
Subexponentials in Non-Commutative Linear
Logic

Max Kanovich, Stepan Kuznetsov, Vivek Nigam, Andre Scedrov

Introduction

I The Lambek calculus [Lambek 1958] was introduced for
logical description of natural language syntax.

I Nowadays, the Lambek calculus can be considered as a
variant of intuitionistic non-commutative linear logic [Girard
1987; Abrusci 1991].

I Thus, the Lambek calculus can adopt connectives coming
from linear logic, in particular, the exponential.

I Unlike other connectives, the exponential is not canonical.
Namely, if two different connectives, !a and !b, obey Girard’s
rules for the exponential, the formulae !aA and !bA are not
equivalent.

I This motivates calculi with many ! connectives, called
subexponentials [Nigam and Miller 2009, commutative case].

I This talk is based on our paper: M. Kanovich, S. Kuznetsov,
V. Nigam, A. Scedrov. Subexponentials in non-commutative
linear logic. Math. Struct. Comput. Sci. (published online),
2018.

Introduction

I The Lambek calculus [Lambek 1958] was introduced for
logical description of natural language syntax.

I Nowadays, the Lambek calculus can be considered as a
variant of intuitionistic non-commutative linear logic [Girard
1987; Abrusci 1991].

I Thus, the Lambek calculus can adopt connectives coming
from linear logic, in particular, the exponential.

I Unlike other connectives, the exponential is not canonical.
Namely, if two different connectives, !a and !b, obey Girard’s
rules for the exponential, the formulae !aA and !bA are not
equivalent.

I This motivates calculi with many ! connectives, called
subexponentials [Nigam and Miller 2009, commutative case].

I This talk is based on our paper: M. Kanovich, S. Kuznetsov,
V. Nigam, A. Scedrov. Subexponentials in non-commutative
linear logic. Math. Struct. Comput. Sci. (published online),
2018.

Introduction

I The Lambek calculus [Lambek 1958] was introduced for
logical description of natural language syntax.

I Nowadays, the Lambek calculus can be considered as a
variant of intuitionistic non-commutative linear logic [Girard
1987; Abrusci 1991].

I Thus, the Lambek calculus can adopt connectives coming
from linear logic, in particular, the exponential.

I Unlike other connectives, the exponential is not canonical.
Namely, if two different connectives, !a and !b, obey Girard’s
rules for the exponential, the formulae !aA and !bA are not
equivalent.

I This motivates calculi with many ! connectives, called
subexponentials [Nigam and Miller 2009, commutative case].

I This talk is based on our paper: M. Kanovich, S. Kuznetsov,
V. Nigam, A. Scedrov. Subexponentials in non-commutative
linear logic. Math. Struct. Comput. Sci. (published online),
2018.

Introduction

I The Lambek calculus [Lambek 1958] was introduced for
logical description of natural language syntax.

I Nowadays, the Lambek calculus can be considered as a
variant of intuitionistic non-commutative linear logic [Girard
1987; Abrusci 1991].

I Thus, the Lambek calculus can adopt connectives coming
from linear logic, in particular, the exponential.

I Unlike other connectives, the exponential is not canonical.
Namely, if two different connectives, !a and !b, obey Girard’s
rules for the exponential, the formulae !aA and !bA are not
equivalent.

I This motivates calculi with many ! connectives, called
subexponentials [Nigam and Miller 2009, commutative case].

I This talk is based on our paper: M. Kanovich, S. Kuznetsov,
V. Nigam, A. Scedrov. Subexponentials in non-commutative
linear logic. Math. Struct. Comput. Sci. (published online),
2018.

Introduction

I The Lambek calculus [Lambek 1958] was introduced for
logical description of natural language syntax.

I Nowadays, the Lambek calculus can be considered as a
variant of intuitionistic non-commutative linear logic [Girard
1987; Abrusci 1991].

I Thus, the Lambek calculus can adopt connectives coming
from linear logic, in particular, the exponential.

I Unlike other connectives, the exponential is not canonical.
Namely, if two different connectives, !a and !b, obey Girard’s
rules for the exponential, the formulae !aA and !bA are not
equivalent.

I This motivates calculi with many ! connectives, called
subexponentials [Nigam and Miller 2009, commutative case].

I This talk is based on our paper: M. Kanovich, S. Kuznetsov,
V. Nigam, A. Scedrov. Subexponentials in non-commutative
linear logic. Math. Struct. Comput. Sci. (published online),
2018.

Introduction

I The Lambek calculus [Lambek 1958] was introduced for
logical description of natural language syntax.

I Nowadays, the Lambek calculus can be considered as a
variant of intuitionistic non-commutative linear logic [Girard
1987; Abrusci 1991].

I Thus, the Lambek calculus can adopt connectives coming
from linear logic, in particular, the exponential.

I Unlike other connectives, the exponential is not canonical.
Namely, if two different connectives, !a and !b, obey Girard’s
rules for the exponential, the formulae !aA and !bA are not
equivalent.

I This motivates calculi with many ! connectives, called
subexponentials [Nigam and Miller 2009, commutative case].

I This part of the talk is based on: M . Kanovich, S. Kuznetsov,

V. Nigam, A. Scedrov. Subexponentials in non-commutative
linear logic. Math. Struct. Comput. Sci. (published online),
2018.

Multiplicative-Additive Lambek Calculus

A→ A
(ax)

Γ1,A,B, Γ2 → C

Γ1,A · B, Γ2 → C
(· →)

Γ1 → A Γ2 → B

Γ1, Γ2 → A · B (→ ·)

Π→ A Γ1,B, Γ2 → C

Γ1,Π,A \B, Γ2 → C
(\ →)

A,Π→ B

Π→ A \B
(→ \)

Π→ A Γ1,B, Γ2 → C

Γ1,B /A,Π, Γ2 → C
(/→)

Π,A→ B

Π→ B /A
(→ /)

Γ1, Γ2 → C

Γ1, 1, Γ2 → C
(1→) → 1

(→ 1)

Γ1,A1, Γ2 → C Γ1,A2, Γ2 → C

Γ1,A1 ∨ A2, Γ2 → C
(∨ →)

Γ→ Ai

Γ→ A1 ∨ A2
(→ ∨), where i = 1 or 2

Γ1,Ai , Γ2 → C

Γ1,A1 ∧ A2, Γ2 → C
(∧ →), where i = 1 or 2

Γ→ A1 Γ→ A2

Γ→ A1 ∧ A2
(→ ∧)

Γ1,A, Γ2 → C

Γ1, !sA, Γ2 → C
(!→)

!s1A1, . . . , !snAn → B

!s1A1, . . . , !snAn → !sB
(→ !), where sj � s for all j

Subexponentials
I Subexponential signature: Σ = 〈I,�,W, C, E〉, where
I = {s1, . . . , sn} is a set of subexponential labels; � is a
preorder; W, C, E ⊆ I.

I Rules:
Γ1,A, Γ2 → C

Γ1, !sA, Γ2 → C
(!→)

!s1A1, . . . , !snAn → B

!s1A1, . . . , !snAn → !sB
(→ !), where sj � s for all j

Γ1, Γ2 → C

Γ1, !sA, Γ2 → C
(weak), where s ∈ W

Γ1, !sA,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ncontr1) and Γ1, !sA,∆, !sA, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ncontr2), where s ∈ C

Γ1,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ex1) and Γ1, !sA,∆, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ex2), where s ∈ E

I W, C, E are upwardly closed w.r.t. � (needed for cut
elimination).

I W ∩ C ⊆ E .

Subexponentials
I Subexponential signature: Σ = 〈I,�,W, C, E〉, where
I = {s1, . . . , sn} is a set of subexponential labels; � is a
preorder; W, C, E ⊆ I.

