
A Polynomial Time Algorithm for the Lambek
Calculus with Brackets of Bounded Order

Max Kanovich, Stepan Kuznetsov, Glyn Morrill, Andre Scedrov

The Lambek Calculus L∗

[Lambek 1958, 1961]

A→ A

A,Π→ B

Π→ A \B
Π→ A ΓB ∆→ C
Γ,Π, (A \B),∆→ C

Π,A→ B

Π→ B /A
Π→ A ΓB ∆→ C
Γ, (B /A),Π,∆→ C

Γ→ A ∆→ B
Γ,∆→ A · B

Γ,A,B,∆→ C

Γ,A · B,∆→ C

Π→ A Γ,A,∆→ C

Γ,Π,∆→ C
(cut)

I A fragment of non-commutative intuitionistic linear logic.
I We consider the variant of the Lambek calculus that allows

empty antecedents.

The Lambek Calculus L∗

[Lambek 1958, 1961]

A→ A

A,Π→ B

Π→ A \B
Π→ A ΓB ∆→ C
Γ,Π, (A \B),∆→ C

Π,A→ B

Π→ B /A
Π→ A ΓB ∆→ C
Γ, (B /A),Π,∆→ C

Γ→ A ∆→ B
Γ,∆→ A · B

Γ,A,B,∆→ C

Γ,A · B,∆→ C

Π→ A Γ,A,∆→ C

Γ,Π,∆→ C
(cut)

I A fragment of non-commutative intuitionistic linear logic.

I We consider the variant of the Lambek calculus that allows
empty antecedents.

The Lambek Calculus L∗

[Lambek 1958, 1961]

A→ A

A,Π→ B

Π→ A \B
Π→ A ΓB ∆→ C
Γ,Π, (A \B),∆→ C

Π,A→ B

Π→ B /A
Π→ A ΓB ∆→ C
Γ, (B /A),Π,∆→ C

Γ→ A ∆→ B
Γ,∆→ A · B

Γ,A,B,∆→ C

Γ,A · B,∆→ C

Π→ A Γ,A,∆→ C

Γ,Π,∆→ C
(cut)

I A fragment of non-commutative intuitionistic linear logic.
I We consider the variant of the Lambek calculus that allows

empty antecedents.

Natural Language Syntax Analysis with Lambek Grammar

I Mary likes John.
N, (N \S) /N,N → S

I man who Mary likes
CN, (CN \CN) /(S /N),N, (N \S) /N → CN

I man who John knows Mary likes
man who Mary knows John knows Mary likes
...

I *book which John laughed without reading

CN, (CN \CN) /(S /CN),N,N \S , ((N \S) \(N \ S)) /(N \S), (N \S) /N → S

I *girl who John likes Mary and Pete likes

CN, (CN \CN) /(S /CN),N, (N \S) /N,N, (S \S) /S ,N, (N \S) /N → S

Natural Language Syntax Analysis with Lambek Grammar

I Mary likes John.
N, (N \ S) /N,N → S

I man who Mary likes
CN, (CN \CN) /(S /N),N, (N \S) /N → CN

I man who John knows Mary likes
man who Mary knows John knows Mary likes
...

I *book which John laughed without reading

CN, (CN \CN) /(S /CN),N,N \S , ((N \S) \(N \ S)) /(N \S), (N \S) /N → S

I *girl who John likes Mary and Pete likes

CN, (CN \CN) /(S /CN),N, (N \S) /N,N, (S \S) /S ,N, (N \S) /N → S

Natural Language Syntax Analysis with Lambek Grammar

I Mary likes John.
N, (N \ S) /N,N → S

I man who Mary likes
CN, (CN \CN) /(S /N),N, (N \S) /N → CN

I man who John knows Mary likes
man who Mary knows John knows Mary likes
...

I *book which John laughed without reading

CN, (CN \CN) /(S /CN),N,N \S , ((N \S) \(N \ S)) /(N \S), (N \S) /N → S

I *girl who John likes Mary and Pete likes

CN, (CN \CN) /(S /CN),N, (N \S) /N,N, (S \S) /S ,N, (N \S) /N → S

Natural Language Syntax Analysis with Lambek Grammar

I Mary likes John.
N, (N \ S) /N,N → S

I man who Mary likes
CN, (CN \CN) /(S /N),N, (N \ S) /N → CN

I man who John knows Mary likes
man who Mary knows John knows Mary likes
...

I *book which John laughed without reading

CN, (CN \CN) /(S /CN),N,N \S , ((N \S) \(N \S)) /(N \S), (N \S) /N → S

I *girl who John likes Mary and Pete likes

CN, (CN \CN) /(S /CN),N, (N \S) /N,N, (S \S) /S ,N, (N \ S) /N → S

Natural Language Syntax Analysis with Lambek Grammar

I Mary likes John.
N, (N \ S) /N,N → S

I man who Mary likes
CN, (CN \CN) /(S /N),N, (N \ S) /N → CN

I man who John knows Mary likes
man who Mary knows John knows Mary likes
...

