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Introduction

I The Lambek calculus [Lambek 1958] was introduced for
logical description of natural language syntax.

I Nowadays, the Lambek calculus can be considered as a
variant of intuitionistic non-commutative linear logic [Girard
1987; Abrusci 1991].

I Thus, the Lambek calculus can adopt connectives coming
from linear logic, in particular, the exponential.

I Unlike other connectives, the exponential is not canonical.
Namely, if two different connectives, !a and !b, obey Girard’s
rules for the exponential, the formulae !aA and !bA are not
equivalent.

I This motivates calculi with many ! connectives, called
subexponentials [Nigam and Miller 2009, commutative case].

I This talk is based on our paper: M. Kanovich, S. Kuznetsov,
V. Nigam, A. Scedrov. Subexponentials in non-commutative
linear logic. Math. Struct. Comput. Sci. (published online),
2018.
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Multiplicative-Additive Lambek Calculus

A→ A
(ax)

Γ1,A,B, Γ2 → C

Γ1,A · B, Γ2 → C
(· →)

Γ1 → A Γ2 → B

Γ1, Γ2 → A · B (→ ·)

Π→ A Γ1,B, Γ2 → C

Γ1,Π,A \B, Γ2 → C
(\ →)

A,Π→ B

Π→ A \B
(→ \)

Π→ A Γ1,B, Γ2 → C

Γ1,B /A,Π, Γ2 → C
(/→)

Π,A→ B

Π→ B /A
(→ /)

Γ1, Γ2 → C

Γ1, 1, Γ2 → C
(1→) → 1

(→ 1)

Γ1,A1, Γ2 → C Γ1,A2, Γ2 → C

Γ1,A1 ∨ A2, Γ2 → C
(∨ →)

Γ→ Ai

Γ→ A1 ∨ A2
(→ ∨), where i = 1 or 2

Γ1,Ai , Γ2 → C

Γ1,A1 ∧ A2, Γ2 → C
(∧ →), where i = 1 or 2

Γ→ A1 Γ→ A2

Γ→ A1 ∧ A2
(→ ∧)

Γ1,A, Γ2 → C

Γ1, !sA, Γ2 → C
(!→)

!s1A1, . . . , !snAn → B

!s1A1, . . . , !snAn → !sB
(→ !), where sj � s for all j



Subexponentials
I Subexponential signature: Σ = 〈I,�,W, C, E〉, where
I = {s1, . . . , sn} is a set of subexponential labels; � is a
preorder; W, C, E ⊆ I.

I Rules:
Γ1,A, Γ2 → C

Γ1, !sA, Γ2 → C
(!→)

!s1A1, . . . , !snAn → B

!s1A1, . . . , !snAn → !sB
(→ !), where sj � s for all j

Γ1, Γ2 → C

Γ1, !sA, Γ2 → C
(weak), where s ∈ W

Γ1, !sA,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ncontr1) and Γ1, !sA,∆, !sA, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ncontr2), where s ∈ C

Γ1,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ex1) and Γ1, !sA,∆, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ex2), where s ∈ E

I W, C, E are upwardly closed w.r.t. � (needed for cut
elimination).

I W ∩ C ⊆ E .
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Cut

Π→ A Γ,A,∆→ C

Γ,Π,∆→ C
(cut)



Local vs. Non-local Contraction
I Non-local contraction, used in SMALCΣ for s ∈ C:

Γ1, !sA,∆, !sA, Γ2 → C

Γ1, !sA,∆, Γ2 → C
(ncontr1) and Γ1, !sA,∆, !sA, Γ2 → C

Γ1,∆, !sA, Γ2 → C
(ncontr2), where s ∈ C

I Local contraction, the usual form of contraction rule:

Γ1, !sA, !sA, Γ2 → C

Γ1, !sA, Γ2 → C
(contr)

I These two forms of contraction coincide in the presence of
exchange (s ∈ C ∩ E).

I For s /∈ E , local contraction is weaker than the non-local one.
Moreover, cut elimination with local contraction fails.

I Counter-example:

r / q, !p, !(p \ q), q \ s → r · s

This sequent is derivable with local contraction, but only
using cut. With non-local contraction, a cut-free proof exists.
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Local vs. Non-local Contraction

r / q, !p, !(p \ q), q \ s → r · s

I Derivation with local contraction and cut:
p → p q → q

p, p \ q → q
(\ →)

p, !(p \ q)→ q
(!→)

!p, !(p \ q)→ q
(!→)

!p, !(p \ q)→ !q
(→ !)

q → q

!q → q
(!→)

q → q

!q → q
(!→) r → r s → s

r, s → r · s (→ ·)

r, !q, q \ s → r · s
(\ →)

r / q, !q, !q, q \ s → r · s
(/→)

r / q, !q, q \ s → r · s
(contr)

r / q, !p, !(p \ q), q \ s → r · s
(cut)

I Not derivable without cut, if ! allows local contraction and
maybe weakening, but neither exchange nor non-local
contraction (shown by exhaustive proof search).