I Rules:
Γ1,A, Γ2 → C

Γ1, !sA, Γ2 → C
(!→)

!s1A1, . . . , !snAn → B

!s1A1, . . . , !snAn → !sB
(→ !), where sj � s for all j

Γ1, Γ2 → C

Γ1, !sA, Γ2 → C
(weak), where s ∈ W

Γ1, !sA,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ncontr1) and Γ1, !sA,∆, !sA, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ncontr2), where s ∈ C

Γ1,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ex1) and Γ1, !sA,∆, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ex2), where s ∈ E

I W, C, E are upwardly closed w.r.t. � (needed for cut
elimination).

I W ∩ C ⊆ E .

Subexponentials
I Subexponential signature: Σ = 〈I,�,W, C, E〉, where
I = {s1, . . . , sn} is a set of subexponential labels; � is a
preorder; W, C, E ⊆ I.

I Rules:
Γ1,A, Γ2 → C

Γ1, !sA, Γ2 → C
(!→)

!s1A1, . . . , !snAn → B

!s1A1, . . . , !snAn → !sB
(→ !), where sj � s for all j

Γ1, Γ2 → C

Γ1, !sA, Γ2 → C
(weak), where s ∈ W

Γ1, !sA,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ncontr1) and Γ1, !sA,∆, !sA, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ncontr2), where s ∈ C

Γ1,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ex1) and Γ1, !sA,∆, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ex2), where s ∈ E

I W, C, E are upwardly closed w.r.t. � (needed for cut
elimination).

I W ∩ C ⊆ E .

Subexponentials
I Subexponential signature: Σ = 〈I,�,W, C, E〉, where
I = {s1, . . . , sn} is a set of subexponential labels; � is a
preorder; W, C, E ⊆ I.

I Rules:
Γ1,A, Γ2 → C

Γ1, !sA, Γ2 → C
(!→)

!s1A1, . . . , !snAn → B

!s1A1, . . . , !snAn → !sB
(→ !), where sj � s for all j

Γ1, Γ2 → C

Γ1, !sA, Γ2 → C
(weak), where s ∈ W

Γ1, !sA,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ncontr1) and Γ1, !sA,∆, !sA, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ncontr2), where s ∈ C

Γ1,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ex1) and Γ1, !sA,∆, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ex2), where s ∈ E

I W, C, E are upwardly closed w.r.t. � (needed for cut
elimination).

I W ∩ C ⊆ E .

Cut

Π→ A Γ,A,∆→ C

Γ,Π,∆→ C
(cut)

Local vs. Non-local Contraction
I Non-local contraction, used in SMALCΣ for s ∈ C:

Γ1, !sA,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ncontr1) and Γ1, !sA,∆, !sA, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ncontr2), where s ∈ C

I Local contraction, the usual form of contraction rule:

Γ1, !sA, !sA, Γ2 → C

Γ1, !sA, Γ2 → C
(contr)

I These two forms of contraction coincide in the presence of
exchange (s ∈ C ∩ E).

I For s /∈ E , local contraction is weaker than the non-local one.
Moreover, cut elimination with local contraction fails.

I Counter-example:

r / q, !p, !(p \ q), q \ s → r · s

This sequent is derivable with local contraction, but only
using cut. With non-local contraction, a cut-free proof exists.

Local vs. Non-local Contraction
I Non-local contraction, used in SMALCΣ for s ∈ C:

Γ1, !sA,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ncontr1) and Γ1, !sA,∆, !sA, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ncontr2), where s ∈ C

I Local contraction, the usual form of contraction rule:

Γ1, !sA, !sA, Γ2 → C

Γ1, !sA, Γ2 → C
(contr)

I These two forms of contraction coincide in the presence of
exchange (s ∈ C ∩ E).

I For s /∈ E , local contraction is weaker than the non-local one.
Moreover, cut elimination with local contraction fails.

I Counter-example:

r / q, !p, !(p \ q), q \ s → r · s

This sequent is derivable with local contraction, but only
using cut. With non-local contraction, a cut-free proof exists.

Local vs. Non-local Contraction
I Non-local contraction, used in SMALCΣ for s ∈ C:

Γ1, !sA,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ncontr1) and Γ1, !sA,∆, !sA, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ncontr2), where s ∈ C

I Local contraction, the usual form of contraction rule:

Γ1, !sA, !sA, Γ2 → C

Γ1, !sA, Γ2 → C
(contr)

I These two forms of contraction coincide in the presence of
exchange (s ∈ C ∩ E).

I For s /∈ E , local contraction is weaker than the non-local one.
Moreover, cut elimination with local contraction fails.

I Counter-example:

r / q, !p, !(p \ q), q \ s → r · s

This sequent is derivable with local contraction, but only
using cut. With non-local contraction, a cut-free proof exists.

Local vs. Non-local Contraction
I Non-local contraction, used in SMALCΣ for s ∈ C:

Γ1, !sA,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ncontr1) and Γ1, !sA,∆, !sA, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ncontr2), where s ∈ C

I Local contraction, the usual form of contraction rule:

Γ1, !sA, !sA, Γ2 → C

Γ1, !sA, Γ2 → C
(contr)

I These two forms of contraction coincide in the presence of
exchange (s ∈ C ∩ E).

I For s /∈ E , local contraction is weaker than the non-local one.
Moreover, cut elimination with local contraction fails.

I Counter-example:

r / q, !p, !(p \ q), q \ s → r · s

This sequent is derivable with local contraction, but only
using cut. With non-local contraction, a cut-free proof exists.

Local vs. Non-local Contraction
I Non-local contraction, used in SMALCΣ for s ∈ C:

Γ1, !sA,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ncontr1) and Γ1, !sA,∆, !sA, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ncontr2), where s ∈ C

I Local contraction, the usual form of contraction rule:

Γ1, !sA, !sA, Γ2 → C

Γ1, !sA, Γ2 → C
(contr)

I These two forms of contraction coincide in the presence of
exchange (s ∈ C ∩ E).

I For s /∈ E , local contraction is weaker than the non-local one.
Moreover, cut elimination with local contraction fails.

I Counter-example:

r / q, !p, !(p \ q), q \ s → r · s

This sequent is derivable with local contraction, but only
using cut. With non-local contraction, a cut-free proof exists.

Local vs. Non-local Contraction

r / q, !p, !(p \ q), q \ s → r · s

I Derivation with local contraction and cut:
p → p q → q

p, p \ q → q
(\ →)

p, !(p \ q)→ q
(!→)

!p, !(p \ q)→ q
(!→)

!p, !(p \ q)→ !q
(→ !)

q → q

!q → q
(!→)

q → q

!q → q
(!→) r → r s → s

r, s → r · s (→ ·)

r, !q, q \ s → r · s
(\ →)

r / q, !q, !q, q \ s → r · s
(/→)

r / q, !q, q \ s → r · s
(contr)

r / q, !p, !(p \ q), q \ s → r · s
(cut)

I Not derivable without cut, if ! allows local contraction and
maybe weakening, but neither exchange nor non-local
contraction (shown by exhaustive proof search).