I *book which John laughed without reading

CN, (CN \CN) /(S /CN),N,N \S , ((N \S) \(N \S)) /(N \S), (N \S) /N → S

I *girl who John likes Mary and Pete likes

CN, (CN \CN) /(S /CN),N, (N \S) /N,N, (S \S) /S ,N, (N \ S) /N → S

Natural Language Syntax Analysis with Lambek Grammar

I Mary likes John.
N, (N \ S) /N,N → S

I man who Mary likes
CN, (CN \CN) /(S /N),N, (N \ S) /N → CN

I man who John knows Mary likes
man who Mary knows John knows Mary likes
...

I *book which John laughed without reading

CN, (CN \CN) /(S /CN),N,N \S , ((N \S) \(N \S)) /(N \S), (N \S) /N → S

I *girl who John likes Mary and Pete likes

CN, (CN \CN) /(S /CN),N, (N \S) /N,N, (S \S) /S ,N, (N \ S) /N → S

Natural Language Syntax Analysis with Lambek Grammar

I Mary likes John.
N, (N \ S) /N,N → S

I man who Mary likes
CN, (CN \CN) /(S /N),N, (N \ S) /N → CN

I man who John knows Mary likes
man who Mary knows John knows Mary likes
...

I *book which John laughed without reading

CN, (CN \CN) /(S /CN),N,N \S , ((N \S) \(N \S)) /(N \ S), (N \S) /N → S

I *girl who John likes Mary and Pete likes

CN, (CN \CN) /(S /CN),N, (N \S) /N,N, (S \S) /S ,N, (N \S) /N → S

Natural Language Syntax Analysis with Lambek Grammar

I Mary likes John.
N, (N \ S) /N,N → S

I man who Mary likes
CN, (CN \CN) /(S /N),N, (N \ S) /N → CN

I man who John knows Mary likes
man who Mary knows John knows Mary likes
...

I *book which John laughed without reading
CN, (CN \CN) /(S /CN),N,N \S , ((N \S) \(N \ S)) /(N \ S), (N \S) /N → S

I *girl who John likes Mary and Pete likes
CN, (CN \CN) /(S /CN),N, (N \S) /N,N, (S \S) /S ,N, (N \ S) /N → S

The Lambek Calculus with Brackets (Lb∗)

[Morrill 1992, Moortgat 1995]

A→ A

Π→ A ∆(B)→ C

∆(Π,A \B)→ C

A,Π→ B

Π→ A \B
Γ(A,B)→ C

Γ(A · B)→ C

Π→ A ∆(B)→ C

∆(B /A,Π)→ C

Π,A→ B

Π→ B /A
Γ→ A ∆→ B

Γ,∆→ A · B

∆([A])→ C

∆(〈〉A)→ C
Π→ A

[Π]→ 〈〉A
∆(A)→ C

∆([[]−1A])→ C

[Π]→ A

Π→ []−1A

I Brackets introduce controlled non-associativity.
I Cut elimination proved by Moortgat [1996].

The Lambek Calculus with Brackets (Lb∗)

[Morrill 1992, Moortgat 1995]

A→ A

Π→ A ∆(B)→ C

∆(Π,A \B)→ C

A,Π→ B

Π→ A \B
Γ(A,B)→ C

Γ(A · B)→ C

Π→ A ∆(B)→ C

∆(B /A,Π)→ C

Π,A→ B

Π→ B /A
Γ→ A ∆→ B

Γ,∆→ A · B

∆([A])→ C

∆(〈〉A)→ C
Π→ A

[Π]→ 〈〉A
∆(A)→ C

∆([[]−1A])→ C

[Π]→ A

Π→ []−1A

I Brackets introduce controlled non-associativity.

I Cut elimination proved by Moortgat [1996].

The Lambek Calculus with Brackets (Lb∗)

[Morrill 1992, Moortgat 1995]

A→ A

Π→ A ∆(B)→ C

∆(Π,A \B)→ C

A,Π→ B

Π→ A \B
Γ(A,B)→ C

Γ(A · B)→ C

Π→ A ∆(B)→ C

∆(B /A,Π)→ C

Π,A→ B

Π→ B /A
Γ→ A ∆→ B

Γ,∆→ A · B

∆([A])→ C

∆(〈〉A)→ C
Π→ A

[Π]→ 〈〉A
∆(A)→ C

∆([[]−1A])→ C

[Π]→ A

Π→ []−1A

I Brackets introduce controlled non-associativity.
I Cut elimination proved by Moortgat [1996].

Islands: Blocking Unwanted Derivations Using Brackets

I book which John laughed without reading

CN, (CN \CN) /(S /CN),N,N \S , [[]−1((N \S) \(N \ S)) /(N \S), (N \S) /N]→ S

This sequent is not derivable in Lb∗.

I girl who John likes Mary and Pete likes

CN, (CN \CN) /(S /CN), [N, (N \S) /N,N, (S \[]−1S) /S ,N, (N \S) /N]→ S

Neither is this one.

