Decidability and Complexity of Some Interpretability Logics

Luka Mikec1 Tin Perkov2 Mladen Vuković2

1University of Rijeka, Croatia

2University of Zagreb, Croatia

Dubrovnik, 2017
Basic interpretability logic **IL**

- Interpretability logics have a binary modal operator \triangleright.
- Basic interpretability logic **IL**:

 classically valid formulas (in the new language with \Box, \Diamond, \triangleright);

 $\begin{align*}
 K & \quad (A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B); \\
 \text{Löb} & \quad (\Box A \rightarrow A) \rightarrow \Box A; \\
 J1 & \quad (A \rightarrow B) \rightarrow A \triangleright B; \\
 J2 & \quad (A \triangleright B) \land (B \triangleright C) \rightarrow A \triangleright C; \\
 J3 & \quad (A \triangleright C) \land (B \triangleright C) \rightarrow A \lor B \triangleright C; \\
 J4 & \quad A \triangleright B \rightarrow (\Diamond A \rightarrow \Diamond B); \\
 J5 & \quad \Diamond A \triangleright A.
 \end{align*}$

 - rules: modus ponens and necessitation $A/\Box A$.

(parentheses priority: \neg, \Box, \Diamond; \land, \lor; \triangleright; \rightarrow, \leftrightarrow)
Models

- Semantics: extend the usual relational (Kripke) model.
- **IL-frame** (Veltman frame): \(\mathcal{F} = \langle W, R, \{ S_w : w \in W \} \rangle \), where:
 1. \(W \neq \emptyset \);
 2. \(R^{-1} \) is well-founded (no \(x_0Rx_1Rx_2R \ldots \) chains);
 3. \(R \) is transitive;
 4. \(S_w \subseteq R(w)^2 \) is reflexive, transitive, contains \(R \cap R(w)^2 \)
 \((wRuRv \text{ implies } uS_w v) \);
- **IL-model** (Veltman model): \(\mathcal{M} = \langle W, R, \{ S_w : w \in W \}, V \rangle \), where:
 1. \(\langle W, R, \{ S_w : w \in W \} \rangle \) is a **IL-frame**;
 2. \(V \subseteq W \times Prop \) (or \(V : Prop \to \mathcal{P}(W) \)).
Models (2)

- Veltman model: $\mathcal{M} = \langle \mathcal{W}, R, \{S_w : w \in \mathcal{W}\}, V \rangle$.
- $w \vDash p$ if and only if wVp, for $p \in \text{Prop}$.
- Logical connectives have classical semantics.
- Truth of a formula $F \triangleright G$ ("F interprets G") in a world $w \in \mathcal{M}$:

 \[w \vDash F \triangleright G \iff \forall x \in R(w) : x \vDash F \Rightarrow \exists y \in S_w(x) : y \vDash G. \]

- Soundness and completeness:
 \[\text{IL} \vdash F \iff \forall \mathcal{F} : \mathcal{F} \vDash F. \]
Some extensions of IL:

\[\text{ILM}_0\] \quad \text{IL} + A \rightarrow B \rightarrow \Diamond A \land \Box C \rightarrow B \land \Box C

\[\text{ILW}\] \quad \text{IL} + A \rightarrow B \rightarrow A \rightarrow B \land \Box \neg A

\[\text{ILW}^*\] \quad \text{IL} + A \rightarrow B \rightarrow B \land \Box C \rightarrow B \land \Box C \land \Box \neg A

\[\text{ILW}^* = \text{ILM}_0 W \subseteq \text{IL}(\text{All})\]

These logics are complete w.r.t. certain classes of frames:

\begin{itemize}
 \item \((M_0)\) \quad wRuRxS_w v \Rightarrow R(v) \subseteq R(u);
 \item \((W)\) \quad S_w \circ R \text{ is reverse well-founded for each } w;
 \item \((W^*)\) \quad (M_0) \text{ and } (W).
\end{itemize}

\[\text{ILW-frame is IL-frame that satisfies (W) etc.}\]
Proving decidability

- FMP: if $x \models F$, then there is finite \mathcal{M} and $x' \in \mathcal{M}$ s.t. $x' \models F$.
- Decision procedure: simultaneously do two things:
 - Enumerate the (countable) set of all IL-proofs.
 - Enumerate the (countable) set of (descriptions of) finite IL-models.
- The usual way of proving FMP is by filtrations.
Filtrations on IL-models

- Let Γ contain A, closed under subformulas.
- Assume \sim is an equivalence relation on W, $\sim \subseteq \equiv_{\Gamma}$.
- For any $V \subseteq W$, define $\tilde{V} = \{[v] | v \in V\}$.
- We define the rest of \tilde{M} as follows.
 - $\tilde{R} = \{([w], [u]) | wRu, \exists \Box C \in \Gamma : w \not\models \Box C, u \models \Box C\}$.
- Define \models so that x and $[x]$ agree on variables in Γ.
- Problem: how to define $S_{[w]}$.
 - “Generous” definitions do not preserve transitivity; while “strict” definitions lose $S_{[w]}$-witnesses for some \triangleright-formulas.
- Solution: a more fine-grained semantics, where $S_{[w]}$-witnesses are not complete sets of formulas.
Problems with filtrations on IL-models

(1. try) \([u][w][v]\) if and only if \([u], [v] \in \tilde{R}([w])\), and for all/some \(w' \in [w]\) and some \(u' \in [u]\) such that \(w' Ru'\) we have \(u' S_{w'} v'\) for some \(v' \sim v\).

