Starlike neighbourhoods and computability

Zvonko Iljazović, Lucija Validžić

University of Zagreb Faculty of Science Department of Mathematics

Logic and Applications 2017

Dubrovnik

 (X, d, α)

 (X, d, α)

- $ightharpoonup \alpha$ a sequence dense in (X, d)
- $(i,j) \mapsto d(\alpha_i,\alpha_j)$ a computable function

 (X, d, α)

- $ightharpoonup \alpha$ a sequence dense in (X, d)
- ▶ $(i,j) \mapsto d(\alpha_i,\alpha_i)$ a computable function

 $x \in X$ is a **computable point** if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that

$$d(x, \alpha_{f(k)}) < 2^{-k}, k \in \mathbb{N}.$$

 (X, d, α)

- $ightharpoonup \alpha$ a sequence dense in (X, d)
- ▶ $(i,j) \mapsto d(\alpha_i,\alpha_i)$ a computable function

 $x \in X$ is a **computable point** if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that

$$d(x, \alpha_{f(k)}) < 2^{-k}, k \in \mathbb{N}.$$

 $(\Lambda_i)_{i\in\mathbb{N}}$ effective enumeration of finite subsets of $\operatorname{Im} \alpha$

 (X, d, α)

- $ightharpoonup \alpha$ a sequence dense in (X, d)
- $(i,j) \mapsto d(\alpha_i,\alpha_i)$ a computable function

 $x \in X$ is a **computable point** if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that

$$d(x, \alpha_{f(k)}) < 2^{-k}, k \in \mathbb{N}.$$

 $(\Lambda_i)_{i\in\mathbb{N}}$ effective enumeration of finite subsets of Im α

A compact set $S \subseteq X$ is **computable** if there exists a computable function $f : \mathbb{N} \to \mathbb{N}$ such that

$$d_H(S, \Lambda_{f(k)}) < 2^{-k}, \ k \in \mathbb{N}.$$

$$(X, \mathcal{T}, (I_i)_{i \in \mathbb{N}})$$

 $(X, \mathcal{T}, (I_i)_{i \in \mathbb{N}})$ $\{I_i \mid i \in \mathbb{N}\}$ a basis for \mathcal{T} , there are c.e. subsets \mathcal{C}, \mathcal{D} of \mathbb{N}^2 such that:

 $(X, \mathcal{T}, (I_i)_{i \in \mathbb{N}})$ $\{I_i \mid i \in \mathbb{N}\}$ a basis for \mathcal{T} , there are c.e. subsets \mathcal{C}, \mathcal{D} of \mathbb{N}^2 such that:

- $(i,j) \in \mathcal{D} \Rightarrow I_i \cap I_j = \emptyset$
- ▶ $(i,j) \in \mathcal{C} \Rightarrow I_i \subseteq I_i$
- \triangleright $x, y \in X, x \neq y \Rightarrow (\exists i, j \in \mathbb{N}) x \in I_i, y \in I_j, (i, j) \in \mathcal{D}$
- ▶ $i, j \in \mathbb{N}, x \in I_i \cap I_j \Rightarrow (\exists k \in \mathbb{N}) \ x \in I_k, (k, i) \in \mathcal{C}, (k, j) \in \mathcal{C}$

$$I_i = B(\lambda_i, \varrho_i)$$

$$I_i = B(\lambda_i, \varrho_i)$$

$$\mathcal{C} = \left\{ (i,j) \in \mathbb{N}^2 \mid d(\lambda_i,\lambda_j) + \varrho_i < \varrho_j \right\}$$

$$\mathcal{D} = \left\{ (i,j) \in \mathbb{N}^2 \mid d(\lambda_i, \lambda_j) > \varrho_i + \varrho_j \right\}$$

$$I_i = B(\lambda_i, \varrho_i)$$

$$\mathcal{C} = \left\{ (i,j) \in \mathbb{N}^2 \mid d(\lambda_i,\lambda_j) + \varrho_i < \varrho_j \right\}$$

$$\mathcal{D} = \left\{ (i,j) \in \mathbb{N}^2 \mid d(\lambda_i, \lambda_j) > \varrho_i + \varrho_j \right\}$$

A compact set $S \subseteq X$ is:

A compact set $S \subseteq X$ is:

▶ semicomputable if $\{j \in \mathbb{N} \mid S \subseteq J_i\}$ is c.e.

