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The Lambek Calculus L∗

[Lambek 1958, 1961]

A→ A

A,Π→ B

Π→ A \B
Π→ A ΓB ∆→ C
Γ,Π, (A \B),∆→ C

Π,A→ B

Π→ B /A
Π→ A ΓB ∆→ C
Γ, (B /A),Π,∆→ C

Γ→ A ∆→ B
Γ,∆→ A · B

Γ,A,B,∆→ C

Γ,A · B,∆→ C

Π→ A Γ,A,∆→ C

Γ,Π,∆→ C
(cut)

I A fragment of non-commutative intuitionistic linear logic.
I We consider the variant of the Lambek calculus that allows

empty antecedents.
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Natural Language Syntax Analysis with Lambek Grammar

I Mary likes John.
N, (N \S) /N,N → S

I man who Mary likes
CN, (CN \CN) /(S /N),N, (N \S) /N → CN

I man who John knows Mary likes
man who Mary knows John knows Mary likes
...

I *book which John laughed without reading

CN, (CN \CN) /(S /CN),N,N \S , ((N \S) \(N \ S)) /(N \S), (N \S) /N → S

I *girl who John likes Mary and Pete likes
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The Lambek Calculus with Brackets (Lb∗)

[Morrill 1992, Moortgat 1995]

A→ A

Π→ A ∆(B)→ C

∆(Π,A \B)→ C

A,Π→ B

Π→ A \B
Γ(A,B)→ C

Γ(A · B)→ C

Π→ A ∆(B)→ C

∆(B /A,Π)→ C

Π,A→ B

Π→ B /A
Γ→ A ∆→ B

Γ,∆→ A · B

∆([A])→ C

∆(〈〉A)→ C
Π→ A

[Π]→ 〈〉A
∆(A)→ C

∆([[]−1A])→ C

[Π]→ A

Π→ []−1A

I Brackets introduce controlled non-associativity.
I Cut elimination proved by Moortgat [1996].
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Islands: Blocking Unwanted Derivations Using Brackets

I book which John laughed without reading

CN, (CN \CN) /(S /CN),N,N \S , [[]−1((N \S) \(N \ S)) /(N \S), (N \S) /N]→ S

This sequent is not derivable in Lb∗.

I girl who John likes Mary and Pete likes

CN, (CN \CN) /(S /CN), [N, (N \S) /N,N, (S \[]−1S) /S ,N, (N \S) /N]→ S

Neither is this one.
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Complexity

I Derivability problem in L∗ (and therefore in Lb∗) is
NP-complete [Pentus 2006].

I Non-associative Lambek calculus (NL) is polynomially
decidable [Aarts and Trautwein 1995].

I NL is also embedded into Lb∗ [Kurtonina 1995].
I There exists an algorithm for L∗ with running time poly(N, 2R)

[Pentus 2010, Fowler 2009], where N is the size of the sequent
and R is the order (depth).
In linguistic applications, R is small.

I Pentus’ algorithm extended to Lb∗, running time
poly(N, 2R ,NB) [this talk].
Here B is the bracket nesting depth.
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Complexity Parameters

I N = ||Π→ A||, counted as the total number of connectives in
the sequent.

I R = ord(Π→ A) = max{ord(Π) + 1, ord(A) + prod(A)},
where prod(A) is 1 if A = A1 · A2 , and 0 otherwise.
ord(pi ) = 0; ord(A · B) = max{ord(A), ord(B)};
ord(A \B) = ord(B /A) = max{ord(A) + 1, ord(B) + prod(B)};
ord(Λ) = 0; ord(Γ,∆) = max{ord(Γ), ord(∆)}.

I B is the bracket and bracket modalities nesting depth.
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Proof Nets for Lb∗

I Extending Pentus-style proof nets for cyclic multiplicative
linear logic.

I Axiom links (E) connect atoms (pi and p̄i ).
I Brackets are considered as a special kind of atoms: [, ], [̄, ]̄.
I Acyclicity condition: ≺ is the syntactic forest relation, A

connects each ⊗ to the (unique) O in the same E-region;
A ∪≺ should be acyclic.

I Sisterhood condition: E should respect pairing of brackets.
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— No.
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Encoding Proof Nets
I E  c(E) ∈ {c1, . . . , cn}n:

if the i-th and the j-th atoms are connected by an axiom link,
then the i-th letter of c(E) is ej and the j-th letter is ei .

I P1 = {c(E) | E is a proof net, but maybe violating sisterhood}

There exists, and can be effectively constructed, a
poly(n, 2R)-size context free grammar for P1 [Pentus 2010].

I For a language P2, such that c(E) ∈ P2 iff E respects
sisterhood, there exists, and can be effectively constructed, a
poly(n, nB)-size finite automaton for P2.

I There exists, and can be effectively constructed, a
polynomial-size context free grammar for P1 ∩ P2

(see [Ginsburg 1966]).
I The non-emptiness of P1 ∩ P2 (our goal) is checked in

polynomial time.
I Notice that P1 and P2 are finite, so P1 ∩ P2 is trivially context

free. The real achievement is polynomiality of the grammar.
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Future Work

I Develop an efficient parsing procedure for Lb∗-grammars (cf.
[Pentus 2010] for L∗).

In a Lambek grammar, several types can be assigned to one
lexeme: an extra level of non-determinism.

I The problem whether Lb∗-grammars are context free is still
open: Jäger [2003] uses the incorrect Versmissen’s lemma.
Cf. L∗-grammars are context free [Pentus 1993].

I Lb: the Lambek calculus with brackets and non-empty
antecedents.

I Feasible fragments of other enrichments of the Lambek
calculus (even generally undecidable).
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Thank you!