- \(w \rightarrow \{ u \leadsto v_1 \sim v_2 \leadsto z \}, \ [w] \rightarrow \{ [u] \leadsto [v] \leadsto [z] \} \)
- But, we do not have \([u] \leadsto [z]\).
- If transitivity forced, some false \(\triangleright\)-formula might get its witness and become true.

(2. try) \([u][w][v]\) if and only if \([u], [v] \in \tilde{R}([w])\), and for all/some \(w' \in [w]\) and all \(u' \in [u]\) such that \(w' Ru'\) we have \(u' S_{w'} v'\) for some \(v' \sim v\).

- \(w \rightarrow \{ v_1 [X] \leftrightarrow u_1 \sim u_2 \leadsto v_2 [\neg X] \}, \ [w] \rightarrow \{ [u] \leadsto ? \} \)
- Problem: we lose \(S_w\)-successors that do not agree enough.
Generalized models

- Generalized IL-models (generalized Veltman models).

- \(\mathcal{M} = \langle W, R, \{S_w : w \in W\}, V \rangle \), where:
 1. \(W \neq \emptyset \);
 2. \(R^{-1} \) is well-founded (no \(x_0 R x_1 R x_2 R \ldots \) chains);
 3. \(R \) is transitive;
 4. \(S_w \subseteq R(w) \times (2^{R(w)} \setminus \{\emptyset\}) \) is:
 - quasi-reflexive \(uS_w\{u\} \);
 - quasi-transitive \(uS_w\{v_i | i \in I\} \) and \(v_i S_w Z_i \Rightarrow uS_w \cup \{Z_i | i \in I\} \);
 - contains \(R \cap R(w)^2 \) \(wRuRv \) implies \(uS_w\{v\} \);
 - is monotonous \(uS_w V \Rightarrow uS_w V', V \subseteq V' \)
 5. \(V \subseteq W \times \text{Prop} \) (or \(V : \text{Prop} \rightarrow \mathcal{P}(W) \)).

- Truth of a formula \(F \triangleright G \) ("\(F \) interprets \(G \)") in a world \(x \in \mathcal{M} \):

 \[w \vDash F \triangleright G :\iff \forall x \in R(w) : x \vDash F \Rightarrow \exists V \in S_w(x) : V \vDash G. \]

- \(V \vDash G \) stands for \(v \vDash G \) for all \(v \in V \).
Filtration property

- \(\tilde{M} = \langle \tilde{W}, \tilde{R}, \tilde{S}_{[w]}, \vdash \rangle \).
- \(\tilde{W} = \{ [w] \mid w \in W \} \).
- \(\tilde{R} = \{ ([w], [u]) \mid wRu, \exists \Box C \in \Gamma : w \nvdash \Box C, u \vdash \Box C \} \).
- \([u]\tilde{S}_{[w]} \tilde{V}\) if and only if \{[u]\}, \(\tilde{V} \subseteq R([w]) \), and for all \(w' \in [w] \) and all \(u' \in [u] \) such that \(w'Ru' \) we have \(u'S_{w'} V(w', u') \) for some \(V(w', u') \subseteq \tilde{V} \).
- Forcing relation compatible with \(M \).
- Assume \(\langle \tilde{W}, \tilde{R}, \tilde{S}, \vdash \rangle \) is a generalized model (depends on \(\sim \)).
- Do we have \(w \vdash F \iff [w] \vdash F \)?
Theorem

\[w \vdash F \iff [w] \vdash F. \]

- So, if \(\langle \tilde{W}, \tilde{R}, \tilde{S}, \vdash \rangle \) is a model at all, then it is a filtration of \(\mathcal{M} = \langle W, R, S, \vdash \rangle \).

- Is it a model (does it satisfy quasi-transitivity etc.)? Depends on what \(\sim \) is.

- Ideally, \(x \) and \([x] \) are structurally similar, so that quasi-transitivity etc. is preserved.