I Cut-free derivation with non-local contraction:

p → p p → p

q → q

q → q

r → r s → s

r, s → r · s
(→ ·)

r, q, q \ s → r · s
(\ →)

r / q, q, q, q \ s → r · s
(/→)

r / q, p, p \ q, p, p \ q, q \ s → r · s
(\ →) twice

r / q, !p, !(p \ q), !p, !(p \ q), q \ s → r · s
(!→) 4 times

r / q, !p, !p, !(p \ q), q \ s → r · s
(ncontr2)

r / q, !p, !(p \ q), q \ s → r · s
(contr)
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Cyclic Linear Logic with Subexponentials (SCLLΣ)
Sequents are of the form ` Γ, where Γ is cyclically ordered sequence of
formulae (i.e., A,B,C is the same as B,C ,A and C ,A,B, but not A,C ,B).

` A,A⊥
(ax)

` 1
(1)

` Γ
` ⊥, Γ

(⊥) ` >, Γ
(>)

(no rule for 0)

` Γ,A ` B,∆

` Γ,A⊗ B,∆
(⊗)

` A,B, Γ

` AOB, Γ
(O)

` A1, Γ ` A2, Γ

` A1 NA2, Γ
(N)

` Ai , Γ

` A1 ⊕ A2, Γ
(⊕), where i = 1 or 2

` B, ?s1A1, . . . , ?snAn

` !sB, ?s1A1, . . . , ?snAn
(!), where sj � s for all j

` A, Γ

` ?sA, Γ
(?)

` Γ
` ?sA, Γ

(weak), where s ∈ W

` ?sA, Γ, ?sA,∆

` ?sA, Γ,∆
(ncontr), where s ∈ C

` Γ, ?sA,∆

` ?sA, Γ,∆
(ex), where s ∈ E



Multiplicative-only Fragments

I For SMALCΣ — SLC1
Σ (without ∨ and ∧, but with 1 and

subexponentials).

I For SCLLΣ — SMCLLΣ (without N, ⊕, 0, and >, but with
1, ⊥, and subexponentials).



Cut Elimination in SCLLΣ

I The cut rule:
` Γ,A⊥ ` A,∆

` Γ,∆
(cut)

I Use Gentzen’s strategy: eliminate cut along with mix.

I A non-standard form of mix for non-local contraction:

` Γ, !sA⊥ ` ?sA,∆1, ?
sA,∆2, . . . , ?

sA,∆k

` Γ,∆1,∆2, . . . ,∆k
(mix)

I Eliminate cut and mix by joint nested induction.
Outer parameter: κ, the complexity of the formula being cut.
Inner parameter: δ, the sum of heights of cut-free derivations
of the premises.
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Embedding SMALCΣ into SCLLΣ

I The Lambek calculus is “intuitionistic” (one formula in the
succedent in the Gentzen-style calculus). Cyclic linear logic is
“classical.” Thus, SMALCΣ should not be a conservative
fragment of SCLLΣ.

I Nevertheless, it is.
I The trick is the poverty of the language of SMALCΣ, which

prevents it from expressing principles that distinguish classical
and intuitionistic logics:

I tertium non datur, AOA⊥: no O and no linear negation in
SMALCΣ;

I Peirce’s law (with subexponentials for enabling necessary
structural rules), (x \ ?wy) \ x → ?cx , c ∈ C, w ∈ W: no ? in
SMALCΣ, only !;

I Schellinx’ (1991) example with the zero constant (a
non-commutative modification),
(r /(0 \ q)) / p, (s / p) \ 0→ r : no 0 in SMALCΣ.
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A Non-Commutative Version of Schellinx’ Example

I (r /(0 \ q)) / p, (s / p) \ 0→ r

I Translation into cyclic linear logic:
` > ⊗ (s O p̄), p ⊗ (>O q)⊗ r̄ , r

I Derivation in SCLLΣ:

` >
(>)

` p̄, p
(ax)

` s,>, q
(>)

` s,>O q
(O)

` r̄, r
(ax)

` s, (>O q)⊗ r̄, r
(⊗)

` s, p̄, p ⊗ ((>O q)⊗ r̄), r
(⊗)

` s O p̄, p ⊗ ((>O q)⊗ r̄), r
(O)

` > ⊗ (s O p̄), p ⊗ ((>O q)⊗ r̄), r
(⊗)

I Original sequent not derivable in the Lambek calculus (shown
by exhaustive cut-free proof search).

