Starlike neighbourhoods and computability

Zvonko Iljazović, Lucija Validžić

University of Zagreb
Faculty of Science
Department of Mathematics

Logic and Applications 2017
Dubrovnik
Computable metric space

\((X, d, \alpha) \)

\(\alpha \) a sequence dense in \((X, d)\)

\((i, j) \mapsto d(\alpha_i, \alpha_j)\) a computable function

\(x \in X \) is a computable point if there exists a computable function \(f : \mathbb{N} \to \mathbb{N} \) such that

\[d(x, \alpha f(k)) < 2^{-k}, \quad k \in \mathbb{N}. \]

\((\Lambda_i)_{i \in \mathbb{N}} \)

An effective enumeration of finite subsets of \(\text{Im} \alpha \)

A compact set \(S \subseteq X \) is computable if there exists a computable function \(f : \mathbb{N} \to \mathbb{N} \) such that

\[d_H(S, \Lambda f(k)) < 2^{-k}, \quad k \in \mathbb{N}. \]
Computable metric space

$$(X, d, \alpha)$$
Computable metric space

\((X, d, \alpha)\)

- \(\alpha\) a sequence dense in \((X, d)\)
- \((i, j) \mapsto d(\alpha_i, \alpha_j)\) a computable function
Computable metric space

(X, d, α)

- α a sequence dense in (X, d)
- $(i, j) \mapsto d(\alpha_i, \alpha_j)$ a computable function

$x \in X$ is a **computable point** if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that

$$d(x, \alpha_{f(k)}) < 2^{-k}, \ k \in \mathbb{N}.$$
Computable metric space

$$(X, d, \alpha)$$

- α a sequence dense in (X, d)
- $$(i, j) \mapsto d(\alpha_i, \alpha_j)$$ a computable function

$x \in X$ is a **computable point** if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that

$$d(x, \alpha_f(k)) < 2^{-k}, \ k \in \mathbb{N}.$$

$(\Lambda_i)_{i \in \mathbb{N}}$ effective enumeration of finite subsets of $\text{Im} \ \alpha$
Computable metric space

\((X, d, \alpha)\)

- \(\alpha\) a sequence dense in \((X, d)\)
- \((i, j) \mapsto d(\alpha_i, \alpha_j)\) a computable function

\(x \in X\) is a **computable point** if there exists a computable function \(f : \mathbb{N} \to \mathbb{N}\) such that

\[
d(x, \alpha_{f(k)}) < 2^{-k}, \; k \in \mathbb{N}.
\]

\((\Lambda_i)_{i \in \mathbb{N}}\) effective enumeration of finite subsets of \(\text{Im} \, \alpha\)

A compact set \(S \subseteq X\) is **computable** if there exists a computable function \(f : \mathbb{N} \to \mathbb{N}\) such that

\[
d_H(S, \Lambda_{f(k)}) < 2^{-k}, \; k \in \mathbb{N}.
\]
Computable topological space

Lucija Validžić (University of Zagreb)
Starlike neighbourhoods and computability
Computable topological space

\((X, \mathcal{T}, (I_i)_{i \in \mathbb{N}})\)
Computable topological space

\((X, \mathcal{T}, (I_i)_{i \in \mathbb{N}})\)

\(\{I_i \mid i \in \mathbb{N}\}\) a basis for \(\mathcal{T}\), there are c.e. subsets \(C, D\) of \(\mathbb{N}^2\) such that:

1. \((i, j) \in D \Rightarrow I_i \cap I_j = \emptyset\)
2. \((i, j) \in C \Rightarrow I_i \subseteq I_j\)
3. \(x, y \in X, x \neq y \Rightarrow (\exists i, j \in \mathbb{N}) x \in I_i, y \in I_j, (i, j) \in D\)
4. \(i, j \in \mathbb{N}, x \in I_i \cap I_j \Rightarrow (\exists k \in \mathbb{N}) x \in I_k, (k, i) \in C, (k, j) \in C\)
Computable topological space