Islands: Blocking Unwanted Derivations Using Brackets

I book which John laughed without reading

CN, (CN \CN) /(S /CN),N,N \S , [[]−1((N \S) \(N \S)) /(N \S), (N \S) /N]→ S

This sequent is not derivable in Lb∗.
I girl who John likes Mary and Pete likes

CN, (CN \CN) /(S /CN), [N, (N \S) /N,N, (S \[]−1S) /S ,N, (N \S) /N]→ S

Neither is this one.

Islands: Blocking Unwanted Derivations Using Brackets

I book which John laughed [without reading]

CN, (CN \CN) /(S /CN),N,N \S , [[]−1((N \S) \(N \S)) /(N \S), (N \S) /N]→ S

This sequent is not derivable in Lb∗.
I girl who John likes Mary and Pete likes

CN, (CN \CN) /(S /CN), [N, (N \S) /N,N, (S \[]−1S) /S ,N, (N \S) /N]→ S

Neither is this one.

Islands: Blocking Unwanted Derivations Using Brackets

I book which John laughed [without reading]
CN, (CN \CN) /(S /CN),N,N \S , [[]−1((N \ S) \(N \ S)) /(N \ S), (N \S) /N]→ S

This sequent is not derivable in Lb∗.
I girl who John likes Mary and Pete likes

CN, (CN \CN) /(S /CN), [N, (N \S) /N,N, (S \[]−1S) /S ,N, (N \S) /N]→ S

Neither is this one.

Islands: Blocking Unwanted Derivations Using Brackets

I book which John laughed [without reading]
CN, (CN \CN) /(S /CN),N,N \S , [[]−1((N \ S) \(N \ S)) /(N \ S), (N \S) /N]→ S

This sequent is not derivable in Lb∗.

I girl who John likes Mary and Pete likes

CN, (CN \CN) /(S /CN), [N, (N \S) /N,N, (S \[]−1S) /S ,N, (N \S) /N]→ S

Neither is this one.

Islands: Blocking Unwanted Derivations Using Brackets

I book which John laughed [without reading]
CN, (CN \CN) /(S /CN),N,N \S , [[]−1((N \ S) \(N \ S)) /(N \ S), (N \S) /N]→ S

This sequent is not derivable in Lb∗.
I girl who John likes Mary and Pete likes

CN, (CN \CN) /(S /CN), [N, (N \ S) /N,N, (S \[]−1S) /S ,N, (N \ S) /N]→ S

Neither is this one.

Islands: Blocking Unwanted Derivations Using Brackets

I book which John laughed [without reading]
CN, (CN \CN) /(S /CN),N,N \S , [[]−1((N \ S) \(N \ S)) /(N \ S), (N \S) /N]→ S

This sequent is not derivable in Lb∗.
I girl who [John likes Mary and Pete likes]

CN, (CN \CN) /(S /CN), [N, (N \ S) /N,N, (S \[]−1S) /S ,N, (N \ S) /N]→ S

Neither is this one.

Islands: Blocking Unwanted Derivations Using Brackets

I book which John laughed [without reading]
CN, (CN \CN) /(S /CN),N,N \S , [[]−1((N \ S) \(N \ S)) /(N \ S), (N \S) /N]→ S

This sequent is not derivable in Lb∗.
I girl who [John likes Mary and Pete likes]

CN, (CN \CN) /(S /CN), [N, (N \ S) /N,N, (S \[]−1S) /S ,N, (N \ S) /N]→ S

Neither is this one.

Islands: Blocking Unwanted Derivations Using Brackets

I book which John laughed [without reading]
CN, (CN \CN) /(S /CN),N,N \S , [[]−1((N \ S) \(N \ S)) /(N \ S), (N \S) /N]→ S

This sequent is not derivable in Lb∗.
I girl who [John likes Mary and Pete likes]

CN, (CN \CN) /(S /CN), [N, (N \ S) /N,N, (S \[]−1S) /S ,N, (N \ S) /N]→ S

Neither is this one.

Complexity

I Derivability problem in L∗ (and therefore in Lb∗) is
NP-complete [Pentus 2006].

I Non-associative Lambek calculus (NL) is polynomially
decidable [Aarts and Trautwein 1995].

I NL is also embedded into Lb∗ [Kurtonina 1995].
I There exists an algorithm for L∗ with running time poly(N, 2R)

[Pentus 2010, Fowler 2009], where N is the size of the sequent
and R is the order (depth).
In linguistic applications, R is small.

I Pentus’ algorithm extended to Lb∗, running time
poly(N, 2R ,NB) [this talk].
Here B is the bracket nesting depth.

Complexity

I Derivability problem in L∗ (and therefore in Lb∗) is
NP-complete [Pentus 2006].

I Non-associative Lambek calculus (NL) is polynomially
decidable [Aarts and Trautwein 1995].

I NL is also embedded into Lb∗ [Kurtonina 1995].
I There exists an algorithm for L∗ with running time poly(N, 2R)

[Pentus 2010, Fowler 2009], where N is the size of the sequent
and R is the order (depth).
In linguistic applications, R is small.

