Probabilistic reasoning with lambda terms

Silvia Ghilezan^{1,2} Jelena Ivetić¹ Simona Kašterović¹ Zoran Ognjanović² Nenad Savić³

Faculty of Technical Sciences, University of Novi Sad
 Mathematical Institute SANU, Belgrade, Serbia
 Institute of Computer Science, University of Bern, Switzerland

LAP - 2017 18.-22.09.2017, Dubrovnik

- 1 Probabilistic logic
- 2 Simple type assignment Λ_{\rightarrow}
- 3 Probabilistic logical system for simply typed lambda terms $P\Lambda_{
 ightarrow}$
- 4 The axiomatization $Ax_{P\Lambda}$
- 5 Completeness

- combination of simply typed lambda terms and probabilistic logic;
- probabilistic logic;
- simple type assignment.

Probabilistic reasoning with lambda terms
Probabilistic logic

- The set of formulas:
 - Classical propositional formulas
 - Basic probabilistic formulas

$$P_{\geq s}\alpha$$

Boolean combinations of basic probabilistic formulas

- The set of formulas:
 - Classical propositional formulas
 - Basic probabilistic formulas

$$P_{\geq s}\alpha$$

- Boolean combinations of basic probabilistic formulas
- Kripke-style semantics $\mathcal{M} = \langle W, H, \mu, v \rangle$,

- The set of formulas:
 - Classical propositional formulas
 - Basic probabilistic formulas

$$P_{\geq s}\alpha$$

- Boolean combinations of basic probabilistic formulas
- Kripke-style semantics $\mathcal{M} = \langle W, H, \mu, v \rangle$,
- infinitary axiomatization,

- The set of formulas:
 - Classical propositional formulas
 - Basic probabilistic formulas

$$P_{\geq s}\alpha$$

- Boolean combinations of basic probabilistic formulas
- Kripke-style semantics $\mathcal{M} = \langle W, H, \mu, \nu \rangle$,
- infinitary axiomatization,
- every consistent set can be extended to the maximal consistent set

- The set of formulas:
 - Classical propositional formulas
 - Basic probabilistic formulas

$$P_{\geq s}\alpha$$

- Boolean combinations of basic probabilistic formulas
- Kripke-style semantics $\mathcal{M} = \langle W, H, \mu, v \rangle$,
- infinitary axiomatization,
- every consistent set can be extended to the maximal consistent set
- canonical model.

Z. Ognjanović, M. Rašković, Z. Marković, Probability Logics: Probability-Based Formalization of Uncertain Reasoning. Springer, 2016.

- neither mixing of classical formulas and probabilistic formulas, nor nested probability operators is allowed,
- the following two expressions are *not* (well defined) formulas of the logic $P\Lambda_{\rightarrow}$:

$$\alpha \wedge P_{\geq \frac{1}{2}}\beta, \qquad P_{\geq \frac{1}{2}}P_{\geq \frac{1}{2}}\alpha.$$

robabilistic reasoning with lambda terms

 \sqsubseteq Simple type assignment Λ_{\rightarrow}

2 Simple type assignment Λ_{\rightarrow}

 \square Simple type assignment Λ

Let $V_{\Lambda} = \{x, y, z, \dots, x_1, \dots\}$ be a countable set of λ -term variables.

λ -terms

$$M ::= x \mid \lambda x.M \mid MM$$
.

☐Simple type assignment Λ_

Let $V_{\Lambda} = \{x, y, z, \dots, x_1, \dots\}$ be a countable set of λ -term variables.

λ -terms

$$M ::= x \mid \lambda x.M \mid MM.$$

Let $V_{\mathtt{Type}} = \{a, b, c, \dots\}$ be a denumerable set of propositional variables.

Simple types

$$\sigma ::= a \mid \sigma \to \sigma.$$

Let $V_{\Lambda} = \{x, y, z, \dots, x_1, \dots\}$ be a countable set of λ -term variables.

λ -terms

$$M ::= x \mid \lambda x.M \mid MM.$$

Let $\mathtt{V}_{\mathtt{Type}} = \{a, b, c, \dots\}$ be a denumerable set of propositional variables.

Simple types

$$\sigma ::= a \mid \sigma \to \sigma.$$

Definition $[=_{\beta}]$

The lambda term M is β -equal to the lambda term N (notion $M =_{\beta} N$) if and only if there is a sequence $M \equiv N_0, N_1, \ldots, N_n \equiv N$, where $N_i \rightarrow_{\beta} N_{i+1}$ or $N_{i+1} \rightarrow_{\beta} N_i$ for all $i \in \{0, 1, \ldots, n\}$.