\((X, \mathcal{T}, (I_i)_{i \in \mathbb{N}})\)

\(\{I_i \mid i \in \mathbb{N}\}\) a basis for \(\mathcal{T}\), there are c.e. subsets \(\mathcal{C}, \mathcal{D}\) of \(\mathbb{N}^2\) such that:

- \((i, j) \in \mathcal{D} \Rightarrow I_i \cap I_j = \emptyset\)
- \((i, j) \in \mathcal{C} \Rightarrow I_i \subseteq I_j\)
- \(x, y \in X, x \neq y \Rightarrow (\exists i, j \in \mathbb{N}) x \in I_i, y \in I_j, (i, j) \in \mathcal{D}\)
- \(i, j \in \mathbb{N}, x \in I_i \cap I_j \Rightarrow (\exists k \in \mathbb{N}) x \in I_k, (k, i) \in \mathcal{C}, (k, j) \in \mathcal{C}\)
In a computable metric space:
In a computable metric space:
\[I_i = B(\lambda_i, \varrho_i) \]
In a computable metric space:

\[I_i = B(\lambda_i, \varrho_i) \]

\[C = \{(i, j) \in \mathbb{N}^2 \mid d(\lambda_i, \lambda_j) + \varrho_i < \varrho_j \} \]

\[D = \{(i, j) \in \mathbb{N}^2 \mid d(\lambda_i, \lambda_j) > \varrho_i + \varrho_j \} \]
In a computable metric space:
\[I_i = B(\lambda_i, \varrho_i) \]

\[C = \{(i,j) \in \mathbb{N}^2 | d(\lambda_i, \lambda_j) + \varrho_i < \varrho_j \} \]

\[D = \{(i,j) \in \mathbb{N}^2 | d(\lambda_i, \lambda_j) > \varrho_i + \varrho_j \} \]
$(J_j)_{j \in \mathbb{N}}$ effective enumeration of finite unions of I_is
\((J_j)_{j \in \mathbb{N}}\) effective enumeration of finite unions of \(I_i\)s

A compact set \(S \subseteq X\) is:
\((J_j)_{j \in \mathbb{N}}\) effective enumeration of finite unions of \(I_i\)s

A compact set \(S \subseteq X\) is:

- **semicomputable** if \(\{j \in \mathbb{N} \mid S \subseteq J_j\} \) is c.e.
$(J_j)_{j \in \mathbb{N}}$ effective enumeration of finite unions of I_is

A compact set $S \subseteq X$ is:

- **semicomputable** if $\{j \in \mathbb{N} \mid S \subseteq J_j\}$ is c.e.
- **computably enumerable** if $\{i \in \mathbb{N} \mid S \cap I_i \neq \emptyset\}$ is c.e.
$(J_j)_{j \in \mathbb{N}}$ effective enumeration of finite unions of I_is

A compact set $S \subseteq X$ is:

- **semicomputable** if $\{j \in \mathbb{N} \mid S \subseteq J_j\}$ is c.e.
- **computably enumerable** if $\{i \in \mathbb{N} \mid S \cap I_i \neq \emptyset\}$ is c.e.
- **computable** if S is semicomputable and computably enumerable
\((J_j)_{j \in \mathbb{N}}\) effective enumeration of finite unions of \(I_i\)s

A compact set \(S \subseteq X\) is:

- **semicomputable** if \(\{j \in \mathbb{N} \mid S \subseteq J_j\}\) is c.e.
- **computably enumerable** if \(\{i \in \mathbb{N} \mid S \cap I_i \neq \emptyset\}\) is c.e.
- **computable** if \(S\) is semicomputable and computably enumerable

\(x \in X\) is a **computable point** if \(\{x\}\) is a computable set.
S semicomputable $\Rightarrow S$ computable