I Pentus’ algorithm extended to Lb∗, running time
poly(N, 2R ,NB) [this talk].
Here B is the bracket nesting depth.

Complexity

I Derivability problem in L∗ (and therefore in Lb∗) is
NP-complete [Pentus 2006].

I Non-associative Lambek calculus (NL) is polynomially
decidable [Aarts and Trautwein 1995].

I NL is also embedded into Lb∗ [Kurtonina 1995].
I There exists an algorithm for L∗ with running time poly(N, 2R)

[Pentus 2010, Fowler 2009], where N is the size of the sequent
and R is the order (depth).
In linguistic applications, R is small.

I Pentus’ algorithm extended to Lb∗, running time
poly(N, 2R ,NB) [this talk].
Here B is the bracket nesting depth.

Complexity

I Derivability problem in L∗ (and therefore in Lb∗) is
NP-complete [Pentus 2006].

I Non-associative Lambek calculus (NL) is polynomially
decidable [Aarts and Trautwein 1995].

I NL is also embedded into Lb∗ [Kurtonina 1995].

I There exists an algorithm for L∗ with running time poly(N, 2R)
[Pentus 2010, Fowler 2009], where N is the size of the sequent
and R is the order (depth).
In linguistic applications, R is small.

I Pentus’ algorithm extended to Lb∗, running time
poly(N, 2R ,NB) [this talk].
Here B is the bracket nesting depth.

Complexity

I Derivability problem in L∗ (and therefore in Lb∗) is
NP-complete [Pentus 2006].

I Non-associative Lambek calculus (NL) is polynomially
decidable [Aarts and Trautwein 1995].

I NL is also embedded into Lb∗ [Kurtonina 1995].
I There exists an algorithm for L∗ with running time poly(N, 2R)

[Pentus 2010, Fowler 2009], where N is the size of the sequent
and R is the order (depth).
In linguistic applications, R is small.

I Pentus’ algorithm extended to Lb∗, running time
poly(N, 2R ,NB) [this talk].
Here B is the bracket nesting depth.

Complexity

I Derivability problem in L∗ (and therefore in Lb∗) is
NP-complete [Pentus 2006].

I Non-associative Lambek calculus (NL) is polynomially
decidable [Aarts and Trautwein 1995].

I NL is also embedded into Lb∗ [Kurtonina 1995].
I There exists an algorithm for L∗ with running time poly(N, 2R)

[Pentus 2010, Fowler 2009], where N is the size of the sequent
and R is the order (depth).
In linguistic applications, R is small.

I Pentus’ algorithm extended to Lb∗, running time
poly(N, 2R ,NB) [this talk].
Here B is the bracket nesting depth.

Complexity Parameters

I N = ||Π→ A||, counted as the total number of connectives in
the sequent.

I R = ord(Π→ A) = max{ord(Π) + 1, ord(A) + prod(A)},
where prod(A) is 1 if A = A1 · A2 , and 0 otherwise.
ord(pi) = 0; ord(A · B) = max{ord(A), ord(B)};
ord(A \B) = ord(B /A) = max{ord(A) + 1, ord(B) + prod(B)};
ord(Λ) = 0; ord(Γ,∆) = max{ord(Γ), ord(∆)}.

I B is the bracket and bracket modalities nesting depth.

Complexity Parameters

I N = ||Π→ A||, counted as the total number of connectives in
the sequent.

I R = ord(Π→ A) = max{ord(Π) + 1, ord(A) + prod(A)},
where prod(A) is 1 if A = A1 · A2 , and 0 otherwise.
ord(pi) = 0; ord(A · B) = max{ord(A), ord(B)};
ord(A \B) = ord(B /A) = max{ord(A) + 1, ord(B) + prod(B)};
ord(Λ) = 0; ord(Γ,∆) = max{ord(Γ), ord(∆)}.

I B is the bracket and bracket modalities nesting depth.

Complexity Parameters

I N = ||Π→ A||, counted as the total number of connectives in
the sequent.

I R = ord(Π→ A) = max{ord(Π) + 1, ord(A) + prod(A)},
where prod(A) is 1 if A = A1 · A2 , and 0 otherwise.
ord(pi) = 0; ord(A · B) = max{ord(A), ord(B)};
ord(A \B) = ord(B /A) = max{ord(A) + 1, ord(B) + prod(B)};
ord(Λ) = 0; ord(Γ,∆) = max{ord(Γ), ord(∆)}.

I B is the bracket and bracket modalities nesting depth.

Complexity Parameters

I N = ||Π→ A||, counted as the total number of connectives in
the sequent.

I R = ord(Π→ A) = max{ord(Π) + 1, ord(A) + prod(A)},
where prod(A) is 1 if A = A1 · A2 , and 0 otherwise.
ord(pi) = 0; ord(A · B) = max{ord(A), ord(B)};
ord(A \B) = ord(B /A) = max{ord(A) + 1, ord(B) + prod(B)};
ord(Λ) = 0; ord(Γ,∆) = max{ord(Γ), ord(∆)}.
If we translate Lambek formulae into linear logic, R is the
maximal alternation depth of O’s and ⊗’s.