A compact set $S \subseteq X$ is:

- ▶ semicomputable if $\{j \in \mathbb{N} \mid S \subseteq J_i\}$ is c.e.
- ▶ computably enumerable if $\{i \in \mathbb{N} \mid S \cap I_i \neq \emptyset\}$ is c.e.

A compact set $S \subseteq X$ is:

- ▶ semicomputable if $\{j \in \mathbb{N} \mid S \subseteq J_i\}$ is c.e.
- ▶ computably enumerable if $\{i \in \mathbb{N} \mid S \cap I_i \neq \emptyset\}$ is c.e.
- ► **computable** if *S* is semicomputable and computably enumerable

A compact set $S \subseteq X$ is:

- ▶ semicomputable if $\{j \in \mathbb{N} \mid S \subseteq J_i\}$ is c.e.
- ▶ computably enumerable if $\{i \in \mathbb{N} \mid S \cap I_i \neq \emptyset\}$ is c.e.
- ► **computable** if *S* is semicomputable and computably enumerable

 $x \in X$ is a **computable point** if $\{x\}$ is a computable set.

Holds if:

Holds if:

- \triangleright S is a compact manifold
- ► S is a circularly chainable continuum

Holds if:

- \triangleright S is a compact manifold
- ▶ S is a circularly chainable continuum

Need not hold if:

Holds if:

- \triangleright S is a compact manifold
- ► S is a circularly chainable continuum

Need not hold if:

- ▶ S is a line segment
- ▶ S is a cell

If S is semicomputable, can we find $T \subseteq S, T \neq S$ such that

T computable $\Longrightarrow S$ computable?

If S is semicomputable, can we find $T \subseteq S, T \neq S$ such that

T computable $\Longrightarrow S$ computable?

For a compact manifold with boundary S:

$$T = \partial S$$

Topological 1-polyhedra

 (X,\mathcal{T}) t.s.

Topological 1-polyhedra

 (X,\mathcal{T}) t.s.

If $S \subseteq X$ is homeomorphic to a finite union of line sequents in \mathbb{R}^n , we say that S is a **topological 1-polyhedron**.

Topological 1-polyhedra

 (X, \mathcal{T}) t.s.

If $S \subseteq X$ is homeomorphic to a finite union of line sequents in \mathbb{R}^n , we say that S is a **topological 1-polyhedron**.

Euclidean points

 $\mathsf{neighbourhood} \cong \langle 0, 1 \rangle$

boundary points

 $\mathsf{neighbourhood} \cong [0,1\rangle$

starlike points

starlike neighbourhood

$$n \in \mathbb{N} \setminus \{0\}, \ i \in \{1, \dots, n\}$$

$$I_i^n = \{(t_1, t_2, \dots, t_n) \in \mathbb{R}^n \mid t_k = 0 \text{ for } k \neq i, \ t_i \in [0, 1]\}$$

$$T^n = I_1^n \cup I_2^n \cup \dots \cup I_n^n$$

$$I_i^n = \{(t_1, t_2, \dots, t_n) \in \mathbb{R}^n \mid t_k = 0 \text{ for } k \neq i, \ t_i \in [0, 1\}\}$$

$$\mathring{T}^n = \mathring{I}_1^n \cup \mathring{I}_2^n \cup \dots \cup \mathring{I}_n^n$$

 (X,\mathcal{T}) t.s., $S\subseteq X$ $x\in S$ is a **starlike point** in S if there exist $n\in\mathbb{N}, n\geq 3$ and a continuous injective map $f:T_n\to S$ such that f(0)=x and $f(\mathring{T}^n)$ is an open set in S.

Main goal

Main goal

S a topological 1-polyhedron

S semicomputable, ∂S computable $\Rightarrow S$ computable

Main goal

S a topological 1-polyhedron

S semicomputable, ∂S computable $\Rightarrow S$ computable

 $x \in \partial S$ if there exists a neighbourhood N of x in S and a homeomorphism $f: [0,1) \to N$ such that f(0) = x.

 $(X, \mathcal{T}, (I_i))$ c.t.s.

 $(X, \mathcal{T}, (I_i))$ c.t.s.

