & & f_2\\x_k & & x_k\end{array}$		
$ \begin{array}{c} f \\ pD \\ 1 \\ f_{0} \\ f_{2} \end{array} $	$0 \qquad \qquad f_{1} \qquad \qquad f_{2} \qquad \qquad f_{3} \qquad \qquad f_{4} \qquad \qquad f_{5} \qquad $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	The last usage of line f_0
$ \begin{array}{c} f \\ pD \\ 1 \\ f_0 \\ f_0 \\ f_0 $	$ \begin{array}{c} 0 & & & f \\ f_0 & & & f_0 \\ x_k & & & x_k \end{array} $		

Optimization Possibilities

Negative Davio nodes

Node in FDD	Realization by Toffoli gates	Simplified realization	Condition for simplification
$ \begin{array}{c} f \\ nD \\ \overline{x_k} \\ 1 \\ 1 \\ 0 \end{array} $	x _k f		
$ \begin{array}{c} f \\ nD \\ \overline{x_k} \\ 1 \\ 1 \\ 1 \end{array} $	$\frac{1}{x_k}$ $\frac{f}{f}$	$\overline{x_k} \longrightarrow f$	The last usage of line x_k
$ \begin{array}{c} f \\ nD \\ \overline{x_k} \\ 1 \\ f_1 \end{array} $	$\begin{array}{c} 0 & & & f_1 \\ \hline f_1 & & & f_2 \\ \hline x_k & & & & x_k \end{array}$	$ \begin{array}{c} \frac{f_1}{x_k} \xrightarrow{f_1} f_1 \\ \frac{f_1}{x_k} \xrightarrow{f_1} f_1 \\ \frac{f_1}{x_k} \xrightarrow{f_1} f_1 \end{array} $	The last usage of line f_1 The last usage of line x_k
$ \begin{array}{c} f \\ nD \\ \overline{x_k} \\ f_2 \\ 0 \end{array} $	$ \begin{array}{c} 0 & & & f \\ $		
$ \begin{array}{c} f \\ nD \\ \overline{x_k} \\ f_2 \\ 1 \end{array} $	$ \begin{array}{c} 1 & & & f \\ \frac{f_2}{x_k} & & & \frac{f_2}{x_k} \end{array} $		
$ \begin{array}{c} f \\ nD \\ \overline{x_k} \\ f_2 \\ f_1 \end{array} $	$0 \longrightarrow f$ $f_1 \longrightarrow f_1$ $f_2 \longrightarrow f_2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	The last usage of line f_1
$ \begin{array}{c} f \\ nD \\ \overline{x_{k}} \\ f_{1} \\ f_{1} \end{array} $	$ \begin{array}{c} 0 & & & & f_1 \\ & & & & & \\ & & & & & \\ & & & & & $		

Main Contribution and Present Work

Matching of decision diagrams (decomposition rules) with circuit modules provides networks of smaller cost

Realization of reversible ciruits through Walsh decision diagrams (WDD) and Hadamard modules

Concluding Remarks

Decision diagrams are a suitable data structure for the desing of reversible circuits Main drawback – a large number of additional lines Just a few additional lines in the case of FDDs **Optimization possiblities -**Selecting different decision diagrams Apply methods for further reducing the selected diagrams

DISCOBLOD

Match the diagrams (decomposition rules) with reversible gates to realize nodes