I B is the bracket and bracket modalities nesting depth.

Complexity Parameters

I N = ||Π→ A||, counted as the total number of connectives
(incl. bracket modalities) and brackets in the sequent.

I R = ord(Π→ A) = max{ord(Π) + 1, ord(A) + prod(A)},
where prod(A) is 1 if A = A1 · A2 or 〈〉A′, and 0 otherwise.
ord(pi) = 0; ord(A · B) = max{ord(A), ord(B)};
ord(A \B) = ord(B /A) = max{ord(A) + 1, ord(B) + prod(B)};
ord(〈〉A) = ord(A); ord([]−1A) = max{ord(A) + prod(A), 1};
ord(Λ) = 0; ord(Γ,∆) = max{ord(Γ), ord(∆)}.

I B is the bracket and bracket modalities nesting depth.

Complexity Parameters

I N = ||Π→ A||, counted as the total number of connectives
(incl. bracket modalities) and brackets in the sequent.

I R = ord(Π→ A) = max{ord(Π) + 1, ord(A) + prod(A)},
where prod(A) is 1 if A = A1 · A2 or 〈〉A′, and 0 otherwise.
ord(pi) = 0; ord(A · B) = max{ord(A), ord(B)};
ord(A \B) = ord(B /A) = max{ord(A) + 1, ord(B) + prod(B)};
ord(〈〉A) = ord(A); ord([]−1A) = max{ord(A) + prod(A), 1};
ord(Λ) = 0; ord(Γ,∆) = max{ord(Γ), ord(∆)}.

I B is the bracket and bracket modalities nesting depth.

So... Why This Talk?

I Practical motivation: aim to optimise parsers for type-logical
grammar (CatLog by Morrill et al.)

I Theoretical interest: a combination of proof net and finite
automata techniques

So... Why This Talk?

I Practical motivation: aim to optimise parsers for type-logical
grammar (CatLog by Morrill et al.)

I Theoretical interest: a combination of proof net and finite
automata techniques

So... Why This Talk?

I Practical motivation: aim to optimise parsers for type-logical
grammar (CatLog by Morrill et al.)

I Theoretical interest: a combination of proof net and finite
automata techniques

Proof Nets for Lb∗

Mary danced before singing

[N], 〈〉N \ S , [[]−1((〈〉N \S) \(〈〉N \ S)) /(〈〉N \ S), 〈〉N \S]→ S

Proof Nets for Lb∗

[Mary] danced [before singing]

[N], 〈〉N \ S , [[]−1((〈〉N \S) \(〈〉N \ S)) /(〈〉N \ S), 〈〉N \S]→ S

Proof Nets for Lb∗

[Mary] danced [before singing]

[N], 〈〉N \ S , [[]−1((〈〉N \ S) \(〈〉N \ S)) /(〈〉N \ S), 〈〉N \S]→ S

Proof Nets for Lb∗

[Mary] danced [before singing]

[N], 〈〉N \ S , [[]−1((〈〉N \ S) \(〈〉N \ S)) /(〈〉N \ S), 〈〉N \S]→ S

Axiom links:

� [̄� S̄⊗]⊗N⊗ [� [̄O N̄ O]̄OS⊗ [⊗ S̄⊗]⊗N⊗ [⊗ [̄O N̄ O]̄OS⊗]�]̄� S̄⊗]⊗N⊗ [� [̄� N̄ �]̄�S

Proof Nets for Lb∗

[Mary] danced [before singing]

[N], 〈〉N \ S , [[]−1((〈〉N \ S) \(〈〉N \ S)) /(〈〉N \ S), 〈〉N \S]→ S

Acyclicity [Pentus 1998]:

� [̄� S̄⊗
��

]⊗
��

EEN⊗
��

UU [� [̄O IIN̄ OXX]̄O GGS⊗
��

[⊗
��

HHS̄⊗
��

II]⊗
��

EEN⊗
��

UU [⊗
��

UU [̄O IIN̄ OXX]̄OUU S⊗

SS]�]̄� S̄⊗
��

]⊗
��

EEN⊗
��

UU [� [̄� N̄ �]̄�S

Proof Nets for Lb∗

[Mary] danced [before singing]

[N], 〈〉N \ S , [[]−1((〈〉N \ S) \(〈〉N \ S)) /(〈〉N \ S), 〈〉N \S]→ S

Sisterhood [Fadda and Morrill 2005]:

� [̄� S̄⊗]⊗N⊗ [� [̄O N̄ O]̄OS⊗ [⊗ S̄⊗]⊗N⊗ [⊗ [̄O N̄ O]̄OS⊗]�]̄� S̄⊗]⊗N⊗ [� [̄� N̄ �]̄�S

Proof Nets for Lb∗

I Extending Pentus-style proof nets for cyclic multiplicative
linear logic.