I Cut-free derivation with non-local contraction:

p → p p → p

q → q

q → q

r → r s → s

r, s → r · s
(→ ·)

r, q, q \ s → r · s
(\ →)

r / q, q, q, q \ s → r · s
(/→)

r / q, p, p \ q, p, p \ q, q \ s → r · s
(\ →) twice

r / q, !p, !(p \ q), !p, !(p \ q), q \ s → r · s
(!→) 4 times

r / q, !p, !p, !(p \ q), q \ s → r · s
(ncontr2)

r / q, !p, !(p \ q), q \ s → r · s
(contr)

Local vs. Non-local Contraction

r / q, !p, !(p \ q), q \ s → r · s
I Derivation with local contraction and cut:

p → p q → q

p, p \ q → q
(\ →)

p, !(p \ q)→ q
(!→)

!p, !(p \ q)→ q
(!→)

!p, !(p \ q)→ !q
(→ !)

q → q

!q → q
(!→)

q → q

!q → q
(!→) r → r s → s

r, s → r · s (→ ·)

r, !q, q \ s → r · s
(\ →)

r / q, !q, !q, q \ s → r · s
(/→)

r / q, !q, q \ s → r · s
(contr)

r / q, !p, !(p \ q), q \ s → r · s
(cut)

I Not derivable without cut, if ! allows local contraction and
maybe weakening, but neither exchange nor non-local
contraction (shown by exhaustive proof search).

I Cut-free derivation with non-local contraction:

p → p p → p

q → q

q → q

r → r s → s

r, s → r · s
(→ ·)

r, q, q \ s → r · s
(\ →)

r / q, q, q, q \ s → r · s
(/→)

r / q, p, p \ q, p, p \ q, q \ s → r · s
(\ →) twice

r / q, !p, !(p \ q), !p, !(p \ q), q \ s → r · s
(!→) 4 times

r / q, !p, !p, !(p \ q), q \ s → r · s
(ncontr2)

r / q, !p, !(p \ q), q \ s → r · s
(contr)

Local vs. Non-local Contraction

r / q, !p, !(p \ q), q \ s → r · s
I Derivation with local contraction and cut:

p → p q → q

p, p \ q → q
(\ →)

p, !(p \ q)→ q
(!→)

!p, !(p \ q)→ q
(!→)

!p, !(p \ q)→ !q
(→ !)

q → q

!q → q
(!→)

q → q

!q → q
(!→) r → r s → s

r, s → r · s (→ ·)

r, !q, q \ s → r · s
(\ →)

r / q, !q, !q, q \ s → r · s
(/→)

r / q, !q, q \ s → r · s
(contr)

r / q, !p, !(p \ q), q \ s → r · s
(cut)

I Not derivable without cut, if ! allows local contraction and
maybe weakening, but neither exchange nor non-local
contraction (shown by exhaustive proof search).

I Cut-free derivation with non-local contraction:

p → p p → p

q → q

q → q

r → r s → s

r, s → r · s
(→ ·)

r, q, q \ s → r · s
(\ →)

r / q, q, q, q \ s → r · s
(/→)

r / q, p, p \ q, p, p \ q, q \ s → r · s
(\ →) twice

r / q, !p, !(p \ q), !p, !(p \ q), q \ s → r · s
(!→) 4 times

r / q, !p, !p, !(p \ q), q \ s → r · s
(ncontr2)

r / q, !p, !(p \ q), q \ s → r · s
(contr)

Local vs. Non-local Contraction

r / q, !p, !(p \ q), q \ s → r · s
I Derivation with local contraction and cut:

p → p q → q

p, p \ q → q
(\ →)

p, !(p \ q)→ q
(!→)

!p, !(p \ q)→ q
(!→)

!p, !(p \ q)→ !q
(→ !)

q → q

!q → q
(!→)

q → q

!q → q
(!→) r → r s → s

r, s → r · s (→ ·)

r, !q, q \ s → r · s
(\ →)

r / q, !q, !q, q \ s → r · s
(/→)

r / q, !q, q \ s → r · s
(contr)

r / q, !p, !(p \ q), q \ s → r · s
(cut)

I Not derivable without cut, if ! allows local contraction and
maybe weakening, but neither exchange nor non-local
contraction (shown by exhaustive proof search).

I Cut-free derivation with non-local contraction:

p → p p → p

q → q

q → q

r → r s → s

r, s → r · s
(→ ·)

r, q, q \ s → r · s
(\ →)

r / q, q, q, q \ s → r · s
(/→)

r / q, p, p \ q, p, p \ q, q \ s → r · s
(\ →) twice

r / q, !p, !(p \ q), !p, !(p \ q), q \ s → r · s
(!→) 4 times

r / q, !p, !p, !(p \ q), q \ s → r · s
(ncontr2)

r / q, !p, !(p \ q), q \ s → r · s
(contr)

Cyclic Linear Logic with Subexponentials (SCLLΣ)
Sequents are of the form ` Γ, where Γ is cyclically ordered sequence of
formulae (i.e., A,B,C is the same as B,C ,A and C ,A,B, but not A,C ,B).

` A,A⊥
(ax)

` 1
(1)

` Γ
` ⊥, Γ

(⊥) ` >, Γ
(>)

(no rule for 0)

` Γ,A ` B,∆

` Γ,A⊗ B,∆
(⊗)

` A,B, Γ

` AOB, Γ
(O)

` A1, Γ ` A2, Γ

` A1 NA2, Γ
(N)

` Ai , Γ

` A1 ⊕ A2, Γ
(⊕), where i = 1 or 2

` B, ?s1A1, . . . , ?snAn

` !sB, ?s1A1, . . . , ?snAn
(!), where sj � s for all j

` A, Γ

` ?sA, Γ
(?)

` Γ
` ?sA, Γ

(weak), where s ∈ W

` ?sA, Γ, ?sA,∆

` ?sA, Γ,∆
(ncontr), where s ∈ C

` Γ, ?sA,∆

` ?sA, Γ,∆
(ex), where s ∈ E

Multiplicative-only Fragments

I For SMALCΣ — SLC1
Σ (without ∨ and ∧, but with 1 and

subexponentials).

I For SCLLΣ — SMCLLΣ (without N, ⊕, 0, and >, but with
1, ⊥, and subexponentials).

Cut Elimination in SCLLΣ

I The cut rule:
` Γ,A⊥ ` A,∆

` Γ,∆
(cut)

I Use Gentzen’s strategy: eliminate cut along with mix.

I A non-standard form of mix for non-local contraction:

` Γ, !sA⊥ ` ?sA,∆1, ?
sA,∆2, . . . , ?

sA,∆k

` Γ,∆1,∆2, . . . ,∆k
(mix)

I Eliminate cut and mix by joint nested induction.
Outer parameter: κ, the complexity of the formula being cut.
Inner parameter: δ, the sum of heights of cut-free derivations
of the premises.

Cut Elimination in SCLLΣ

I The cut rule:
` Γ,A⊥ ` A,∆

` Γ,∆
(cut)

I Use Gentzen’s strategy: eliminate cut along with mix.

I A non-standard form of mix for non-local contraction:

` Γ, !sA⊥ ` ?sA,∆1, ?
sA,∆2, . . . , ?

sA,∆k

` Γ,∆1,∆2, . . . ,∆k
(mix)

I Eliminate cut and mix by joint nested induction.
Outer parameter: κ, the complexity of the formula being cut.
Inner parameter: δ, the sum of heights of cut-free derivations
of the premises.

Cut Elimination in SCLLΣ

I The cut rule:
` Γ,A⊥ ` A,∆

` Γ,∆
(cut)

I Use Gentzen’s strategy: eliminate cut along with mix.

I A non-standard form of mix for non-local contraction:

` Γ, !sA⊥ ` ?sA,∆1, ?
sA,∆2, . . . , ?

sA,∆k

` Γ,∆1,∆2, . . . ,∆k
(mix)

I Eliminate cut and mix by joint nested induction.
Outer parameter: κ, the complexity of the formula being cut.
Inner parameter: δ, the sum of heights of cut-free derivations
of the premises.

Cut Elimination in SCLLΣ

I The cut rule:
` Γ,A⊥ ` A,∆

` Γ,∆
(cut)

I Use Gentzen’s strategy: eliminate cut along with mix.

