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Probabilistic reasoning with lambda terms

combination of simply typed lambda terms and probabilistic logic;

probabilistic logic;

simple type assignment.
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Probabilistic logic

Probabilistic logic

The set of formulas:

Classical propositional formulas
Basic probabilistic formulas

P≥sα

Boolean combinations of basic probabilistic formulas

Kripke-style semantics M = 〈W ,H, µ, v〉,
infinitary axiomatization,

every consistent set can be extended to the maximal consistent set

canonical model.

Z. Ognjanović, M. Rašković, Z. Marković, Probability Logics:
Probability-Based Formalization of Uncertain Reasoning. Springer, 2016.
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Probabilistic logic

neither mixing of classical formulas and probabilistic formulas, nor
nested probability operators is allowed,

the following two expressions are not (well defined) formulas of the
logic PΛ→:

α ∧ P≥ 1
2
β, P≥ 1

3
P≥ 1

2
α.
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Simple type assignment Λ→

Let VΛ = {x , y , z , . . . , x1, . . .} be a countable set of λ-term variables.

λ-terms

M ::= x | λx .M | MM.

Let VType = {a, b, c , . . . } be a denumerable set of propositional variables.

Simple types

σ ::= a | σ → σ.

Definition [=β]

The lambda term M is β-equal to the lambda term N (notion M =β N)
if and only if there is a sequence M ≡ N0,N1, . . . ,Nn ≡ N, where
Ni →β Ni+1 or Ni+1 →β Ni for all i ∈ {0, 1, . . . , n}.
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Definition

The simple type assignment, Λ→, is defined as follows:

M : σ → τ N : σ (→E )
MN : τ

[x : σ]

...
M : τ (→I )

λx .M : σ → τ

M : σ M =β N
(eq)

N : σ
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Term model M = 〈D, ·, [[ ]]〉

Definition

(i) Domain of a term model is a set of all convertibility-classes of terms.
For M ∈ Λ, the convertibility-class represented by M will be denoted
by [M], i.e., [M] = {N : N =β M}.

(ii) If ρ : VΛ → D is the valuation of term variables in D, then
[[M]]ρ ∈ D is the interpretation of M ∈ Λ in M via ρ.

(iii) Map · is defined by [M] · [N] = [MN], and [[ ]]ρ is defined by
[[M]]ρ = [M[N1, . . . ,Nn/x1, . . . , xn]], where x1, . . . , xn are the free
variables of M, and ρ(xi ) = [Ni ] and [· · · / · · · ] is simultaneous
substitution.

(iv) Let ξ : VType → P(D) be a valuation of type variables. The
interpretation of σ ∈ Type in M via ξ, denoted by [[σ]]ξ ∈ P(D), is
defined:

- [[a]]ξ = ξ(a);
- [[σ → τ ]]ξ = {d ∈ D | ∀e ∈ [[σ]]ξ, d · e ∈ [[τ ]]ξ}.
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The soundness and completeness of type assignment were proved with
the notion of term model.

Theorem [Soundness]

Γ ` M : σ ⇒ Γ |= M : σ.

Theorem [Completeness]

Γ |= M : σ ⇒ Γ ` M : σ.

J.R. Hindley, The completeness theorem for typing lambda terms.
Theoretical computer Science, 22: 1–17, 1983.
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Syntax of PΛ→

Let S be the set of rational numbers from [0, 1], i.e., S = [0, 1] ∩Q. The
alphabet of the logic PΛ→ consists of

all symbols needed to define simply typed lambda terms,

the classical propositional connectives ¬ and ∧,

the list of probability operators P≥s , for every s ∈ S.
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Basic and Probabilistic Formulas

Basic Formulas

ForB α ::= M : σ | α ∧ α | ¬α.

Example:

y : σ;

x : σ → τ ∧ y : σ;

x : σ → τ ∧ y : σ ⇒ xy : τ .

Probabilistic Formulas

ForP φ ::= P≥sα | φ ∧ φ | ¬φ.