Definition

The simple type assignment, Λ_{\rightarrow} , is defined as follows:

$$\frac{M: \sigma \to \tau \qquad N: \sigma}{MN: \tau} (\to_{E})$$

$$[x: \sigma]$$

$$\vdots$$

$$\frac{M: \tau}{\lambda x. M: \sigma \to \tau} (\to_{I})$$

$$\frac{M: \sigma \qquad M =_{\beta} N}{N: \sigma} (eq)$$

Term model $\mathcal{M} = \langle D, \cdot, \llbracket \ \rrbracket angle$

Definition

- (i) Domain of a term model is a set of all convertibility-classes of terms. For $M \in \Lambda$, the convertibility-class represented by M will be denoted by [M], i.e., $[M] = \{N : N =_{\beta} M\}$.
- (ii) If $\rho: V_{\Lambda} \to D$ is the valuation of term variables in D, then $[\![M]\!]_{\rho} \in D$ is the interpretation of $M \in \Lambda$ in $\mathcal M$ via ρ .
- (iii) Map \cdot is defined by $[M] \cdot [N] = [MN]$, and $[\![]\!]_{\rho}$ is defined by $[\![M]\!]_{\rho} = [M[N_1, \ldots, N_n/x_1, \ldots, x_n]\!]$, where x_1, \ldots, x_n are the free variables of M, and $\rho(x_i) = [N_i]$ and $[\cdots/\cdots]$ is simultaneous substitution.
- (iv) Let $\xi: V_{\mathrm{Type}} \to \mathcal{P}(D)$ be a valuation of type variables. The interpretation of $\sigma \in \mathrm{Type}$ in \mathcal{M} via ξ , denoted by $[\![\sigma]\!]_{\xi} \in \mathcal{P}(D)$, is defined:
 - $[a]_{\xi} = \xi(a);$
 - $\llbracket \sigma \to \tau \rrbracket_{\xi} = \{ d \in D \mid \forall e \in \llbracket \sigma \rrbracket_{\xi}, \ d \cdot e \in \llbracket \tau \rrbracket_{\xi} \}.$

The soundness and completeness of type assignment were proved with the notion of term model.

Theorem [Soundness]

$$\Gamma \vdash M : \sigma \Rightarrow \Gamma \models M : \sigma.$$

Theorem [Completeness]

$$\Gamma \models M : \sigma \Rightarrow \Gamma \vdash M : \sigma$$
.

J.R. Hindley, The completeness theorem for typing lambda terms. *Theoretical computer Science*, 22: 1–17, 1983.

3 Probabilistic logical system for simply typed lambda terms $P\Lambda_{\rightarrow}$

Syntax of $P\Lambda_{\rightarrow}$

Let S be the set of rational numbers from [0,1], i.e., $S=[0,1]\cap \mathbb{Q}$. The alphabet of the logic $P\Lambda_{\rightarrow}$ consists of

- all symbols needed to define simply typed lambda terms,
- lacktriangle the classical propositional connectives \neg and \land ,
- the list of probability operators $P_{\geq s}$, for every $s \in S$.

Basic Formulas

For_B
$$\alpha ::= M : \sigma \mid \alpha \wedge \alpha \mid \neg \alpha$$
.

Basic Formulas

For_B
$$\alpha ::= M : \sigma \mid \alpha \wedge \alpha \mid \neg \alpha$$
.

Example:

 \blacksquare $y : \sigma$;

Basic Formulas

For_B
$$\alpha ::= M : \sigma \mid \alpha \wedge \alpha \mid \neg \alpha$$
.

Example:

- **■** *y* : *σ*;
- $\blacksquare x : \sigma \to \tau \land y : \sigma;$

Basic Formulas

For_B
$$\alpha ::= M : \sigma \mid \alpha \wedge \alpha \mid \neg \alpha$$
.

Example:

- *y* : *σ*;
- $\blacksquare x : \sigma \to \tau \land y : \sigma;$
- $\blacksquare \ \ \textit{$x:\sigma\to\tau\land y:\sigma\Rightarrow xy:\tau$}.$

Basic Formulas

For_B
$$\alpha ::= M : \sigma \mid \alpha \wedge \alpha \mid \neg \alpha$$
.

