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Modal Logic

Classical propositional logic + �α = Modal Logic

Two traditions:
Epistemic Logic:
�α means α is known / believed

Proof Theory:
�α means α is provable in system S
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One problem: Proof-Theoretic Tradition

�⊥ → ⊥ Axiom

¬�⊥ is provable

�¬�⊥ is provable

�⊥ means ⊥ is provable in S

¬�⊥ means ⊥ is not provable in S (S is consistent)

�¬�⊥ means it is provable in S that S is consistent

Gödel: If S is consistent and has a certain strength it can not prove its
own consistency.
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N. Savić, T. Studer Towards Relevant Justifications LAP, September 2017 5 / 37



One problem: Proof-Theoretic Tradition

�⊥ → ⊥ Axiom

¬�⊥ is provable

�¬�⊥ is provable

�⊥ means ⊥ is provable in S

¬�⊥ means ⊥ is not provable in S (S is consistent)

�¬�⊥ means it is provable in S that S is consistent
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Justification Logics

Justification logics replace the �-operator of modal logic by explicit
justifications.

That is justification logics feature formulas of the form t : A with the same
inteded meaning.
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Justification Terms and Formulas

Terms are built from countable sets of constants and variables as follows:

t ::= c | x | t · t | t + t | !t,

where c is a constant and x is a variable.

Formulas: α ::= p | ¬α | α ∧ α | t : α,
where t is a term and p is an atomic proposition.
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Semantics

A basic evaluation is a function ν : Prop → {0, 1} together with a function
♠ : Term→ P(For) such that for arbitrary s, t ∈ Term and any formula F

s♠ · t♠ ⊆ (s · t)♠

s♠ ∪ t♠ ⊆ (s + t)♠

t : (t♠) ⊆ (!t)♠

F ∈ t♠ if (t,F ) ∈ CS

where for sets of formulas X and Y , we write

X · Y := {F | G → F ∈ X and G ∈ Y , for some formula G}
X ∧ Y := {F | F = G ∧ H, for some G ∈ X and H ∈ Y }
t : X := {t : F | F ∈ X}.

Truth under basic evaluation:


 p iff ν(p) = 1, for p ∈ Prop


 F → G iff 1 F or 
 G


 ¬F iff 1 F


 t : F iff F ∈ t♠
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The Correspodence Theorem (Realization Theorems)

The Correspodence Theorem is a cumulative result stating that for each of
major epistemic modal logics K, T, K4, S4, K45, KD45, S5, there is a
system of justification terms and a corresponding Justification Logic
system (called J, JT, J4, LP, J45, JD45, and JT45) capable of recovering
explicit justifications for modalities in any theorem of the original modal
logic.

N. Savić, T. Studer Towards Relevant Justifications LAP, September 2017 11 / 37



The Correspodence Theorem (Realization Theorems)

The Correspodence Theorem is a cumulative result stating that for each of
major epistemic modal logics K, T, K4, S4, K45, KD45, S5, there is a
system of justification terms and a corresponding Justification Logic
system (called J, JT, J4, LP, J45, JD45, and JT45) capable of recovering
explicit justifications for modalities in any theorem of the original modal
logic.
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Axiomatization of J4

(1) t : (A→ B)→ (s : A→ (t · s) : B)

(2) t : A→!t : t : A

(3) t : A→ (t + s) : A and t : A→ (s + t) : A

To introduce the rules of our logic, we need the following notion: a
constant specification is a set
CS ⊆ {(c ,A) | c is a constant and A is an axiom}.
Given a constant specification CS, the deductive system is given by the
axioms and the rules

F F → G

G

(c ,A) ∈ CS

c : A
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One problem of the Logic J4

Consider a person A visiting a foreign town, which she doesn’t know well.
In order to get to a certain restaurant, she asks two persons B and C for
the way. Person B says that A can take path P to the restaurant whereas
person C replies that P does not lead to the restaurant and A should take
another way. Person A now has a reason s to believe P and a reason t to
believe ¬P. We can formalize this in justification logic by saying that both

s : P and t : ¬P (1)

hold. However, then there exists a justification r(s, t) such that

r(s, t) : (P ∧ ¬P)

holds. Now this implies that for any formula F , there is a justification u
such that

u : F (2)
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Why we obtain that problem?