Holds if:
- S is a compact manifold
- S is a circularly chainable continuum

Need not hold if:
- S is a line segment
- S is a cell
\(S \text{ semicomputable} \Rightarrow S \text{ computable} \)

Holds if:

▶ \(S \) is a compact manifold
▶ \(S \) is a circularly chainable continuum

Need not hold if:

▶ \(S \) is a line segment
▶ \(S \) is a cell
S semicomputable $\iff S$ computable

Holds if:
- S is a compact manifold
- S is a circularly chainable continuum

Need not hold if:
- S is a line segment
- S is a cell
S semicomputable $\iff S$ computable

Holds if:
- S is a compact manifold
- S is a circularly chainable continuum

Need not hold if:
- S is a line segment
- S is a cell
\[S \text{ semicomputable} \iff S \text{ computable} \]

Holds if:

- \(S \) is a compact manifold
- \(S \) is a circularly chainable continuum

Need not hold if:

- \(S \) is a line segment
- \(S \) is a cell
If S is semicomputable, can we find $T \subseteq S, T \neq S$ such that T computable $\implies S$ computable?
If S is semicomputable, can we find $T \subseteq S, T \neq S$ such that

\[T \text{ computable} \implies S \text{ computable?} \]

For a compact manifold with boundary S:

\[T = \partial S \]
Topological 1-polyhedra

$(\mathcal{X}, \mathcal{T})$ t.s.
Topological 1-polyhedra

(X, T) t.s.
If $S \subseteq X$ is homeomorphic to a finite union of line segments in \mathbb{R}^n, we say that S is a **topological 1-polyhedron**.
Topological 1-polyhedra

(X, T) t.s.
If $S \subseteq X$ is homeomorphic to a finite union of line segments in \mathbb{R}^n, we say that S is a topological 1-polyhedron.
Euclidean points
neighbourhood $\simeq \langle 0, 1 \rangle$
boundary points
neighbourhood $\cong [0, 1]$
starlike points
starlike neighbourhood
\[n \in \mathbb{N} \setminus \{0\}, \; i \in \{1, \ldots, n\} \]

\[I^n_i = \{(t_1, t_2, \ldots, t_n) \in \mathbb{R}^n \mid t_k = 0 \text{ for } k \neq i, \; t_i \in [0, 1]\} \]

\[T^n = I^n_1 \cup I^n_2 \cup \cdots \cup I^n_n \]

\[\hat{I}^n_i = \{(t_1, t_2, \ldots, t_n) \in \mathbb{R}^n \mid t_k = 0 \text{ for } k \neq i, \; t_i \in [0, 1]\} \]

\[\hat{T}^n = \hat{I}^n_1 \cup \hat{I}^n_2 \cup \cdots \cup \hat{I}^n_n \]

\((X, \mathcal{T})\) t.s., \(S \subseteq X\)

\(x \in S\) is a **starlike point** in \(S\) if there exist \(n \in \mathbb{N}, \; n \geq 3\) and a continuous injective map \(f : T^n \rightarrow S\) such that \(f(0) = x\) and \(f(\hat{T}^n)\) is an open set in \(S\).
Main goal

S a topological 1-polyhedron S semicomputable, ∂S computable ⇒ S computable

x ∈ ∂S if there exists a neighbourhood N of x in S and a homeomorphism f: [0, 1) → N such that f(0) = x.
Main goal

A topological 1-polyhedron S is semicomputable if its boundary ∂S is computable. Therefore, if S is computable, it follows that S is semicomputable and ∂S is computable.
Main goal

S a topological 1-polyhedron

S semicomputable, ∂S computable $\Rightarrow S$ computable

$x \in \partial S$ if there exists a neighbourhood N of x in S and a homeomorphism $f : [0, 1) \to N$ such that $f(0) = x$.
Local computable enumerability

Let $S, T \subseteq X$, $T \subseteq S$. T is computably enumerable up to S if there exists c.e. $\Omega \subseteq \mathbb{N}$ such that for each $i \in \mathbb{N}$:

$I_i \cap T \neq \emptyset \Rightarrow i \in \Omega$

$I_i \cap S \neq \emptyset \Rightarrow i \in \Omega$
Local computable enumerability

\((X, T, (I_i))\) c.t.s.
Local computable enumerability

$(X, \mathcal{T}, (I_i))$ c.t.s.