I A non-standard form of mix for non-local contraction:

` Γ, !sA⊥ ` ?sA,∆1, ?
sA,∆2, . . . , ?

sA,∆k

` Γ,∆1,∆2, . . . ,∆k
(mix)

I Eliminate cut and mix by joint nested induction.
Outer parameter: κ, the complexity of the formula being cut.
Inner parameter: δ, the sum of heights of cut-free derivations
of the premises.

Embedding SMALCΣ into SCLLΣ

I The Lambek calculus is “intuitionistic” (one formula in the
succedent in the Gentzen-style calculus). Cyclic linear logic is
“classical.” Thus, SMALCΣ should not be a conservative
fragment of SCLLΣ.

I Nevertheless, it is.
I The trick is the poverty of the language of SMALCΣ, which

prevents it from expressing principles that distinguish classical
and intuitionistic logics:

I tertium non datur, AOA⊥: no O and no linear negation in
SMALCΣ;

I Peirce’s law (with subexponentials for enabling necessary
structural rules), (x \ ?wy) \ x → ?cx , c ∈ C, w ∈ W: no ? in
SMALCΣ, only !;

I Schellinx’ (1991) example with the zero constant (a
non-commutative modification),
(r /(0 \ q)) / p, (s / p) \ 0→ r : no 0 in SMALCΣ.

Embedding SMALCΣ into SCLLΣ

I The Lambek calculus is “intuitionistic” (one formula in the
succedent in the Gentzen-style calculus). Cyclic linear logic is
“classical.” Thus, SMALCΣ should not be a conservative
fragment of SCLLΣ.

I Nevertheless, it is.

I The trick is the poverty of the language of SMALCΣ, which
prevents it from expressing principles that distinguish classical
and intuitionistic logics:

I tertium non datur, AOA⊥: no O and no linear negation in
SMALCΣ;

I Peirce’s law (with subexponentials for enabling necessary
structural rules), (x \ ?wy) \ x → ?cx , c ∈ C, w ∈ W: no ? in
SMALCΣ, only !;

I Schellinx’ (1991) example with the zero constant (a
non-commutative modification),
(r /(0 \ q)) / p, (s / p) \ 0→ r : no 0 in SMALCΣ.

Embedding SMALCΣ into SCLLΣ

I The Lambek calculus is “intuitionistic” (one formula in the
succedent in the Gentzen-style calculus). Cyclic linear logic is
“classical.” Thus, SMALCΣ should not be a conservative
fragment of SCLLΣ.

I Nevertheless, it is.
I The trick is the poverty of the language of SMALCΣ, which

prevents it from expressing principles that distinguish classical
and intuitionistic logics:

I tertium non datur, AOA⊥: no O and no linear negation in
SMALCΣ;

I Peirce’s law (with subexponentials for enabling necessary
structural rules), (x \ ?wy) \ x → ?cx , c ∈ C, w ∈ W: no ? in
SMALCΣ, only !;

I Schellinx’ (1991) example with the zero constant (a
non-commutative modification),
(r /(0 \ q)) / p, (s / p) \ 0→ r : no 0 in SMALCΣ.

Embedding SMALCΣ into SCLLΣ

I The Lambek calculus is “intuitionistic” (one formula in the
succedent in the Gentzen-style calculus). Cyclic linear logic is
“classical.” Thus, SMALCΣ should not be a conservative
fragment of SCLLΣ.

I Nevertheless, it is.
I The trick is the poverty of the language of SMALCΣ, which

prevents it from expressing principles that distinguish classical
and intuitionistic logics:

I tertium non datur, AOA⊥: no O and no linear negation in
SMALCΣ;

I Peirce’s law (with subexponentials for enabling necessary
structural rules), (x \ ?wy) \ x → ?cx , c ∈ C, w ∈ W: no ? in
SMALCΣ, only !;

I Schellinx’ (1991) example with the zero constant (a
non-commutative modification),
(r /(0 \ q)) / p, (s / p) \ 0→ r : no 0 in SMALCΣ.

Embedding SMALCΣ into SCLLΣ

I The Lambek calculus is “intuitionistic” (one formula in the
succedent in the Gentzen-style calculus). Cyclic linear logic is
“classical.” Thus, SMALCΣ should not be a conservative
fragment of SCLLΣ.

I Nevertheless, it is.
I The trick is the poverty of the language of SMALCΣ, which

prevents it from expressing principles that distinguish classical
and intuitionistic logics:

I tertium non datur, AOA⊥: no O and no linear negation in
SMALCΣ;

I Peirce’s law (with subexponentials for enabling necessary
structural rules), (x \ ?wy) \ x → ?cx , c ∈ C, w ∈ W: no ? in
SMALCΣ, only !;

I Schellinx’ (1991) example with the zero constant (a
non-commutative modification),
(r /(0 \ q)) / p, (s / p) \ 0→ r : no 0 in SMALCΣ.

Embedding SMALCΣ into SCLLΣ

I The Lambek calculus is “intuitionistic” (one formula in the
succedent in the Gentzen-style calculus). Cyclic linear logic is
“classical.” Thus, SMALCΣ should not be a conservative
fragment of SCLLΣ.

I Nevertheless, it is.
I The trick is the poverty of the language of SMALCΣ, which

prevents it from expressing principles that distinguish classical
and intuitionistic logics:

I tertium non datur, AOA⊥: no O and no linear negation in
SMALCΣ;

I Peirce’s law (with subexponentials for enabling necessary
structural rules), (x \ ?wy) \ x → ?cx , c ∈ C, w ∈ W: no ? in
SMALCΣ, only !;

I Schellinx’ (1991) example with the zero constant (a
non-commutative modification),
(r /(0 \ q)) / p, (s / p) \ 0→ r : no 0 in SMALCΣ.

A Non-Commutative Version of Schellinx’ Example

I (r /(0 \ q)) / p, (s / p) \ 0→ r

I Translation into cyclic linear logic:
` > ⊗ (s O p̄), p ⊗ (>O q)⊗ r̄ , r

I Derivation in SCLLΣ:

` >
(>)

` p̄, p
(ax)

` s,>, q
(>)

` s,>O q
(O)

` r̄, r
(ax)

` s, (>O q)⊗ r̄, r
(⊗)

` s, p̄, p ⊗ ((>O q)⊗ r̄), r
(⊗)

` s O p̄, p ⊗ ((>O q)⊗ r̄), r
(O)

` > ⊗ (s O p̄), p ⊗ ((>O q)⊗ r̄), r
(⊗)

I Original sequent not derivable in the Lambek calculus (shown
by exhaustive cut-free proof search).

Rule for 0:

Γ, 0,∆→ C
(0→)

(and no right rule).

A Non-Commutative Version of Schellinx’ Example

I (r /(0 \ q)) / p, (s / p) \ 0→ r

I Translation into cyclic linear logic:
` > ⊗ (s O p̄), p ⊗ (>O q)⊗ r̄ , r

I Derivation in SCLLΣ:

` >
(>)

` p̄, p
(ax)

` s,>, q
(>)

` s,>O q
(O)

` r̄, r
(ax)

` s, (>O q)⊗ r̄, r
(⊗)

` s, p̄, p ⊗ ((>O q)⊗ r̄), r
(⊗)

` s O p̄, p ⊗ ((>O q)⊗ r̄), r
(O)

` > ⊗ (s O p̄), p ⊗ ((>O q)⊗ r̄), r
(⊗)

I Original sequent not derivable in the Lambek calculus (shown
by exhaustive cut-free proof search).

Rule for 0:

Γ, 0,∆→ C
(0→)

(and no right rule).