- So, each \(y \sim x \) should be structurally similar to \(x \).
A *bisimulation* between generalized \textbf{IL}-models
\[
\langle W, R, \{S_w : w \in W\}, \models \rangle \text{ and } \langle W', R', \{S'_w : w' \in W'\}, \models \rangle
\]
is any \(Z \subseteq W \times W', Z \neq \emptyset:\)

- (at) if \(wZw'\) then \(w \models p \iff w' \models p;\)
- (forth) if \(wZw'\) and \(wRu,\) then there exists \(u' \in R'(w')\) with \(uZu'\)
 and for all \(V' \in S'_{w'}(u')\) there is \(V \in S_w(u)\) such that for all
 \(v \in V\) there is \(v' \in V'\) with \(vZv';\)
- (back) if \(wZw'\) and \(w'R'u',\) then there exists \(u \in R(w)\) such that
 \(uZu'\) and for all \(V \in S_w(u)\) there is \(V' \in S'_{w'}(u')\) such that for
 all \(v' \in V'\) there is \(v \in V\) with \(vZv'.\)

- By induction on \(F,\) if \(x\) and \(y\) are bisimilar (w.r.t. any
 bisimulation), \(x \models F \iff y \models F.\)
- Union of bisimulations (over generalized models) is itself a
 bisimulation (*Vrgoč and Vuković, 2010*).
- In particular, there is a largest (auto)bisimulation \(Z \subseteq W^2.\)
Denote by \sim the largest bisimulation on W^2.
(equivalently, denote $x \sim y$ if there is any bisimulation at all which equates x and y)

Theorem

$\langle \tilde{W}, \tilde{R}, \tilde{S}, \models \rangle$ is a model.

Thus, if \sim is the largest bisimulation on W^2, then $\langle \tilde{W}, \tilde{R}, \tilde{S}, \models \rangle$ is a model, and a filtration.

We were trying to prove finite model property; is this a finite model?

Each \tilde{R}-transition eliminates at least one \diamond-formula from Γ; so height is finite.

Still, branching factor might be infinite.
Definition

A n-bisimulation between IL-models \(\langle W, R, \{S_w : w \in W\}, \models \rangle \) and \(\langle W', R', \{S'_w : w' \in W'\}, \models \rangle \) is any sequence \(Z_n \subseteq \cdots \subseteq Z_0 \subseteq W \times W' \):

- (at) if \(wZ_0 w' \) then \(w \models p \iff w' \models p \);
- (forth) if \(wZ_n w' \) and \(wRu \), then there exists \(u' \in R'(w') \) with \(uZ_{n-1} u' \) and for all \(V' \in S'_{w'}(u') \) there is \(V \in S_w(u) \) such that for all \(v \in V \) there is \(v' \in V' \) with \(vZ_{n-1} v' \);
- (back) if \(wZ_n w' \) and \(w'R'u \), then there exists \(u \in R(w) \) such that \(uZ_{n-1} u' \) and for all \(V \in S_w(u) \) there is \(V' \in S'_{w'}(u') \) such that for all \(v' \in V' \) there is \(v \in V \) with \(vZ_{n-1} v' \).

Since height of \(M \) is bounded by \(|\Gamma| \), worlds are \(|\Gamma| \)-bisimilar iff bisimilar.
• Put $u \equiv_n v$ if u and v agree on all formulas with at most n nested modalities.
• From now on, assume $\text{Prop} := \text{Prop} \cap \Gamma$.
• Now there are only finitely many formulas of modal depth up to $|\Gamma|$ (finitely many up to local equivalence).
• Denote $Th_n w$ the set of all formulas F with modal depth up to $|\Gamma|$ and $w \models F$.
Lemma

\[u \sim_n v \iff u \equiv_n v. \]

- Denote \(\mathcal{N} = \widetilde{\mathcal{M}}. \)
- For \(x, y \in \mathcal{N}, \) we now have \(x \sim y \iff x \sim_{|\Gamma|} y \iff x \equiv_\Gamma y. \)
- There are obviously only finitely many worlds in \(\mathcal{M}/ \equiv_\Gamma. \)
- Since \(\equiv_\Gamma = \sim_{|\Gamma|}, \) \(\widetilde{\mathcal{N}} \) (that is, \(\widetilde{\mathcal{M}} \)) has only finitely many worlds.
- Thus we have FMP for \(\mathbf{IL}. \)
Extending to \textbf{ILX}

- To prove FMP, given \textbf{ILX} that is complete w.r.t. class of Veltman frames that satisfy property C, we need to fill in the following:
 1. What is the (generalized) frame condition \mathcal{G} of X?
 2. Is \textbf{ILX} complete w.r.t. to the class of \mathcal{G}-frames?
 3. Does \bar{M} have \mathcal{G} if M has \mathcal{G}?