Let $S, T \subseteq X$, $T \subseteq S$. T is computably enumerable up to S if there exists c.e. $\Omega \subseteq \mathbb{N}$ such that for each $i \in \mathbb{N}$:

$I_i \cap T \neq \emptyset \Rightarrow i \in \Omega \Rightarrow I_i \cap S \neq \emptyset$
Local computable enumerability

$(X, T, (I_i))$ c.t.s.

Let $S, T \subseteq X, T \subseteq S$. T is computably enumerable up to

S if there exists c.e. $\Omega \subseteq \mathbb{N}$ such that for each $i \in \mathbb{N}$:

\[I_i \cap T \neq \emptyset \Rightarrow i \in \Omega \]
Local computable enumerability

\((X, T, (I_i))\) c.t.s.

Let \(S, T \subseteq X, T \subseteq S\). \(T\) is computably enumerable up to \(S\) if there exists c.e. \(\Omega \subseteq \mathbb{N}\) such that for each \(i \in \mathbb{N}\):

\[I_i \cap T \neq \emptyset \Rightarrow i \in \Omega \]

\[i \in \Omega \Rightarrow I_i \cap S \neq \emptyset \]
Local computable enumerability

$(X, T, (l_i))$ c.t.s.

Let $S, T \subseteq X$, $T \subseteq S$. T is computably enumerable up to S if there exists c.e. $\Omega \subseteq \mathbb{N}$ such that for each $i \in \mathbb{N}$:

$$l_i \cap T \neq \emptyset \Rightarrow i \in \Omega$$

$$i \in \Omega \Rightarrow l_i \cap S \neq \emptyset$$

Lucija Validžić (University of Zagreb)
Local computable enumerability

\((X, T, (I_i))\) c.t.s.

Let \(S, T \subseteq X, T \subseteq S\). \(T\) is **computably enumerable up to** \(S\) if there exists c.e. \(\Omega \subseteq \mathbb{N}\) such that for each \(i \in \mathbb{N}\):

\[
I_i \cap T \neq \emptyset \Rightarrow i \in \Omega
\]

\[
i \in \Omega \Rightarrow I_i \cap S \neq \emptyset
\]
Local computable enumerability

Properties:

▶ S is c.e. ⇔ S is c.e. up to S

▶ A and B c.e. up to S ⇒ $A \cup B$ is c.e. up to S

S a compact set

S is c.e. ⇔ S is c.e. at each $x \in S$
Local computable enumerability

\[S \text{ is computably enumerable at } x \text{ if there exists a neighbourhood } N \text{ of } x \text{ in } S \text{ such that } N \text{ is c.e. up to } S. \]
Local computable enumerability

\(S \) is computably enumerable at \(x \) if there exists a neighbourhood \(N \) of \(x \) in \(S \) such that \(N \) is c.e. up to \(S \).

Properties:
Local computable enumerability

S is computably enumerable at x if there exists a neighbourhood N of x in S such that N is c.e. up to S.

Properties:
- S is c.e. \iff S is c.e. up to S
Local computable enumerability

S is **computably enumerable at** x if there exists a neighbourhood N of x in S such that N is c.e. up to S.

Properties:

- S is c.e. \iff S is c.e. up to S
- A and B c.e. up to S \Rightarrow $A \cup B$ is c.e. up to S
Local computable enumerability

S is **computably enumerable at** x if there exists a neighbourhood N of x in S such that N is c.e. up to S.