A Non-Commutative Version of Schellinx’ Example

I (r /(0 \ q)) / p, (s / p) \ 0→ r

I Translation into cyclic linear logic:
` > ⊗ (s O p̄), p ⊗ (>O q)⊗ r̄ , r

I Derivation in SCLLΣ:

` >
(>)

` p̄, p
(ax)

` s,>, q
(>)

` s,>O q
(O)

` r̄, r
(ax)

` s, (>O q)⊗ r̄, r
(⊗)

` s, p̄, p ⊗ ((>O q)⊗ r̄), r
(⊗)

` s O p̄, p ⊗ ((>O q)⊗ r̄), r
(O)

` > ⊗ (s O p̄), p ⊗ ((>O q)⊗ r̄), r
(⊗)

I Original sequent not derivable in the Lambek calculus (shown
by exhaustive cut-free proof search).

Rule for 0:

Γ, 0,∆→ C
(0→)

(and no right rule).

A Non-Commutative Version of Schellinx’ Example

I (r /(0 \ q)) / p, (s / p) \ 0→ r

I Translation into cyclic linear logic:
` > ⊗ (s O p̄), p ⊗ (>O q)⊗ r̄ , r

I Derivation in SCLLΣ:

` >
(>)

` p̄, p
(ax)

` s,>, q
(>)

` s,>O q
(O)

` r̄, r
(ax)

` s, (>O q)⊗ r̄, r
(⊗)

` s, p̄, p ⊗ ((>O q)⊗ r̄), r
(⊗)

` s O p̄, p ⊗ ((>O q)⊗ r̄), r
(O)

` > ⊗ (s O p̄), p ⊗ ((>O q)⊗ r̄), r
(⊗)

I Original sequent not derivable in the Lambek calculus (shown
by exhaustive cut-free proof search).

Rule for 0:

Γ, 0,∆→ C
(0→)

(and no right rule).

A Non-Commutative Version of Schellinx’ Example

I (r /(0 \ q)) / p, (s / p) \ 0→ r

I Translation into cyclic linear logic:
` > ⊗ (s O p̄), p ⊗ (>O q)⊗ r̄ , r

I Derivation in SCLLΣ:

` >
(>)

` p̄, p
(ax)

` s,>, q
(>)

` s,>O q
(O)

` r̄, r
(ax)

` s, (>O q)⊗ r̄, r
(⊗)

` s, p̄, p ⊗ ((>O q)⊗ r̄), r
(⊗)

` s O p̄, p ⊗ ((>O q)⊗ r̄), r
(O)

` > ⊗ (s O p̄), p ⊗ ((>O q)⊗ r̄), r
(⊗)

I Original sequent not derivable in the Lambek calculus (shown
by exhaustive cut-free proof search).
Rule for 0:

Γ, 0,∆→ C
(0→)

(and no right rule).

Embedding SMALCΣ into SCLLΣ

I Translation of formulae (with negations):
p̂i = pi p̂⊥i = p⊥i Π̂⊥ = Â⊥n , . . . , Â

⊥
1

Â · B = Â⊗ B̂ (Â · B)⊥ = B̂⊥O Â⊥ for Π = A1, . . . ,An

Â \B = Â⊥O B̂ (Â \B)⊥ = B̂⊥ ⊗ Â

B̂ /A = B̂ O Â⊥ (B̂ /A)⊥ = Â⊗ B̂⊥

1̂ = 1 1̂⊥ = ⊥
Â ∧ B = ÂN B̂ (Â ∧ B)⊥ = Â⊥ ⊕ B̂⊥

Â ∨ B = Â⊕ B̂ (Â ∨ B)⊥ = Â⊥N B̂⊥

!̂sA = !s Â (!̂sA)⊥ = ?s Â⊥

I Theorem. The following are equivalent:

1. the sequent Π→ B is derivable in SMALCΣ;
2. the sequent Π→ B is derivable in SMALCΣ + (cut);

3. the sequent ` Π̂⊥, B̂ is derivable in SCLLΣ + (cut);

4. the sequent ` Π̂⊥, B̂ is derivable in SCLLΣ.

I Yields both embedding and cut elimination for SMALCΣ.

I The interesting step is 4⇒ 1 (3⇒ 4 discussed earlier, others
are straightforward).

Embedding SMALCΣ into SCLLΣ

I Translation of formulae (with negations):
p̂i = pi p̂⊥i = p⊥i Π̂⊥ = Â⊥n , . . . , Â

⊥
1

Â · B = Â⊗ B̂ (Â · B)⊥ = B̂⊥O Â⊥ for Π = A1, . . . ,An

Â \B = Â⊥O B̂ (Â \B)⊥ = B̂⊥ ⊗ Â

B̂ /A = B̂ O Â⊥ (B̂ /A)⊥ = Â⊗ B̂⊥

1̂ = 1 1̂⊥ = ⊥
Â ∧ B = ÂN B̂ (Â ∧ B)⊥ = Â⊥ ⊕ B̂⊥

Â ∨ B = Â⊕ B̂ (Â ∨ B)⊥ = Â⊥N B̂⊥

!̂sA = !s Â (!̂sA)⊥ = ?s Â⊥

I Theorem. The following are equivalent:

1. the sequent Π→ B is derivable in SMALCΣ;
2. the sequent Π→ B is derivable in SMALCΣ + (cut);

3. the sequent ` Π̂⊥, B̂ is derivable in SCLLΣ + (cut);

4. the sequent ` Π̂⊥, B̂ is derivable in SCLLΣ.

I Yields both embedding and cut elimination for SMALCΣ.

I The interesting step is 4⇒ 1 (3⇒ 4 discussed earlier, others
are straightforward).

Embedding SMALCΣ into SCLLΣ

I Translation of formulae (with negations):
p̂i = pi p̂⊥i = p⊥i Π̂⊥ = Â⊥n , . . . , Â

⊥
1

Â · B = Â⊗ B̂ (Â · B)⊥ = B̂⊥O Â⊥ for Π = A1, . . . ,An

Â \B = Â⊥O B̂ (Â \B)⊥ = B̂⊥ ⊗ Â

B̂ /A = B̂ O Â⊥ (B̂ /A)⊥ = Â⊗ B̂⊥

1̂ = 1 1̂⊥ = ⊥
Â ∧ B = ÂN B̂ (Â ∧ B)⊥ = Â⊥ ⊕ B̂⊥

Â ∨ B = Â⊕ B̂ (Â ∨ B)⊥ = Â⊥N B̂⊥

!̂sA = !s Â (!̂sA)⊥ = ?s Â⊥

I Theorem. The following are equivalent:

1. the sequent Π→ B is derivable in SMALCΣ;
2. the sequent Π→ B is derivable in SMALCΣ + (cut);

3. the sequent ` Π̂⊥, B̂ is derivable in SCLLΣ + (cut);

4. the sequent ` Π̂⊥, B̂ is derivable in SCLLΣ.

I Yields both embedding and cut elimination for SMALCΣ.

I The interesting step is 4⇒ 1 (3⇒ 4 discussed earlier, others
are straightforward).

Embedding SMALCΣ into SCLLΣ

I Translation of formulae (with negations):
p̂i = pi p̂⊥i = p⊥i Π̂⊥ = Â⊥n , . . . , Â

⊥
1

Â · B = Â⊗ B̂ (Â · B)⊥ = B̂⊥O Â⊥ for Π = A1, . . . ,An

Â \B = Â⊥O B̂ (Â \B)⊥ = B̂⊥ ⊗ Â

B̂ /A = B̂ O Â⊥ (B̂ /A)⊥ = Â⊗ B̂⊥

1̂ = 1 1̂⊥ = ⊥
Â ∧ B = ÂN B̂ (Â ∧ B)⊥ = Â⊥ ⊕ B̂⊥

Â ∨ B = Â⊕ B̂ (Â ∨ B)⊥ = Â⊥N B̂⊥

!̂sA = !s Â (!̂sA)⊥ = ?s Â⊥

I Theorem. The following are equivalent:

1. the sequent Π→ B is derivable in SMALCΣ;
2. the sequent Π→ B is derivable in SMALCΣ + (cut);

3. the sequent ` Π̂⊥, B̂ is derivable in SCLLΣ + (cut);

4. the sequent ` Π̂⊥, B̂ is derivable in SCLLΣ.