A ∧ ¬A→ B

is a theorem of classical propositional logic.
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Paradoxes of Material and Strict Implication

Material implication:

M1 A→ (B → A)

M2 ¬A→ (A→ B)

M3 (A→ B) ∨ (B → A)

M4 (A→ B) ∨ (B → C )

Strict implication (A→ B := �(A ⊃ B), where ⊃ is a material
implication):

S1 A→ (B → B)

S2 A→ (B ∨ ¬B)

S3 (A ∧ ¬A)→ B
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R-frame

R-frame: 〈K , 0,R, ∗〉, where:

K is a non-empty set

0 ∈ K

R is a ternary relation on K

∗ : K → K

such that:

R0aa

Rabc ⇒ Rbac

R2(ab)cd ⇒ R2a(bc)d

Raaa

a ≤ b ∧ Rbcd ⇒ Racd

Rabc ⇔ Rac∗b∗

a∗∗ = a

where a ≤ b := R0ab.
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Satisfiability relation

Valuation is a function ν : K → P(Prop) such that if a ≤ b and p ∈ ν(a)
then p ∈ ν(b).Also, we say that for p ∈ Prop, a |= p iff p ∈ ν(a).

R-model: 〈K , 0,R, ∗, |=〉, where 〈K , 0,R, ∗〉 is an R− frame and
|=⊆ K × Formulas(R) with:

If a |= p, for p ∈ Prop, and a ≤ b, then b |= p

a |= A ∧ B iff a |= A and a |= B

a |= A ∨ B iff a |= A or a |= B

a |= A→ B iff Raxy and x |= A imply y |= B, for all x , y ∈ K

a |= ¬A iff a∗ 6|= A
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Logic R: Axiom schemes

(A1) A→ A

(A2) A→ ((A→ B)→ B)

(A3) (A→ B)→ ((B → C )→ (A→ C ))

(A4) (A→ (A→ B))→ (A→ B)

(A5) A ∧ B → A

(A6) A ∧ B → B

(A7) (A→ B) ∧ (A→ C )→ (A→ B ∧ C )

(A8) A ∧ (B ∨ C )→ (A ∧ B) ∨ (A ∧ C )

(A9) ¬¬A→ A

(A10) (A→ ¬B)→ (B → ¬A)

(A11) A ∨ B ↔ ¬(¬A ∧ ¬B)

(A12) A ◦ B ↔ ¬(A→ ¬B)
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Inference Rules

(MP) From A and A→ B infer B

(ADJ) From A and B infer A ∧ B
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Logic NR

Relevant logic R + S4-style of necessity.

(A1) A→ A
(A2) A→ ((A→ B)→ B)
(A3) (A→ B)→ ((B → C )→

(A→ C ))
(A4) (A→ (A→ B))→ (A→ B)
(A5) A ∧ B → A
(A6) A ∧ B → B
(A7) (A→ B) ∧ (A→ C )→

(A→ B ∧ C )
(A8) A∧(B∨C )→ (A∧B)∨(A∧C )
(A9) ¬¬A→ A

(A10) (A→ ¬B)→ (B → ¬A)
(A11) A ∨ B ↔ ¬(¬A ∧ ¬B)
(A12) A ◦ B ↔ ¬(A→ ¬B)

(A13) �A→ A

(A14) �(A→ B)→ (�A→ �B)

(A15) �A→ ��A

(A16) �A ∧�B → �(A ∧ B)

(A17) If A is an axiom, �A

Inference Rules:

From A and A→ B, infer B

From A and B, infer A ∧ B.
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(A8) A∧(B∨C )→ (A∧B)∨(A∧C )
(A9) ¬¬A→ A

(A10) (A→ ¬B)→ (B → ¬A)
(A11) A ∨ B ↔ ¬(¬A ∧ ¬B)
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(A13) �A→ A

(A14) �(A→ B)→ (�A→ �B)
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(A16) �A ∧�B → �(A ∧ B)

(A17) If A is an axiom, �A

Inference Rules:

From A and A→ B, infer B

From A and B, infer A ∧ B.
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Semantics

NR-frame: 〈K , 0,R,S , ∗〉 with: (a ≤ b := ∃x(S0x ∧ Rxab))

(P1) Saa

(P2) Raaa

(P3) S2ab ⇒ Sab

(P4) R2abcd ⇒ R2acbd

(P5) R|Sabc ⇒ ∃x∃y(Sax ∧ Sby ∧ Rxyc)

