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» A fragment of non-commutative intuitionistic linear logic.

» We consider the variant of the Lambek calculus that allows
empty antecedents.
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Natural Language Syntax Analysis with Lambek Grammar

» Mary likes John.

N,(N\S)/N,N — S
» man who Mary likes

CN,(CN\CN) /(S/N),N,(N\S)/N — CN
» man who John knows Mary likes

man who Mary knows John knows Mary likes

» *book which John laughed without reading

CN,(CN\ CN) /(S / CN),N,N\'S, (N\ S)\(N\ S)) /(N\S),(N\S)/N — S
» *girl who John likes Mary and Pete likes

CN,(CN\ CN)/(S/CN),N,(N\S)/N,N,(S\S)/S,N,(N\S)/N — S
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[Morrill 1992, Moortgat 1995]

A=A
n—A A(B)—C AN—B NA,B)— C
A(M,A\B) > C N—-A\B T(A-B)—C
n—A A(B)—C MnA—B r<A A—B
AB/AN) = C N—B/A A A B
AAD—~C nosa BA—C  [N—A
A(DA) = C M= 0A A(lITAD > C T—=[A

» Brackets introduce controlled non-associativity.

» Cut elimination proved by Moortgat [1996].
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» book which John laughed [without reading]
CN,(CN\CN) /(S / CN), N, N\ S, [[I7H((N\ S)\(N\ $)) /(NN S), (N\ S) / N] — S
This sequent is not derivable in Lb*.
» girl who [John likes Mary and Pete likes]
CN,(CN\ CN) /(S/CN),[N,(N\S)/N,N,(S\[]71S)/S,N,(N\S)/N] = S
Neither is this one.
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Complexity

» Derivability problem in L (and therefore in Lb*) is
NP-complete [Pentus 2006].

» Non-associative Lambek calculus (NL) is polynomially
decidable [Aarts and Trautwein 1995].

» NL is also embedded into Lb* [Kurtonina 1995].

» There exists an algorithm for L* with running time poly (N, 2R)
[Pentus 2010, Fowler 2009], where N is the size of the sequent
and R is the order (depth).

In linguistic applications, R is small.

» Pentus’ algorithm extended to Lb*, running time
poly(N, 2R, NB) [this talk].
Here B is the bracket nesting depth.
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» N = | — A|, counted as the total number of connectives
(incl. bracket modalities) and brackets in the sequent.

» R =ord(lNN — A) = max{ord(IM) + 1, ord(A) + prod(A)},
where prod(A) is 1 if A= A; - Az or ()A’, and 0 otherwise.
ord(p;) = 0; ord(A - B) = max{ord(A),ord(B)};
ord(A\ B) = ord(B / A) = max{ord(A) + 1, ord(B) + prod(B)};
ord({)A) = ord(A); ord([] 1A) = max{ord(A) + prod(A), 1};
ord(A) = 0; ord(l', A) = max{ord(l"),ord(A)}.

» B is the bracket and bracket modalities nesting depth.
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So... Why This Talk?

» Practical motivation: aim to optimise parsers for type-logical
grammar (CatLog by Morrill et al.)

» Theoretical interest: a combination of proof net and finite
automata techniques
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Proof Nets for Lb*
[Mary] danced [before singing]

[N, ONAS TITH(ON A S)NONNS)) /(ONNS), QNN S] — S

Sisterhood [Fadda and Morrill 2005]:
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» Extending Pentus-style proof nets for cyclic multiplicative
linear logic.

» Axiom links (£) connect atoms (p; and p;).
» Brackets are considered as a special kind of atoms: [, ], [, |.

» Acyclicity condition: < is the syntactic forest relation, A
connects each ® to the (unique) 7@ in the same E-region;
A U < should be acyclic.

» Sisterhood condition: £ should respect pairing of brackets.
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Importance of the Sisterhood Condition

— Could one just treat brackets as atoms? (cf. [Versmissen 1996])
— No.

Counter-example [Fadda and Morrill 2005]:

[07pl 07 el = OO~ (p- q)

» This sequent is not derivable in Lb*.

» The only possible proof net violates sisterhood:
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Encoding Proof Nets

> £~ (&) efa,. .., e
if the j-th and the j-th atoms are connected by an axiom link,
then the i-th letter of c(&) is e and the j-th letter is e;.

» P ={c(€) | £ is a proof net, but maybe violating sisterhood}
There exists, and can be effectively constructed, a
poly(n, 2F)-size context free grammar for Py [Pentus 2010].

» For a language P, such that ¢(€) € P, iff £ respects
sisterhood, there exists, and can be effectively constructed, a
poly(n, nB)-size finite automaton for Ps.

» There exists, and can be effectively constructed, a
polynomial-size context free grammar for P; N P
(see [Ginsburg 1966]).

» The non-emptiness of P; N P, (our goal) is checked in
polynomial time.

» Notice that P; and P, are finite, so P; N P5 is trivially context
free. The real achievement is polynomiality of the grammar.
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Future Work

» Develop an efficient parsing procedure for Lb*-grammars (cf.
[Pentus 2010] for L¥).
In a Lambek grammar, several types can be assigned to one
lexeme: an extra level of non-determinism.

» The problem whether Lb*-grammars are context free is still
open: Jager [2003] uses the incorrect Versmissen's lemma.
Cf. L*-grammars are context free [Pentus 1993].

» Lb: the Lambek calculus with brackets and non-empty
antecedents.

» Feasible fragments of other enrichments of the Lambek
calculus (even generally undecidable).



Thank you!



