SECURE CHANNEL CODING SCHEME BASED ON LDPC CODES OVER THE BEC

ALEKSANDRA ARSIĆ MATHEMATICAL INSTITUTE SASA, BELGRADE

INTRODUCTION

- Combining encription process and coding theory
- Reducing the overall processing cost
- Faster and more efficient implementation
- 1978 first public key cryptosystem based on algebric coding theory
- Decoding problem for general linear codes is NP-complete

ELEMENTS OF CRYPTOSISTEM

- BEC Binary Erasure Channel
- LDPC CODES Low Density Parity Check Codes
 - QC-LDPC CODES
 - RAPTOR CODES
 - POLAR CODES

BEC – BINARY ERASURE CHANNEL

- Comunication channel
- Information may be lost, but it is never corrupted
- Simplest form:
 - Single bits are transmitted and either received correctly or known to be lost

LDPC CODES

- Discovered by Gallager
- Parity check and generator matrices for decoding and encoding algorithms
- General cases:
 - Encoding algorithm $O(n^2)$
 - Decoding algorithm $O(n^3)$

CLASSES OF LDPC CODES

CODE	QC-LDPC	RAPTOR	POLAR
ENCODING COMPLEXITY	O(N)	O(N)	$O(N \log N)$
DECODING COMPLEXITY	$O(N^3)$	O(N)	$O(N^2 \log N)$

SYSTEM DESIGN

- Improvement of encryption algorithm security
- Block or stream cipher can be used
- LDPC code
- BEC channel

EFFICIENCY AND SECURITY

- Key size
- Complexity of encoding algorithm
- Complexity of decoding algorithm
- Security against the best known attacks

CONCLUSIONS AND FUTURE WORKS

- Goals:
 - Increase information rate
 - Reduce key size
 - Decrease computation complexity
 - Imporove security

- Algorithm for decoding –
 modification / improvment
- New class of LDPC code
- New concept of cryptosystem

THANK YOU FOR ATTENTION!