I Axiom links (E) connect atoms (pi and p̄i).
I Brackets are considered as a special kind of atoms: [,], [̄,]̄.
I Acyclicity condition: ≺ is the syntactic forest relation, A

connects each ⊗ to the (unique) O in the same E-region;
A ∪≺ should be acyclic.

I Sisterhood condition: E should respect pairing of brackets.

Proof Nets for Lb∗

I Extending Pentus-style proof nets for cyclic multiplicative
linear logic.

I Axiom links (E) connect atoms (pi and p̄i).

I Brackets are considered as a special kind of atoms: [,], [̄,]̄.
I Acyclicity condition: ≺ is the syntactic forest relation, A

connects each ⊗ to the (unique) O in the same E-region;
A ∪≺ should be acyclic.

I Sisterhood condition: E should respect pairing of brackets.

Proof Nets for Lb∗

I Extending Pentus-style proof nets for cyclic multiplicative
linear logic.

I Axiom links (E) connect atoms (pi and p̄i).
I Brackets are considered as a special kind of atoms: [,], [̄,]̄.

I Acyclicity condition: ≺ is the syntactic forest relation, A
connects each ⊗ to the (unique) O in the same E-region;
A ∪≺ should be acyclic.

I Sisterhood condition: E should respect pairing of brackets.

Proof Nets for Lb∗

I Extending Pentus-style proof nets for cyclic multiplicative
linear logic.

I Axiom links (E) connect atoms (pi and p̄i).
I Brackets are considered as a special kind of atoms: [,], [̄,]̄.
I Acyclicity condition: ≺ is the syntactic forest relation, A

connects each ⊗ to the (unique) O in the same E-region;
A ∪≺ should be acyclic.

I Sisterhood condition: E should respect pairing of brackets.

Proof Nets for Lb∗

I Extending Pentus-style proof nets for cyclic multiplicative
linear logic.

I Axiom links (E) connect atoms (pi and p̄i).
I Brackets are considered as a special kind of atoms: [,], [̄,]̄.
I Acyclicity condition: ≺ is the syntactic forest relation, A

connects each ⊗ to the (unique) O in the same E-region;
A ∪≺ should be acyclic.

I Sisterhood condition: E should respect pairing of brackets.

Importance of the Sisterhood Condition

— Could one just treat brackets as atoms? (cf. [Versmissen 1996])

— No.

Counter-example [Fadda and Morrill 2005]:

[[]−1p], [[]−1q]→ 〈〉[]−1(p · q)

I This sequent is not derivable in Lb∗.
I The only possible proof net violates sisterhood:

� [̄ � [⊗ q̄ ⊗] �]̄ � [̄ � [⊗ p̄ ⊗] �]̄ �] ⊗]̄ O p ⊗ q O [̄ ⊗ [

Importance of the Sisterhood Condition

— Could one just treat brackets as atoms? (cf. [Versmissen 1996])
— No.

Counter-example [Fadda and Morrill 2005]:

[[]−1p], [[]−1q]→ 〈〉[]−1(p · q)

I This sequent is not derivable in Lb∗.
I The only possible proof net violates sisterhood:

� [̄ � [⊗ q̄ ⊗] �]̄ � [̄ � [⊗ p̄ ⊗] �]̄ �] ⊗]̄ O p ⊗ q O [̄ ⊗ [

Importance of the Sisterhood Condition

— Could one just treat brackets as atoms? (cf. [Versmissen 1996])
— No.

Counter-example [Fadda and Morrill 2005]:

[[]−1p], [[]−1q]→ 〈〉[]−1(p · q)

I This sequent is not derivable in Lb∗.
I The only possible proof net violates sisterhood:

� [̄ � [⊗ q̄ ⊗] �]̄ � [̄ � [⊗ p̄ ⊗] �]̄ �] ⊗]̄ O p ⊗ q O [̄ ⊗ [

Importance of the Sisterhood Condition

— Could one just treat brackets as atoms? (cf. [Versmissen 1996])
— No.

Counter-example [Fadda and Morrill 2005]:

[[]−1p], [[]−1q]→ 〈〉[]−1(p · q)

I This sequent is not derivable in Lb∗.

I The only possible proof net violates sisterhood:

� [̄ � [⊗ q̄ ⊗] �]̄ � [̄ � [⊗ p̄ ⊗] �]̄ �] ⊗]̄ O p ⊗ q O [̄ ⊗ [

Importance of the Sisterhood Condition

— Could one just treat brackets as atoms? (cf. [Versmissen 1996])
— No.

Counter-example [Fadda and Morrill 2005]:

[[]−1p], [[]−1q]→ 〈〉[]−1(p · q)

I This sequent is not derivable in Lb∗.
I The only possible proof net violates sisterhood:

� [̄ � [⊗ q̄ ⊗] �]̄ � [̄ � [⊗ p̄ ⊗] �]̄ �] ⊗]̄ O p ⊗ q O [̄ ⊗ [

Encoding Proof Nets
I E c(E) ∈ {c1, . . . , cn}n:

if the i-th and the j-th atoms are connected by an axiom link,
then the i-th letter of c(E) is ej and the j-th letter is ei .