Example:

P≥ 1
2
x : σ;

P=1(x : σ → ρ ∧ y : σ)⇒ P=1(xy : ρ).
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Semantics of PΛ→

Definition [PΛ→-structure]

A PΛ→-structure is a tuple M = 〈W , ρ, ξ,H, µ〉, where:

(i) W is a nonempty set of worlds, where each world is one term model,
i.e., for every w ∈W , w = 〈L(w), ·w , [[ ]]w 〉;

(ii) ρ : VΛ × {w} −→ L(w), w ∈W ;

(iii) ξ : VType × {w} −→ P(L(w)), w ∈W ;

(iv) H is an algebra of subsets of W , i.e. H ⊆ P(W ) such that

- W ∈ H,
- if U,V ∈ H, then W \ U ∈ H and U ∪ V ∈ H;

(v) µ is a finitely additive probability measure defined on H, i.e.,

- µ(W ) = 1,
- if U ∩ V = ∅, then µ(U ∪ V ) = µ(U) + µ(V ),

for all U,V ∈ H.
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We say that a lambda statement M : σ holds in a world w , notation
w |= M : σ, if and only if

[[M]]wρ ∈ [[σ]]wξ .

Definition [Satisfiability relation]

The satisfiability relation |=⊆ PΛMeas
→ × ForPΛ→ is defined in the following

way:

- M |= M : σ iff w |= M : σ, for all w ∈W ;

- M |= P≥sα iff µ([α]) ≥ s;

- M |= ¬A iff it is not the case that M |= A;

- M |= A1 ∧ A2 iff M |= A1 and M |= A2.
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Example

Consider the following model with three worlds, i.e., let
M = 〈W , ρ, ξ,H, µ〉, where:

W = {w1,w2,w3},
H = P(W ),

µ({wj}) = 1
3 , j = 1, 2, 3,

and ρ and ξ are defined such that
w1 |= (x : σ → τ) ∧ (y : σ),
w2 |= (x : σ1 → τ) ∧ (y : σ1),
w3 |= (x : σ2 → τ) ∧ (y : σ2).
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M |= P= 1
3
(x : σ → τ), M |= P= 1

3
(y : σ),

M |= P=1(xy : τ).
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Axiom schemes

(1) all instances of the classical propositional tautologies, (atoms are
any PΛ→-formulas),

(2) P≥0α,

(3) P≤rα⇒ P<sα, s > r ,

(4) P<sα⇒ P≤sα,

(5) (P≥rα ∧ P≥sβ ∧ P≥1(¬α ∨ ¬β))⇒ P≥min{1,r+s}(α ∨ β),

(6) (P≤rα ∧ P<sβ)⇒ P<r+s(α ∨ β), r + s ≤ 1,

(7) P≥1(α⇒ β)⇒ (P≥sα⇒ P≥sβ).
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Inference Rules I

M : σ → τ N : σ(1) (→E )
MN : τ

[x : σ]

...
M : τ(2) (→I )

λx .M : σ → τ

M : σ M =β N
(3) (eq)

N : σ
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Inference Rules II

(1) From A1 and A1 ⇒ A2 infer A2,

(2) from α infer P≥1α,

(3) from the set of premises

{φ⇒ P≥s− 1
k
α | k ≥ 1

s
}

infer φ⇒ P≥sα.
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Soundness

Theorem [Soundness]

The axiomatic system AxPΛ→ is sound with respect to the class of
PΛMeas
→ -models.
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Theorem

Every consistent set can be extended to a maximal consistent set.

Definition [Canonical model]

If T ? is the maximally consistent set of formulas, then a tuple
MT? = 〈W , ρ, ξ,H, µ〉 is defined:

W = {w = 〈L(w), ·w , [[ ]]w 〉 | w |= T} contains all term models that
satisfy the set T ,

ρw (x) = [x ],

ξw (a) = {[M] ∈ L(w) | w |= M : a},
H = {[α] | α ∈ ForB}, where [α] = {w ∈W | w |= α},
µ([α]) = sup{s | P≥sα ∈ T ?}.
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Strong completeness

Theorem

Every consistent set of formulas T is PΛMeas
→ -satisfiable.
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Further work

intuitionistic propositional calculus,

typed lambda calculus with intersection types.
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