Rule for 0:

Γ, 0,∆→ C
(0→)

(and no right rule).
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Embedding SMALCΣ into SCLLΣ

I Translation of formulae (with negations):
p̂i = pi p̂⊥i = p⊥i Π̂⊥ = Â⊥n , . . . , Â

⊥
1

Â · B = Â⊗ B̂ (Â · B)⊥ = B̂⊥O Â⊥ for Π = A1, . . . ,An

Â \B = Â⊥O B̂ (Â \B)⊥ = B̂⊥ ⊗ Â

B̂ /A = B̂ O Â⊥ (B̂ /A)⊥ = Â⊗ B̂⊥

1̂ = 1 1̂⊥ = ⊥
Â ∧ B = ÂN B̂ (Â ∧ B)⊥ = Â⊥ ⊕ B̂⊥

Â ∨ B = Â⊕ B̂ (Â ∨ B)⊥ = Â⊥N B̂⊥

!̂sA = !s Â (!̂sA)⊥ = ?s Â⊥

I Theorem. The following are equivalent:

1. the sequent Π→ B is derivable in SMALCΣ;
2. the sequent Π→ B is derivable in SMALCΣ + (cut);

3. the sequent ` Π̂⊥, B̂ is derivable in SCLLΣ + (cut);

4. the sequent ` Π̂⊥, B̂ is derivable in SCLLΣ.

I Yields both embedding and cut elimination for SMALCΣ.

I The interesting step is 4⇒ 1 (3⇒ 4 discussed earlier, others
are straightforward).
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Â ∧ B = ÂN B̂ (Â ∧ B)⊥ = Â⊥ ⊕ B̂⊥
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Embedding SMALCΣ into SCLLΣ: the \ Counter
Proving 4⇒ 1, extending ideas of Schellinx (1991) and Pentus (1998).

I The main issue: maintain the fact that in a cut-free
SCLLΣ-derivation of ` Π̂⊥, B̂ all sequents are again of the
form ` Φ̂⊥, Ĉ . (Then we can just map it onto a
SMALCΣ-derivation.)

I In other words, each sequent should contain exactly one
formula of the form Ĉ , and other formulae should be of the
form B̂⊥

i . The only possible violation is the ⊗ rule, where

both formulae of the form Ĉ could go into one branch.
I The \ counter:

\(pi ) = 0 \(AOB) = \(A) + \(B)− 1

\(p⊥i ) = 1 \(A⊗ B) = \(A) + \(B)

\(1) = 0 \(A⊕ B) = \(ANB) = \(A)

\(⊥) = 1 \(?sA) = \(!sA) = \(A)

I For a derivable sequent ` E1, . . . ,En we have
\(E1) + . . .+ \(En) = n − 1. This maintains the necessary
invariant.
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both formulae of the form Ĉ could go into one branch.

I The \ counter:

\(pi ) = 0 \(AOB) = \(A) + \(B)− 1

\(p⊥i ) = 1 \(A⊗ B) = \(A) + \(B)

\(1) = 0 \(A⊕ B) = \(ANB) = \(A)

\(⊥) = 1 \(?sA) = \(!sA) = \(A)

I For a derivable sequent ` E1, . . . ,En we have
\(E1) + . . .+ \(En) = n − 1. This maintains the necessary
invariant.



Embedding SMALCΣ into SCLLΣ: the \ Counter
Proving 4⇒ 1, extending ideas of Schellinx (1991) and Pentus (1998).

I The main issue: maintain the fact that in a cut-free
SCLLΣ-derivation of ` Π̂⊥, B̂ all sequents are again of the
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Undecidability and Decidability

Theorem
If C 6= ∅ (i.e., at least one subexponential allows non-local
contraction), then the derivability problem in SLC1

Σ is undecidable.

Proof.
Encoding semi-Thue systems.
For each rewriting rule u1 . . . uk ⇒ v1 . . . vm let Bi = (u1 · . . . · uk) /(v1 · . . . · vm)

and add 1 / !sBi , !sBi (where s ∈ C) to the antecedent Φ. Then

Φ, b1, . . . , bk → a1 · . . . · am is derivable in SLC1
Σ iff a1 . . . am yields b1 . . . bk in

the semi-Thue system.

Theorem
If C = ∅, then the derivability problem in SCLLΣ is decidable and
belongs to PSPACE and the derivability problem in SMCLLΣ

(without additives) belongs to NP.

Proof.
By cut-free proof search, exactly as in the case without
subexponentials.



Related Work

I Lincoln et al. (1992): undecidability and cut elimination for
propositional linear logic with one exponential, including the
non-commutative (cyclic) case.

I Ordered Logical Frameworks [Polakow 2000; Simmons and
Pfenning 2011]

I Categorial grammar parsers / theorem-provers:
I CatLog [Morrill 2012], based on the Lambek calculus with

brackets (introduce controlled non-associativity);
I Grail [Moot 2017], based on non-commutative multi-modal

Lambek calculus (modalities can restore associativity).