 $(X, \mathcal{T}, (I_i))$ c.t.s.

$$I_i \cap T \neq \emptyset \Rightarrow i \in \Omega$$

 $(X, \mathcal{T}, (I_i))$ c.t.s.

$$I_i \cap T \neq \emptyset \Rightarrow i \in \Omega$$

$$i \in \Omega \Rightarrow I_i \cap S \neq \emptyset$$

 $(X, \mathcal{T}, (I_i))$ c.t.s.

$$I_i \cap T \neq \emptyset \Rightarrow i \in \Omega$$

$$i \in \Omega \Rightarrow I_i \cap S \neq \emptyset$$

 $(X, \mathcal{T}, (I_i))$ c.t.s.

$$I_i \cap T \neq \emptyset \Rightarrow i \in \Omega$$

$$i \in \Omega \Rightarrow I_i \cap S \neq \emptyset$$

S is **computably enumerable at** x if there exists a neighbourhood N of x in S such that N is c.e. up to S.

S is computably enumerable at x if there exists a neighbourhood N of x in S such that N is c.e. up to S.

Properties:

S is computably enumerable at x if there exists a neighbourhood N of x in S such that N is c.e. up to S.

Properties:

▶ S is c.e. $\Leftrightarrow S$ is c.e. up to S

S is computably enumerable at x if there exists a neighbourhood N of x in S such that N is c.e. up to S.

Properties:

- ▶ S is c.e. $\Leftrightarrow S$ is c.e. up to S
- ▶ A and B c.e. up to $S \Rightarrow A \cup B$ is c.e. up to S

S is **computably enumerable at** x if there exists a neighbourhood N of x in S such that N is c.e. up to S.

Properties:

- ▶ S is c.e. $\Leftrightarrow S$ is c.e. up to S
- ▶ A and B c.e. up to $S \Rightarrow A \cup B$ is c.e. up to S

S a compact set

S is c.e. \Leftrightarrow *S* is c.e. at each $x \in S$

Theorem

Let $(X, \mathcal{T}, (I_i))$ be a computable topological space, S a semicomputable set in this space and $x \in S$. If one of the following holds:

Theorem

Let $(X, \mathcal{T}, (I_i))$ be a computable topological space, S a semicomputable set in this space and $x \in S$. If one of the following holds:

 \triangleright x has a neighbourhood in S homeomorphic to some \mathbb{R}^n

Theorem

Let $(X, \mathcal{T}, (I_i))$ be a computable topological space, S a semicomputable set in this space and $x \in S$. If one of the following holds:

- \triangleright x has a neighbourhood in S homeomorphic to some \mathbb{R}^n
- ▶ there is a semicomputable set $T \subseteq S$, a neighbourhood N of x in S and a homeomorphism $f: \mathbb{H}^n \to N$ such that $x \in f(\operatorname{Bd} \mathbb{H}^n)$, $f(\operatorname{Bd} \mathbb{H}^n) = N \cap T$

Theorem

Let $(X, \mathcal{T}, (I_i))$ be a computable topological space, S a semicomputable set in this space and $x \in S$. If one of the following holds:

- \triangleright x has a neighbourhood in S homeomorphic to some \mathbb{R}^n
- ▶ there is a semicomputable set $T \subseteq S$, a neighbourhood N of x in S and a homeomorphism $f : \mathbb{H}^n \to N$ such that $x \in f(\operatorname{Bd} \mathbb{H}^n)$, $f(\operatorname{Bd} \mathbb{H}^n) = N \cap T$

S is computably enumerable at x.

 ${\it S}$ a semicomputable topological 1-poyhedron

S a semicomputable topological 1-poyhedron

▶ S is c.e. at its Euclidean points

S a semicomputable topological 1-poyhedron

- ▶ S is c.e. at its Euclidean points
- ightharpoonup if ∂S is (semi)computable, S is c.e. at its boundary points

S a semicomputable topological 1-poyhedron

- ▶ S is c.e. at its Euclidean points
- \triangleright if ∂S is (semi)computable, S is c.e. at its boundary points

Main theorem

Let $(X, \mathcal{T}, (I_i))$ be a computable topological space and S a semicomputable set in this space. If x is a starlike point in S, then S is computably enumerable at x.

Main result

Let $(X, \mathcal{T}, (I_i))$ be a computable topological space and $S \subseteq X$ a topological 1-polyhedron. If S and ∂S are semicomputable, then S is computable.