Example:

- \blacksquare $y : \sigma$;
- $\blacksquare x : \sigma \to \tau \land y : \sigma;$
- $\blacksquare x : \sigma \to \tau \land y : \sigma \Rightarrow xy : \tau.$

Probabilistic Formulas

Forp
$$\phi ::= P_{>s}\alpha \mid \phi \wedge \phi \mid \neg \phi$$
.

Basic Formulas

For_B
$$\alpha ::= M : \sigma \mid \alpha \wedge \alpha \mid \neg \alpha$$
.

Example:

- \blacksquare $y : \sigma$;
- $\blacksquare x : \sigma \to \tau \land y : \sigma;$
- $x : \sigma \to \tau \land y : \sigma \Rightarrow xy : \tau.$

Probabilistic Formulas

Forp
$$\phi ::= P_{\geq s} \alpha \mid \phi \wedge \phi \mid \neg \phi$$
.

Example:

■
$$P_{\geq \frac{1}{2}}x : \sigma$$
;

Basic Formulas

For_B
$$\alpha ::= M : \sigma \mid \alpha \wedge \alpha \mid \neg \alpha$$
.

Example:

- \blacksquare $y : \sigma$;
- $\mathbf{x}: \sigma \to \tau \land \mathbf{y}: \sigma;$
- $\blacksquare x : \sigma \to \tau \land y : \sigma \Rightarrow xy : \tau.$

Probabilistic Formulas

Forp
$$\phi ::= P_{>s}\alpha \mid \phi \wedge \phi \mid \neg \phi$$
.

Example:

- $P_{>\frac{1}{2}}x : \sigma$;
- $P_{=1}(x:\sigma\to\rho\land y:\sigma)\Rightarrow P_{=1}(xy:\rho).$

Semantics of $\overline{P}\Lambda_{\rightarrow}$

Semantics of $P\Lambda_{\rightarrow}$

Definition [P Λ_{\rightarrow} -structure]

A $P\Lambda_{\rightarrow}$ -structure is a tuple $\mathcal{M} = \langle W, \rho, \xi, H, \mu \rangle$, where:

- (i) W is a nonempty set of worlds, where each world is one term model, i.e., for every $w \in W$, $w = \langle \mathcal{L}(w), \cdot_w, \llbracket \rrbracket_w \rangle$;
- (ii) $\rho: V_{\Lambda} \times \{w\} \longrightarrow \mathcal{L}(w), w \in W$;
- (iii) $\xi: V_{Type} \times \{w\} \longrightarrow \mathcal{P}(\mathcal{L}(w)), w \in W;$
- (iv) H is an algebra of subsets of W, i.e. $H \subseteq \mathcal{P}(W)$ such that
 - $W \in H$,
 - if $U, V \in H$, then $W \setminus U \in H$ and $U \cup V \in H$;
- (v) μ is a finitely additive probability measure defined on $\emph{H}\textsc{,}$ i.e.,
 - $-\mu(W)=1$,
 - if $U \cap V = \emptyset$, then $\mu(U \cup V) = \mu(U) + \mu(V)$, for all $U, V \in H$.

Probabilistic logical system for simply typed lambda terms PΛ→

We say that a lambda statement $M:\sigma$ holds in a world w, notation $w\models M:\sigma$, if and only if

$$\llbracket M \rrbracket_{\rho}^{w} \in \llbracket \sigma \rrbracket_{\xi}^{w}.$$

We say that a lambda statement $M : \sigma$ holds in a world w, notation $w \models M : \sigma$, if and only if

$$\llbracket M \rrbracket_{\rho}^{w} \in \llbracket \sigma \rrbracket_{\xi}^{w}.$$

Definition [Satisfiability relation]

The satisfiability relation $\models \subseteq P\Lambda^{Meas}_{\to} \times For_{P\Lambda_{\to}}$ is defined in the following way:

- $\mathcal{M} \models M : \sigma \text{ iff } w \models M : \sigma \text{, for all } w \in W$;
- $\mathcal{M} \models P_{\geq s}\alpha$ iff $\mu([\alpha]) \geq s$;
- $\mathcal{M} \models \neg \mathfrak{A}$ iff it is not the case that $\mathcal{M} \models \mathfrak{A}$;
- $\mathcal{M} \models \mathfrak{A}_1 \wedge \mathfrak{A}_2$ iff $\mathcal{M} \models \mathfrak{A}_1$ and $\mathcal{M} \models \mathfrak{A}_2$.