(P6) a ≤ a

(P7) a ≤ b ∧ Rbcd ⇒ Racd

(P8) a ≤ b ∧ Sbc ⇒ Sac

(P9) Rabc ⇔ Rac∗b∗

(P10) a∗∗ = a.

a |= �A iff b |= A, for all b ∈ K such that Sab
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Axiom Schemes

(A1) A→ A
(A2) A→ ((A→ B)→ B)
(A3) (A→ B)→ ((B → C )→

(A→ C ))
(A4) (A→ (A→ B))→ (A→ B)
(A5) A ∧ B → A
(A6) A ∧ B → B
(A7) (A→ B) ∧ (A→ C )→ (A→

B ∧ C )
(A8) A∧(B∨C )→ (A∧B)∨(A∧C )
(A9) ¬¬A→ A

(A10) (A→ ¬B)→ (B → ¬A)
(A11) A ∨ B ↔ ¬(¬A ∧ ¬B)
(A12) A ◦ B ↔ ¬(A→ ¬B)

(A13) t : (A→ B)→ (s : A→
(t · s) : B)

(A14) t : A→!t : t : A

(A15) t : A ∧ s : B → (t∧̃s)(A ∧ B)

(A16) t : A→ (t + s) : A and
t : A→ (s + t) : A
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Inference Rules

F F → G

G

F G

F ∧ G

(c ,A) ∈ CS

c : A
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A constant specification CS is called axiomatically appropriate if for each
axiom A there is a constant c such that (c ,A) ∈ CS. As usual in
justification logics, we can show the following analogue of the
necessitation rule.

Lemma (Constructive necessitation)

Let CS be an axiomatically appropriate constant specification. For each
formula A,

RJCS ` A implies RJCS ` t : A for some term t.
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The semantics for RJ

An RJCS-model is a tuple of the form (K , 0,R, ∗,♠, ν) where

1 K is a set;

2 0 ∈ K ;

3 R is a ternary relation on K ;

4 ∗ is a function ∗ : K → K ;

5 ♠ is a function ♠ : Tm× K → P(For);

6 ν is a function ν : K → P(Prop).
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The semantics for RJ

An RJCS-model (K , 0,R, ∗,♠, ν) must satisfy the following conditions:

Raaa R2abcd ⇒ R2acbd Rabc ⇒ t♠a · s
♠
b ⊆ (t · s)♠c

a ≤ a a ≤ b ∧ Rbcd ⇒ Racd a ≤ b ⇒ t♠a ⊆ t♠b

Rabc ⇔ Rac∗b∗ a∗∗ = a s♠a · t♠a ⊆ (s · t)♠a

s♠a ∪ t♠a ⊆ (s + t)♠a A ∈ t♠0 if (t,A) ∈ CS t : (t♠a ) ⊆ (!t)♠a

s♠a ∧ t♠a ⊆ (s∧̃t)♠a a ≤ b ⇒ ν(a) ⊆ ν(b)
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Satisfiability Relation

Given a model M = (K , 0,R, ∗,♠, ν) and a ∈ K we define:

M, a |= p iff p ∈ ν(a), for p ∈ Prop

M, a |= A ∧ B iff M, a |= A and M, a |= B

M, a |= A ∨ B iff M, a |= A or M, a |= B

M, a |= A→ B iff Raxy and M, x |= A imply M, y |= B, for all x , y ∈ K

M, a |= ¬A iff M, a∗ 6|= A

M, a |= t : A iff A ∈ t♠a
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Goal 1

Conjecture 1. [Soundness and Completeness] Let CS be any constant
specification. For each formula A we have

RJCS ` A iff A is CS-valid.

N. Savić, T. Studer Towards Relevant Justifications LAP, September 2017 35 / 37



Goal 1

Conjecture 1. [Soundness and Completeness] Let CS be any constant
specification. For each formula A we have

RJCS ` A iff A is CS-valid.
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Goal 2

Let RLP be the system RJ plus the axiom t : A→ A based on the total
constant specification, i.e., every constant justifies every axiom (including
t : A→ A). A realization is a mapping from modal formulas to formulas of
justification logic that replaces each � with some expression t : (different
occurrences of � may be replaced with different terms).

Conjecture 2. [Realization] There is a realization r such that for each
modal formula A

NR ` A implies RLP ` r(A).
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