I P1 = {c(E) | E is a proof net, but maybe violating sisterhood}

There exists, and can be effectively constructed, a
poly(n, 2R)-size context free grammar for P1 [Pentus 2010].

I For a language P2, such that c(E) ∈ P2 iff E respects
sisterhood, there exists, and can be effectively constructed, a
poly(n, nB)-size finite automaton for P2.

I There exists, and can be effectively constructed, a
polynomial-size context free grammar for P1 ∩ P2

(see [Ginsburg 1966]).
I The non-emptiness of P1 ∩ P2 (our goal) is checked in

polynomial time.
I Notice that P1 and P2 are finite, so P1 ∩ P2 is trivially context

free. The real achievement is polynomiality of the grammar.

Encoding Proof Nets
I E c(E) ∈ {c1, . . . , cn}n:

if the i-th and the j-th atoms are connected by an axiom link,
then the i-th letter of c(E) is ej and the j-th letter is ei .

I P1 = {c(E) | E is a proof net, but maybe violating sisterhood}

There exists, and can be effectively constructed, a
poly(n, 2R)-size context free grammar for P1 [Pentus 2010].

I For a language P2, such that c(E) ∈ P2 iff E respects
sisterhood, there exists, and can be effectively constructed, a
poly(n, nB)-size finite automaton for P2.

I There exists, and can be effectively constructed, a
polynomial-size context free grammar for P1 ∩ P2

(see [Ginsburg 1966]).
I The non-emptiness of P1 ∩ P2 (our goal) is checked in

polynomial time.
I Notice that P1 and P2 are finite, so P1 ∩ P2 is trivially context

free. The real achievement is polynomiality of the grammar.

Encoding Proof Nets
I E c(E) ∈ {c1, . . . , cn}n:

if the i-th and the j-th atoms are connected by an axiom link,
then the i-th letter of c(E) is ej and the j-th letter is ei .

I P1 = {c(E) | E is a proof net, but maybe violating sisterhood}
There exists, and can be effectively constructed, a
poly(n, 2R)-size context free grammar for P1 [Pentus 2010].

I For a language P2, such that c(E) ∈ P2 iff E respects
sisterhood, there exists, and can be effectively constructed, a
poly(n, nB)-size finite automaton for P2.

I There exists, and can be effectively constructed, a
polynomial-size context free grammar for P1 ∩ P2

(see [Ginsburg 1966]).
I The non-emptiness of P1 ∩ P2 (our goal) is checked in

polynomial time.
I Notice that P1 and P2 are finite, so P1 ∩ P2 is trivially context

free. The real achievement is polynomiality of the grammar.

Encoding Proof Nets
I E c(E) ∈ {c1, . . . , cn}n:

if the i-th and the j-th atoms are connected by an axiom link,
then the i-th letter of c(E) is ej and the j-th letter is ei .

I P1 = {c(E) | E is a proof net, but maybe violating sisterhood}
There exists, and can be effectively constructed, a
poly(n, 2R)-size context free grammar for P1 [Pentus 2010].

I For a language P2, such that c(E) ∈ P2 iff E respects
sisterhood, there exists, and can be effectively constructed, a
poly(n, nB)-size finite automaton for P2.

I There exists, and can be effectively constructed, a
polynomial-size context free grammar for P1 ∩ P2

(see [Ginsburg 1966]).
I The non-emptiness of P1 ∩ P2 (our goal) is checked in

polynomial time.
I Notice that P1 and P2 are finite, so P1 ∩ P2 is trivially context

free. The real achievement is polynomiality of the grammar.

Encoding Proof Nets
I E c(E) ∈ {c1, . . . , cn}n:

if the i-th and the j-th atoms are connected by an axiom link,
then the i-th letter of c(E) is ej and the j-th letter is ei .

I P1 = {c(E) | E is a proof net, but maybe violating sisterhood}
There exists, and can be effectively constructed, a
poly(n, 2R)-size context free grammar for P1 [Pentus 2010].

I For a language P2, such that c(E) ∈ P2 iff E respects
sisterhood, there exists, and can be effectively constructed, a
poly(n, nB)-size finite automaton for P2.

I There exists, and can be effectively constructed, a
polynomial-size context free grammar for P1 ∩ P2

(see [Ginsburg 1966]).

I The non-emptiness of P1 ∩ P2 (our goal) is checked in
polynomial time.

I Notice that P1 and P2 are finite, so P1 ∩ P2 is trivially context
free. The real achievement is polynomiality of the grammar.

Encoding Proof Nets
I E c(E) ∈ {c1, . . . , cn}n:

if the i-th and the j-th atoms are connected by an axiom link,
then the i-th letter of c(E) is ej and the j-th letter is ei .