- For popular choices of X (except for W, W^*), 1 is known; and 2 usually reduces to completeness w.r.t. C (for each VM take the natural GVM, i.e. $uS_w v \Rightarrow uS_w \{v\}$).
Logic \mathbf{ILM}_0

- \mathbf{ILM}_0 is $\mathbf{IL} + A \triangleright B \rightarrow \Diamond A \land \square C \triangleright B \land \square C$.
- Frame condition (M_0):
 \[
 wRuRxS_w vRz \Rightarrow uRz.
 \]
- Frame condition (M_0)$_{gen}$:
 \[
 wRuRxS_w V \Rightarrow (\exists V' \subseteq V)(uS_w V' \land R(V') \subseteq R(u)).
 \]
- For each VM with (M_0), there is a natural GVM (put $xS_w \{y\}$ whenever $xS_w y$) with (M_0)$_{gen}$.
- Remains to prove \widetilde{M} preserves (M_0)$_{gen}$.

Theorem

If \mathcal{M} has property (M_0)$_{gen}$, then $\widetilde{\mathcal{M}}$ has property (M_0)$_{gen}$.
Logic ILW

- **ILW** is **IL** + \(A \wedge B \rightarrow A \wedge B \wedge \Box \neg A \).
- Frame condition \((W)\):
 \[S_w \circ R \text{ is reverse well-founded for each } w \]
- Frame condition \((W)_{gen}\)?
 \[
 (\forall w \in W)(\forall X \subseteq R[w])(\forall z \in W) \\
 (zS_w X \Rightarrow (\exists V \subseteq X)(zS_w V \& (\forall v \in V)(R[v] \cap S_w^{-1}[X] = \emptyset)))
 \]
- For each VM with \((W)\), there is a natural GVM (put \(xS_w \{y\}\) whenever \(xS_w y\)) with \((W)_{gen}\).

Theorem

If \(\mathcal{M}\) has property \((W)_{gen}\), then \(\widehat{\mathcal{M}}\) has property \((W)_{gen}\).
Logic ILW^*

- ILW^* is $\text{IL} + A \triangleright B \rightarrow B \land \Box C \triangleright B \land \Box C \land \Box \neg A$.
- $\text{ILW}^* = \text{ILWM}_0$.
- Frame condition $(W^*)_{\text{gen}}$?
- Each ILW^*-frame is ILW-frame ($\text{ILWM}_0 \supseteq \text{ILW}$) and ILM_0-frame ($\text{ILWM}_0 \supseteq \text{ILM}_0$).
- Conversely, if \mathcal{F} is both an ILW-frame and an ILM_0-frame, then it is an ILWM_0-frame (induction on proof length).
- So, the frame condition is:
 \[(W)_{\text{gen}} \text{ and } (M_0)_{\text{gen}}.\]
- If $\text{ILW}^* \nvdash F$, there is a ILM_0-, ILW-VM \mathcal{M}, $w \in \mathcal{M}$, s.t. $w \nvdash F$. Then there is a natural GVM \mathcal{N} with similar properties. Then $\tilde{\mathcal{N}}$ is an ILM_0-, ILW-GVM, and so an ILW^*-GVM.
Complexity

- Given X, what is comp. complexity of $\{F \mid ILX \vdash F\}$?
- Since $GL \subseteq IL$, at least PSPACE for any natural choice of X.
- The only (?) known result: IL_0 is PSPACE-hard.

- Our goal is to prove that IL is in PSPACE. The result might generalize to various ILX.
Let F be any non-theorem of ILX. By completeness, there is $\mathcal{M}, w \in \mathcal{M}$ s.t. $w \not\models F$.

1. Show that \mathcal{M} can be transformed to a certain model \mathcal{M}^f with some desirable properties:
 - accessibility relation (R) is a tree;
 - polynomial height;
 - polynomial branching factor;
 - S_w-transitions should be “separated” or “factorized”.

2. Show that there is an algorithm that verifies the existence of all models with such properties. For ILX, ensure the resulting model has ILX.

Complexity (3)

- Transforming the model (step 1):
 1. Unravel the accessibility relation \(R \).
 2. Recursively apply the following operation to all nodes \(x \in W \), starting from leaves:
 2.1 Denote \(N = \{ A \triangleright B : w \not\models A \triangleright B \} \).
 2.2 Make \(|N|\) copies of \(R[x] \), label them with formulas of \(N \).
 2.3 For all \(A \triangleright B \in N \), select a witness of falseness of \(A \triangleright B \) in the corresponding copy.
 2.4 In each copy, also select witnesses of true formulas.
 3. Remove worlds that do not witness anything.

- This leaves us with a model of polynomial height and branching factor; with easy to manage \(S_w \) relations.

- Step 2 is proving correctness and completeness of the algorithm that creates models resembling the ones from step 1.
Papers

- L. Mikec, T. Perkov, M. Vuković. Decidability of interpretability logics ILM_0 and ILW^*. Logic Journal of the IGPL, Volume 25, Issue 5, 1 October 2017, Pages 758–772,

- (complexity paper - work in progress)