I Yields both embedding and cut elimination for SMALCΣ.

I The interesting step is 4⇒ 1 (3⇒ 4 discussed earlier, others
are straightforward).

Embedding SMALCΣ into SCLLΣ: the \ Counter
Proving 4⇒ 1, extending ideas of Schellinx (1991) and Pentus (1998).

I The main issue: maintain the fact that in a cut-free
SCLLΣ-derivation of ` Π̂⊥, B̂ all sequents are again of the
form ` Φ̂⊥, Ĉ . (Then we can just map it onto a
SMALCΣ-derivation.)

I In other words, each sequent should contain exactly one
formula of the form Ĉ , and other formulae should be of the
form B̂⊥

i . The only possible violation is the ⊗ rule, where

both formulae of the form Ĉ could go into one branch.
I The \ counter:

\(pi) = 0 \(AOB) = \(A) + \(B)− 1

\(p⊥i) = 1 \(A⊗ B) = \(A) + \(B)

\(1) = 0 \(A⊕ B) = \(ANB) = \(A)

\(⊥) = 1 \(?sA) = \(!sA) = \(A)

I For a derivable sequent ` E1, . . . ,En we have
\(E1) + . . .+ \(En) = n − 1. This maintains the necessary
invariant.

Embedding SMALCΣ into SCLLΣ: the \ Counter
Proving 4⇒ 1, extending ideas of Schellinx (1991) and Pentus (1998).

I The main issue: maintain the fact that in a cut-free
SCLLΣ-derivation of ` Π̂⊥, B̂ all sequents are again of the
form ` Φ̂⊥, Ĉ . (Then we can just map it onto a
SMALCΣ-derivation.)

I In other words, each sequent should contain exactly one
formula of the form Ĉ , and other formulae should be of the
form B̂⊥

i . The only possible violation is the ⊗ rule, where

both formulae of the form Ĉ could go into one branch.

I The \ counter:

\(pi) = 0 \(AOB) = \(A) + \(B)− 1

\(p⊥i) = 1 \(A⊗ B) = \(A) + \(B)

\(1) = 0 \(A⊕ B) = \(ANB) = \(A)

\(⊥) = 1 \(?sA) = \(!sA) = \(A)

I For a derivable sequent ` E1, . . . ,En we have
\(E1) + . . .+ \(En) = n − 1. This maintains the necessary
invariant.

Embedding SMALCΣ into SCLLΣ: the \ Counter
Proving 4⇒ 1, extending ideas of Schellinx (1991) and Pentus (1998).

I The main issue: maintain the fact that in a cut-free
SCLLΣ-derivation of ` Π̂⊥, B̂ all sequents are again of the
form ` Φ̂⊥, Ĉ . (Then we can just map it onto a
SMALCΣ-derivation.)

I In other words, each sequent should contain exactly one
formula of the form Ĉ , and other formulae should be of the
form B̂⊥

i . The only possible violation is the ⊗ rule, where

both formulae of the form Ĉ could go into one branch.
I The \ counter:

\(pi) = 0 \(AOB) = \(A) + \(B)− 1

\(p⊥i) = 1 \(A⊗ B) = \(A) + \(B)

\(1) = 0 \(A⊕ B) = \(ANB) = \(A)

\(⊥) = 1 \(?sA) = \(!sA) = \(A)

I For a derivable sequent ` E1, . . . ,En we have
\(E1) + . . .+ \(En) = n − 1. This maintains the necessary
invariant.

Embedding SMALCΣ into SCLLΣ: the \ Counter
Proving 4⇒ 1, extending ideas of Schellinx (1991) and Pentus (1998).

I The main issue: maintain the fact that in a cut-free
SCLLΣ-derivation of ` Π̂⊥, B̂ all sequents are again of the
form ` Φ̂⊥, Ĉ . (Then we can just map it onto a
SMALCΣ-derivation.)

I In other words, each sequent should contain exactly one
formula of the form Ĉ , and other formulae should be of the
form B̂⊥

i . The only possible violation is the ⊗ rule, where

both formulae of the form Ĉ could go into one branch.
I The \ counter:

\(pi) = 0 \(AOB) = \(A) + \(B)− 1

\(p⊥i) = 1 \(A⊗ B) = \(A) + \(B)

\(1) = 0 \(A⊕ B) = \(ANB) = \(A)

\(⊥) = 1 \(?sA) = \(!sA) = \(A)

I For a derivable sequent ` E1, . . . ,En we have
\(E1) + . . .+ \(En) = n − 1. This maintains the necessary
invariant.

Undecidability and Decidability

Theorem
If C 6= ∅ (i.e., at least one subexponential allows non-local
contraction), then the derivability problem in SLC1

Σ is undecidable.

Proof.
Encoding semi-Thue systems.
For each rewriting rule u1 . . . uk ⇒ v1 . . . vm let Bi = (u1 · . . . · uk) /(v1 · . . . · vm)

and add 1 / !sBi , !sBi (where s ∈ C) to the antecedent Φ. Then

Φ, b1, . . . , bk → a1 · . . . · am is derivable in SLC1
Σ iff a1 . . . am yields b1 . . . bk in

the semi-Thue system.

Theorem
If C = ∅, then the derivability problem in SCLLΣ is decidable and
belongs to PSPACE and the derivability problem in SMCLLΣ

(without additives) belongs to NP.

Proof.
By cut-free proof search, exactly as in the case without
subexponentials.

Related Work

I Lincoln et al. (1992): undecidability and cut elimination for
propositional linear logic with one exponential, including the
non-commutative (cyclic) case.

I Ordered Logical Frameworks [Polakow 2000; Simmons and
Pfenning 2011]

I Categorial grammar parsers / theorem-provers:
I CatLog [Morrill 2012], based on the Lambek calculus with

brackets (introduce controlled non-associativity);
I Grail [Moot 2017], based on non-commutative multi-modal

Lambek calculus (modalities can restore associativity).

Focusing

I First proposed by Andreoli (1992) for commutative linear
logic, focused proof systems reduce proof search space by
arranging the rules in the proof.

I In the negative phase of bottom-to-top proof search, one
applies all invertible rules. Then comes the positive phase,
when a specific formula is taken (focused on), and this
formula should be decomposed as deeply as possible, before
one can switch to another formula. Then a new negative
phase can start.

I We propose a system based on non-commutative linear logic,
with both commutative and non-commutative
subexponentials.

I Ongoing work, paper accepted to IJCAR 2018 (“A Logical
Framework with Commutative and Non-Commutative
Subexponentials”).

Focusing

I First proposed by Andreoli (1992) for commutative linear
logic, focused proof systems reduce proof search space by
arranging the rules in the proof.

I In the negative phase of bottom-to-top proof search, one
applies all invertible rules. Then comes the positive phase,
when a specific formula is taken (focused on), and this
formula should be decomposed as deeply as possible, before
one can switch to another formula. Then a new negative
phase can start.

I We propose a system based on non-commutative linear logic,
with both commutative and non-commutative
subexponentials.

I Ongoing work, paper accepted to IJCAR 2018 (“A Logical
Framework with Commutative and Non-Commutative
Subexponentials”).

Focusing

I First proposed by Andreoli (1992) for commutative linear
logic, focused proof systems reduce proof search space by
arranging the rules in the proof.