I P1 = {c(E) | E is a proof net, but maybe violating sisterhood}
There exists, and can be effectively constructed, a
poly(n, 2R)-size context free grammar for P1 [Pentus 2010].

I For a language P2, such that c(E) ∈ P2 iff E respects
sisterhood, there exists, and can be effectively constructed, a
poly(n, nB)-size finite automaton for P2.

I There exists, and can be effectively constructed, a
polynomial-size context free grammar for P1 ∩ P2

(see [Ginsburg 1966]).
I The non-emptiness of P1 ∩ P2 (our goal) is checked in

polynomial time.

I Notice that P1 and P2 are finite, so P1 ∩ P2 is trivially context
free. The real achievement is polynomiality of the grammar.

Encoding Proof Nets
I E c(E) ∈ {c1, . . . , cn}n:

if the i-th and the j-th atoms are connected by an axiom link,
then the i-th letter of c(E) is ej and the j-th letter is ei .

I P1 = {c(E) | E is a proof net, but maybe violating sisterhood}
There exists, and can be effectively constructed, a
poly(n, 2R)-size context free grammar for P1 [Pentus 2010].

I For a language P2, such that c(E) ∈ P2 iff E respects
sisterhood, there exists, and can be effectively constructed, a
poly(n, nB)-size finite automaton for P2.

I There exists, and can be effectively constructed, a
polynomial-size context free grammar for P1 ∩ P2

(see [Ginsburg 1966]).
I The non-emptiness of P1 ∩ P2 (our goal) is checked in

polynomial time.
I Notice that P1 and P2 are finite, so P1 ∩ P2 is trivially context

free. The real achievement is polynomiality of the grammar.

Future Work

I Develop an efficient parsing procedure for Lb∗-grammars (cf.
[Pentus 2010] for L∗).

In a Lambek grammar, several types can be assigned to one
lexeme: an extra level of non-determinism.

I The problem whether Lb∗-grammars are context free is still
open: Jäger [2003] uses the incorrect Versmissen’s lemma.
Cf. L∗-grammars are context free [Pentus 1993].

I Lb: the Lambek calculus with brackets and non-empty
antecedents.

I Feasible fragments of other enrichments of the Lambek
calculus (even generally undecidable).

Future Work

I Develop an efficient parsing procedure for Lb∗-grammars (cf.
[Pentus 2010] for L∗).

In a Lambek grammar, several types can be assigned to one
lexeme: an extra level of non-determinism.

I The problem whether Lb∗-grammars are context free is still
open: Jäger [2003] uses the incorrect Versmissen’s lemma.
Cf. L∗-grammars are context free [Pentus 1993].

I Lb: the Lambek calculus with brackets and non-empty
antecedents.

I Feasible fragments of other enrichments of the Lambek
calculus (even generally undecidable).

Future Work

I Develop an efficient parsing procedure for Lb∗-grammars (cf.
[Pentus 2010] for L∗).
In a Lambek grammar, several types can be assigned to one
lexeme: an extra level of non-determinism.

I The problem whether Lb∗-grammars are context free is still
open: Jäger [2003] uses the incorrect Versmissen’s lemma.
Cf. L∗-grammars are context free [Pentus 1993].

I Lb: the Lambek calculus with brackets and non-empty
antecedents.

I Feasible fragments of other enrichments of the Lambek
calculus (even generally undecidable).

Future Work

I Develop an efficient parsing procedure for Lb∗-grammars (cf.
[Pentus 2010] for L∗).
In a Lambek grammar, several types can be assigned to one
lexeme: an extra level of non-determinism.

I The problem whether Lb∗-grammars are context free is still
open: Jäger [2003] uses the incorrect Versmissen’s lemma.
Cf. L∗-grammars are context free [Pentus 1993].

I Lb: the Lambek calculus with brackets and non-empty
antecedents.

I Feasible fragments of other enrichments of the Lambek
calculus (even generally undecidable).

Future Work

I Develop an efficient parsing procedure for Lb∗-grammars (cf.
[Pentus 2010] for L∗).
In a Lambek grammar, several types can be assigned to one
lexeme: an extra level of non-determinism.

I The problem whether Lb∗-grammars are context free is still
open: Jäger [2003] uses the incorrect Versmissen’s lemma.
Cf. L∗-grammars are context free [Pentus 1993].

I Lb: the Lambek calculus with brackets and non-empty
antecedents.

I Feasible fragments of other enrichments of the Lambek
calculus (even generally undecidable).

Future Work

I Develop an efficient parsing procedure for Lb∗-grammars (cf.
[Pentus 2010] for L∗).
In a Lambek grammar, several types can be assigned to one
lexeme: an extra level of non-determinism.

I The problem whether Lb∗-grammars are context free is still
open: Jäger [2003] uses the incorrect Versmissen’s lemma.
Cf. L∗-grammars are context free [Pentus 1993].

I Lb: the Lambek calculus with brackets and non-empty
antecedents.

I Feasible fragments of other enrichments of the Lambek
calculus (even generally undecidable).

Thank you!