Properties:

- S is c.e. \iff S is c.e. up to S
- A and B c.e. up to S \Rightarrow $A \cup B$ is c.e. up to S

S a compact set

S is c.e. \iff S is c.e. at each $x \in S$
Some topological properties of a semicomputable set imply that it is c.e. at a certain point!
Some topological properties of a semicomputable set imply that it is c.e. at a certain point!

Theorem

Let \((X, \mathcal{T}, (I_i))\) be a computable topological space, \(S\) a semicomputable set in this space and \(x \in S\). If one of the following holds:

1. \(x\) has a neighbourhood in \(S\) homeomorphic to some \(\mathbb{R}^n\)
2. there is a semicomputable set \(T \subseteq S\), a neighbourhood \(N\) of \(x\) in \(S\) and a homeomorphism \(f: \mathbb{H}^n \to N\) such that \(x \in f(Bd \mathbb{H}^n)\), \(f(Bd \mathbb{H}^n) = N \cap T\)

\(S\) is computably enumerable at \(x\).
Some topological properties of a semicomputable set imply that it is c.e. at a certain point!

Theorem

Let \((X, \mathcal{T}, (I_i))\) be a computable topological space, \(S\) a semicomputable set in this space and \(x \in S\). If one of the following holds:

- \(x\) has a neighbourhood in \(S\) homeomorphic to some \(\mathbb{R}^n\)

\(S\) is computably enumerable at \(x\).
Some topological properties of a semicomputable set imply that it is c.e. at a certain point!

Theorem

Let \((X, \mathcal{T}, (l_i))\) be a computable topological space, \(S\) a semicomputable set in this space and \(x \in S\). If one of the following holds:

- \(x\) has a neighbourhood in \(S\) homeomorphic to some \(\mathbb{R}^n\)
- there is a semicomputable set \(T \subseteq S\), a neighbourhood \(N\) of \(x\) in \(S\) and a homeomorphism \(f : \mathbb{H}^n \to N\) such that \(x \in f(Bd H^n), f(Bd H^n) = N \cap T\)
Some topological properties of a semicomputable set imply that it is c.e. at a certain point!

Theorem

Let \((X, \mathcal{T}, (l_i))\) be a computable topological space, \(S\) a semicomputable set in this space and \(x \in S\). If one of the following holds:

- \(x\) has a neighbourhood in \(S\) homeomorphic to some \(\mathbb{R}^n\)
- there is a semicomputable set \(T \subseteq S\), a neighbourhood \(N\) of \(x\) in \(S\) and a homeomorphism \(f : \mathbb{H}^n \to N\) such that
 \(x \in f(Bd \mathbb{H}^n), f(Bd \mathbb{H}^n) = N \cap T\)

\(S\) is computably enumerable at \(x\).
S a semicomputable topological 1-poyhedron
S a semicomputable topological 1-poyhedron

- S is c.e. at its Euclidean points
\(S \) a semicomputable topological 1-poyhedron

- \(S \) is c.e. at its Euclidean points
- if \(\partial S \) is (semi)computable, \(S \) is c.e. at its boundary points
S a semicomputable topological 1-poyhedron

- S is c.e. at its Euclidean points
- if ∂S is (semi)computable, S is c.e. at its boundary points

Main theorem

Let $(X, \mathcal{T}, (I_i))$ be a computable topological space and S a semicomputable set in this space. If x is a starlike point in S, then S is computably enumerable at x.

Lucija Validžić (University of Zagreb)
Lucija Validžić (University of Zagreb)

Starlike neighbourhoods and computability
Lucija Validžić (University of Zagreb)

Starlike neighbourhoods and computability
Starlike neighbourhoods and computability
Starlike neighbourhoods and computability
Starlike neighbourhoods and computability
Main result

Let \((X, \mathcal{T}, (I_i))\) be a computable topological space and \(S \subseteq X\) a topological 1-polyhedron. If \(S\) and \(\partial S\) are semicomputable, then \(S\) is computable.