Probabilistic logical system for simply typed lambda terms PA

Example

Consider the following model with three worlds, i.e., let $\mathcal{M} = \langle W, \rho, \xi, H, \mu \rangle$, where:

$$W = \{w_1, w_2, w_3\},$$

$$\blacksquare$$
 $H = \mathcal{P}(W)$,

$$\mu(\{w_j\}) = \frac{1}{3}, j = 1, 2, 3,$$

and ρ and ξ are defined such that

$$w_1 \models (x : \sigma \to \tau) \land (y : \sigma),$$

$$w_2 \models (x : \sigma_1 \rightarrow \tau) \land (y : \sigma_1),$$

$$w_3 \models (x : \sigma_2 \rightarrow \tau) \land (y : \sigma_2).$$

$$\mathcal{M} \models P_{=\frac{1}{3}}(x : \sigma \to \tau), \ \mathcal{M} \models P_{=\frac{1}{3}}(y : \sigma),$$

 W_2

$$\mathcal{M} \models P_{=\frac{1}{3}}(x : \sigma \to \tau), \ \mathcal{M} \models P_{=\frac{1}{3}}(y : \sigma), \ \mathcal{M} \models P_{=1}(xy : \tau).$$

4 The axiomatization $Ax_{P\Lambda_{\rightarrow}}$

Axiom schemes

- (1) all instances of the classical propositional tautologies, (atoms are any $P\Lambda_{\rightarrow}$ -formulas).
- (2) $P_{>0}\alpha$,
- (3) $P_{\leq r}\alpha \Rightarrow P_{\leq s}\alpha$, s > r,
- (4) $P_{\leq s}\alpha \Rightarrow P_{\leq s}\alpha$,
- $(5) (P_{\geq r}\alpha \wedge P_{\geq s}\beta \wedge P_{\geq 1}(\neg \alpha \vee \neg \beta)) \Rightarrow P_{\geq \min\{1, r+s\}}(\alpha \vee \beta),$
- (6) $(P_{\leq r}\alpha \wedge P_{< s}\beta) \Rightarrow P_{< r+s}(\alpha \vee \beta), r+s \leq 1,$
- (7) $P_{\geq 1}(\alpha \Rightarrow \beta) \Rightarrow (P_{\geq s}\alpha \Rightarrow P_{\geq s}\beta).$

Inference Rules I

(1)
$$\frac{M: \sigma \to \tau \quad N: \sigma}{MN: \tau} (\to_{E})$$

$$[x: \sigma]$$

$$\vdots$$

$$(2) \quad \frac{M: \tau}{\lambda x. M: \sigma \to \tau} (\to_{I})$$

$$(3) \quad \frac{M: \sigma \quad M =_{\beta} N}{N: \sigma} (eq)$$

Inference Rules II

- (1) From \mathfrak{A}_1 and $\mathfrak{A}_1 \Rightarrow \mathfrak{A}_2$ infer \mathfrak{A}_2 ,
- (2) from α infer $P_{>1}\alpha$,
- (3) from the set of premises

$$\{\phi \Rightarrow P_{\geq s - \frac{1}{k}}\alpha \mid k \geq \frac{1}{s}\}$$

infer $\phi \Rightarrow P_{\geq s}\alpha$.

Soundness

Theorem [Soundness]

The axiomatic system $Ax_{P\Lambda_{\rightarrow}}$ is sound with respect to the class of $P\Lambda_{\rightarrow}^{Meas}$ -models.

5 Completeness

Theorem

Every consistent set can be extended to a maximal consistent set.

Theorem

Completeness

Every consistent set can be extended to a maximal consistent set.

Definition [Canonical model]

If T^* is the maximally consistent set of formulas, then a tuple $\mathcal{M}_{T^*} = \langle W, \rho, \xi, H, \mu \rangle$ is defined:

- $W = \{w = \langle \mathcal{L}(w), \cdot_w, \llbracket \rrbracket_w \rangle \mid w \models T\}$ contains all term models that satisfy the set T,
- $\rho_w(x) = [x],$
- $lacksquare H = \{ [\alpha] \mid \alpha \in \mathsf{For}_\mathsf{B} \}, \text{ where } [\alpha] = \{ w \in W \mid w \models \alpha \},$
- $\mu([\alpha]) = \sup\{s \mid P_{>s}\alpha \in T^{\star}\}.$

Strong completeness

Theorem

Every consistent set of formulas T is $\mathsf{P}\Lambda^\mathsf{Meas}_{ o}$ -satisfiable.

Further work

- intuitionistic propositional calculus,
- $\hfill\blacksquare$ typed lambda calculus with intersection types.