I In the negative phase of bottom-to-top proof search, one
applies all invertible rules. Then comes the positive phase,
when a specific formula is taken (focused on), and this
formula should be decomposed as deeply as possible, before
one can switch to another formula. Then a new negative
phase can start.

I We propose a system based on non-commutative linear logic,
with both commutative and non-commutative
subexponentials.

I Ongoing work, paper accepted to IJCAR 2018 (“A Logical
Framework with Commutative and Non-Commutative
Subexponentials”).

Focusing

I First proposed by Andreoli (1992) for commutative linear
logic, focused proof systems reduce proof search space by
arranging the rules in the proof.

I In the negative phase of bottom-to-top proof search, one
applies all invertible rules. Then comes the positive phase,
when a specific formula is taken (focused on), and this
formula should be decomposed as deeply as possible, before
one can switch to another formula. Then a new negative
phase can start.

I We propose a system based on non-commutative linear logic,
with both commutative and non-commutative
subexponentials.

I Ongoing work, paper in IJCAR 2018 (“A Logical
Framework with Commutative and Non-Commutative
Subexponentials”), which we discuss next.

2

Logical Frameworks

Logical Specifications allow for the specification of deductive
systems, logics, and operational semantics.

• Linear Logical Frameworks: Specify state conscious systems;

Θ; Γ −→ G
Unbounded
Formulas: Interpreted
as a set of formulas.

Linear Formulas:
Interpreted as a
multiset of formulas.

3

Logical Frameworks
Two extensions of Linear Logical Frameworks:

Subexponentials
[Nigam,Olarte,Pimentel, Reis]

Ordered Logics
[Pfenning,Simmons,Polakow]

Θ; Γ; L −→ G
L - Ordered Formulas: Interpreted as
a list of formulas.

• Extended expressiveness:
specificaiton of systems with some
order (PL evaluation strategies,
systems with lists, etc.)

Θ1; . . . ; Θn; Γ1; . . . ; Γm −→ G
Allows for many unbounded and
linear contexts.
• Extended expressiveness:

specificaiton of systems with
several contexts: logics,
concurrent programming, etc.

Contribution 1: A logical framework with commutative and
non-commutative subexponentials.

4

Application
Example: Distributed System Semantics

Machine 1

FIFO
Buffer : L1

Machine 2 Machine n

FIFO
Buffer : L2

FIFO
Buffer : Ln

· · ·

Θ; [start,Γ1, end]m1; [start,Γ2, end]m2; · · · ; [start,Γn, end]mn −→ G

Specification of the
behavior of the system.

List of formulas

5

Lambek Proof System

F → F I
Γ1,Γ2 → C

Γ1, 1,Γ2 → C
1L

→ 1 1R

Π→ G Γ1, F,Γ2 → C
Γ1, F /G,Π,Γ2 → C

/L
Π, F → G
Π→ G / F

/R

Initial and Unit

Γ1, F,G,Γ2 → C
Γ1, F ·G,Γ2 → C

·L
Γ1 → F Γ2 → G

Γ1,Γ2 → F ·G
·R

Π→ F Γ1,G,Γ2 → C
Γ1,Π, F \G,Γ2 → C

\L
F,Π→ G
Π→ F \G

\R

Right Division

Product

Left Division

Π→ F{e/x}
Π→ ∀x.F

∀R
Γ1, F{t/x},Γ2 → C
Γ1,∀x.F,Γ2 → C

∀L Quantifier

The order of formulas is important.

6

Proof System with Subexponentials

Σ = 〈I,�,W,C,E〉

• I is a set of lables,W,C,E ⊆ I

Subexponential Signature

• � is a pre-order relation over I upwardly closed w.r.t. W,C,E.

For each s ∈ I:
Γ1, F,Γ2 → G

Γ1, !sF,Γ2 → G
Der

!s1 F1, . . . , !sn Fn −→ F
!s1 F1, . . . , !sn Fn −→ !sF

!s
R,provided, s � si, 1 ≤ i ≤ n

For each w ∈ W and c ∈ C:
Γ,∆ −→ G

Γ, !wF,∆ −→ G
W

Γ1, !cF,∆, !cF,Γ2 → G
Γ1, !cF,∆,Γ2 → G

C1
Γ1, !cF,∆, !cF,Γ2 → G

Γ1,∆, !cF,Γ2 → G
C2

For each e ∈ E:
Γ1,∆, !eF,Γ2 → C
Γ1, !eF,∆,Γ2 → C

E1
Γ1, !eF,∆,Γ2 → C
Γ1,∆, !eF,Γ2 → C

E2

SNILLΣ proof system.

7

Proof System with Subexponentials

Σ = 〈I,�,W,C,E〉

• I is a set of lables,W,C,E ⊆ I

Subexponential Signature

• � is a pre-order relation over I upwardly closed w.r.t. W,C,E.

SNILLΣ proof system.

• Theorem For any well formed Σ, SNILLΣ admits cut-elimination.

Proof Extends our previous results [Dale-Fest, MSCS 18] with
quantifiers.

8

Kinds of Formulas

• W ⊆ E

Assumption:

• Linear Formulas if s <W∪C. They can be non-commutative if
s < E and commutative otherwise if s ∈ E;

• C ⊆ E
These assumptions are enough for our examples and facilitate proof
search (focused proof system for SNILL).

A formula of the form !sF is

• Unbounded Formulas if s ∈ W ∩ C;
• Affine Formulas if s ∈ W and s < C;
• Relevant Formulas if s ∈ C and s <W;

9

Kinds of Formulas

• Linear Formulas if s <W∪C. They can be non-commutative if
s < E and commutative otherwise if s ∈ E;

A formula of the form !sF is

• Unbounded Formulas if s ∈ W ∩ C;
• Affine Formulas if s ∈ W and s < C;
• Relevant Formulas if s ∈ C and s <W;

Logical frameworks have been proposed with unbounded, linear
and affine formulas, but without relevant formulas.

10

Kinds of Formulas

Logical frameworks have been proposed with unbounded, linear
and affine formulas, but without relevant formulas.

!uF, !rH,Γ −→ G1 !uF,∆ −→ G2

!uF, !rH,Γ, !uF,∆ −→ G1 ·G2
⊗R

!uF, !rH,Γ,∆ −→ G1 ·G2
C

!uF, !rH,Γ −→ G1 !uF, !rH,∆ −→ G2

!uF, !rH,Γ, !uF, !rH,∆ −→ G1 ·G2
⊗R

!uF, !rH,Γ,∆ −→ G1 ·G2
2 ×C

Safe to contract unbounded
formulas as one does not lose
provability.

Not always safe to contract
relevant formulas as one may lose
provability.

Contribution 2: Logical framework with relevant formulas.

11

Application: Type-Logical Grammar

Assign logical formulas (or types) to sentences.

“John loves Mary.” N → N
N → N S → S

N,N \ S → S
N,N \ S /N,N → SN N

N \ S /N

The proof of formulas for sentences may have contraction: parasitic
extraction.

“The paper that John signed without reading.”
“John signed the paper without reading it”

“It” has been omitted twice.

12

Application: Type-Logical Grammar

“The paper that John signed without reading.”

N,N \ S /N,N, (N \ S) \(N \ S) /GC,GC /N,N → S

N,N \ S /N, !sN, (N \ S) \(N \ S) /GC,GC /N, !sN → S
Der

N,N \ S /N, (N \ S) \(N \ S) /GC,GC /N, !sN → S
CL

N,N \ S /N, (N \ S) \(N \ S) /GC,GC /N → S / !sN N /CN,CN,CN \CN → N
N /CN,CN, (CN \CN) /(S / !sN),N,N \ S /N, (N \ S) \(N \ S) /GC,GC /N → N

Contraction
to fill the
gap.

13

Application: Type-Logical Grammar
On the other hand, weakening should be avoided:

“The girl whom John loves Mary.”

Is a mal-formed sentence which can be typed if weakening is
allowed:

N,N \ S /N,N → S
N,N \ S /N,N, !sN → S

WL

N,N \ S /N,N → S / !sN N /CN,CN,CN \CN → N
N /CN,CN, (CN \CN) /(S / !sN),N,N \ S /N,N → N

Relevant formulas are useful for Type-Logical
Grammars.

14

Relevant Formulas
Contribution 2: Logical framework with relevant formulas.

Lemma 1: Contraction rules permute over all rules except rules
·R, \L, /L and Der.

This means that it is safe to not contract formulas for rules other than
·R, \L, /L and Der, but not safe otherwise.

Π1, !rF,Π2 −→ F1 Γ1, !rF,Γ2, F2,Γ3 −→ G
Γ1, !rF,Γ2,Π1, !rF,Π2, F1\F2,Γ3 −→ G

\L

Γ1,Γ2,Π1, !rF,Π2, F1\F2,Γ3 −→ G
CL

Let us take a closer look at the rules ·R, \L, /L and Der.

15

Relevant Formulas

Γ1 → F Γ2, !rH,Γ3 → G
Γ1,Γ2, !rH,Γ3 → F ·G

·R

This formula has to be
necessarily be used in this
branch.

How about if this
other branch
requires a copy
of !rH to be
proved?

Γ′1 → F Γ2, !rH,Γ3 → G

Γ′1,Γ2, !rH,Γ3 → F ·G
·R

Γ1,Γ2, !rH,Γ3 → F ·G
n ×CLWe could make as many copies as needed

and move them to this branch.This
decision can be done in a lazy fashion.

Key Observation 1: During proof search, any relevant formula
moved to one premise of ·R, \L, /L can be considered unbounded in

the other premise.

16

Relevant Formulas

Γ1,H,Γ2 −→ G
Γ1, !rH,Γ2 −→ G

Der

Key Observation 2: During proof search, any relevant formula
derelicted by Der can be considered unbounded in its premise.

If this branch needs more
copies of !rH to be proved?

Γ1,H, !rH, . . . , !rH,Γ2 −→ G
Γ1, !rH, !rH, . . . , !rH,Γ2 −→ G

Der

Γ1, !rH,Γ2 −→ G
n ×CR

Copies can be made before
dereliction. Moreover this
decision can be made in a
lazy fashion.

17

Relevant Formulas

!rA −→ A
Der, I

!rA −→ A
Der, I A′ −→ A′ I

!rA, A′ −→ A′
WL !rA −→ A

Der, I

!rA, A′ −→ A · A′ · A
2 × ·R

!rA, A′ −→ A · A′ · A
!rA, A \ A′ −→ A · A′ · A

\L

Considered as an
Unbounded Formula

Sound to weaken
this formula.

!rA −→ A
Der, I

!rA, A′, !rA −→ A · A′ · A
!rA, !rA, A \ A′, !rA −→ A · A′ · A

\L

!rA, A \ A′ −→ A · A′ · A
2 ×CL

Corresponds to
the proof

18

Relevant Formulas

How about non-commutative relevant formulas? Assume s ∈ C
and s < E ∪W.

!sA −→ A

!sA, A1, A2 −→ A1 · A · A2

!sA, A1 · A2 −→ A1 · A · A2

!sA −→ (A1 · A2 / A1 · A · A2)
!sA −→ A · (A1 · A2 / A1 · A · A2)

Not possible to finish the
proof as s does not allow
exchange.

Key observation 1 does not work. It should be possible to refine it
by remembering the positions where non-commutitative
relevant formulas can be contracted to. Not needed for our
applications and left for future work.

19

Logical Framework

We propose a logical framework with
commutative and non-commutative

subexponentials which incorporates the two
key observations.

• Details of the system can be found in the paper.

• Focused proof system for SNILL;
• Prove to be sound and complete with respect to SNILL;

20

Application
Example: Distributed System Semantics

Machine 1

FIFO
Buffer : L1

Machine 2 Machine n

FIFO
Buffer : L2

FIFO
Buffer : Ln

· · ·

Deq(i, j) = !misynmj · !
miend \ !miend · !N ackmj

Enq(i, j) = !mjstart · !mjackmj / !Nackmj · !mjstart

Dequeues a syn message and sends an
ack to the network.

Receives an ack from the network and
enqueues it.

Θ; [start,Γ1, end]m1; [start,Γ2, end]m2; · · · ; [start,Γn, end]mn −→ G

21

Application
Θ, [start,Γ1, end]m1 [start,Γ2, end]m2 · · · [start,Γn, end]mn −→ G

Deq(i, j) = !misynmj · !
miend \ !miend · !N ackmj

Enq(i, j) = !mjstart · !mjackmj / !Nackmj · !mjstart

Dequeues a syn message and sends an
ack to the network.

Receives an ack from the network and
enqueues it.

• Our logical framework reduces considerably proof search.

• Adequacy on the level of derivation: A focused derivation
corresponds exactly to a step of enqueueing or dequeueing.

22

Application: Type-Logical Grammar
“The paper that John signed without reading.”

N,N \ S /N,N, (N \ S) \(N \ S) /GC,GC /N,N → S

N,N \ S /N, !sN, (N \ S) \(N \ S) /GC,GC /N, !sN → S
Der

N,N \ S /N, (N \ S) \(N \ S) /GC,GC /N, !sN → S
CL

N,N \ S /N, (N \ S) \(N \ S) /GC,GC /N → S / !sN N /CN,CN,CN \CN → N
N /CN,CN, (CN \CN) /(S / !sN),N,N \ S /N, (N \ S) \(N \ S) /GC,GC /N → N

• Our logical framework reduces considerably proof search.

• Proof search naturally follows a backward search strategy;

• No need to reason when a relevant formula should be
contracted or not.

23

Conclusions and Future Work
• We proposed a sound and complete logical framework with

both commutative and non-commutative subexponentials;

• We are investigating the impact of our logical framework for
categorial parsers;

• Classical logic versions of our logical framework;

• Proposed general techniques to reduce non-determinism for
commutative relevant formulas;

• Demonstrated its use in two applications: distributed
systems and tpe-logical grammars;

• Reduce the non-determinism of non-commutative relevant
formulas;

• Semantic interpretations for subexponentials.

24

Related Work

• M. Kanovich, S. Kuznetsov, V. Nigam,and A. Scedrov. Subexponentials in
non-commutative linear logic. In Mathematical Structures in Computer
Science 2018. Dale Miller’s Festschrift.

• G. Morrill and O. Valentin. Multiplicative-additive focusing for parsing as
deduction. In First International Workshop on Focusing, 2015.

• F. Pfenning and R. J. Simmons. Substructural operational semantics as
ordered logic programming. In LICS, pages 101–110, 2009.

• J. Polakow. Linear logic programming with an ordered context. In PPDP
2000.

• R. J. Simmons and F. Pfenning. Weak Focusing for Ordered Linear Logic.
Technical Report CMU-CS-10-147 2011.

• C. Olarte, E. Pimentel, and V. Nigam. Subexponential concurrent constraint
programming. Theor. Comput. Sci., 606:98–120, 2015.

• V. Nigam, E. Pimentel, and G. Reis. An extended framework for specifying
and reasoning about proof systems. J. Log. Comput., 26(2):539–576, 2016.

• V. Nigam. A framework for linear authorization logics. TCS, 536:21–41,
2014.

	MSCS_slides_rev
	ijcar18-rev