Focusing

I First proposed by Andreoli (1992) for commutative linear
logic, focused proof systems reduce proof search space by
arranging the rules in the proof.

I In the negative phase of bottom-to-top proof search, one
applies all invertible rules. Then comes the positive phase,
when a specific formula is taken (focused on), and this
formula should be decomposed as deeply as possible, before
one can switch to another formula. Then a new negative
phase can start.

I We propose a system based on non-commutative linear logic,
with both commutative and non-commutative
subexponentials.

I Ongoing work, paper accepted to IJCAR 2018 (“A Logical
Framework with Commutative and Non-Commutative
Subexponentials”).
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Focusing

I First proposed by Andreoli (1992) for commutative linear
logic, focused proof systems reduce proof search space by
arranging the rules in the proof.

I In the negative phase of bottom-to-top proof search, one
applies all invertible rules. Then comes the positive phase,
when a specific formula is taken (focused on), and this
formula should be decomposed as deeply as possible, before
one can switch to another formula. Then a new negative
phase can start.

I We propose a system based on non-commutative linear logic,
with both commutative and non-commutative
subexponentials.

I Ongoing work, paper in IJCAR 2018 (“A Logical
Framework with Commutative and Non-Commutative 
Subexponentials”), which we discuss next.



2

Logical Frameworks

Logical Specifications allow for the specification of deductive
systems, logics, and operational semantics.

• Linear Logical Frameworks: Specify state conscious systems;

Θ; Γ −→ G
Unbounded
Formulas: Interpreted
as a set of formulas.

Linear Formulas:
Interpreted as a
multiset of formulas.
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Logical Frameworks
Two extensions of Linear Logical Frameworks:

Subexponentials
[Nigam,Olarte,Pimentel, Reis]

Ordered Logics
[Pfenning,Simmons,Polakow]

Θ; Γ; L −→ G
L - Ordered Formulas: Interpreted as
a list of formulas.

• Extended expressiveness:
specificaiton of systems with some
order (PL evaluation strategies,
systems with lists, etc.)

Θ1; . . . ; Θn; Γ1; . . . ; Γm −→ G
Allows for many unbounded and
linear contexts.
• Extended expressiveness:

specificaiton of systems with
several contexts: logics,
concurrent programming, etc.

Contribution 1: A logical framework with commutative and
non-commutative subexponentials.
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Application
Example: Distributed System Semantics

Machine 1

FIFO
Buffer : L1

Machine 2 Machine n

FIFO
Buffer : L2

FIFO
Buffer : Ln

· · ·

Θ; [start,Γ1, end]m1; [start,Γ2, end]m2; · · · ; [start,Γn, end]mn −→ G

Specification of the
behavior of the system.

List of formulas
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Lambek Proof System

F → F I
Γ1,Γ2 → C

Γ1, 1,Γ2 → C
1L

→ 1 1R

Π→ G Γ1, F,Γ2 → C
Γ1, F /G,Π,Γ2 → C

/L
Π, F → G
Π→ G / F

/R

Initial and Unit

Γ1, F,G,Γ2 → C
Γ1, F ·G,Γ2 → C

·L
Γ1 → F Γ2 → G

Γ1,Γ2 → F ·G
·R

Π→ F Γ1,G,Γ2 → C
Γ1,Π, F \G,Γ2 → C

\L
F,Π→ G
Π→ F \G

\R

Right Division

Product

Left Division

Π→ F{e/x}
Π→ ∀x.F

∀R
Γ1, F{t/x},Γ2 → C
Γ1,∀x.F,Γ2 → C

∀L Quantifier

The order of formulas is important.
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Proof System with Subexponentials

Σ = 〈I,�,W,C,E〉

• I is a set of lables,W,C,E ⊆ I

Subexponential Signature

• � is a pre-order relation over I upwardly closed w.r.t. W,C,E.

For each s ∈ I:
Γ1, F,Γ2 → G

Γ1, !sF,Γ2 → G
Der

!s1 F1, . . . , !sn Fn −→ F
!s1 F1, . . . , !sn Fn −→ !sF

!s
R,provided, s � si, 1 ≤ i ≤ n

For each w ∈ W and c ∈ C:
Γ,∆ −→ G

Γ, !wF,∆ −→ G
W

Γ1, !cF,∆, !cF,Γ2 → G
Γ1, !cF,∆,Γ2 → G

C1
Γ1, !cF,∆, !cF,Γ2 → G

Γ1,∆, !cF,Γ2 → G
C2

For each e ∈ E:
Γ1,∆, !eF,Γ2 → C
Γ1, !eF,∆,Γ2 → C

E1
Γ1, !eF,∆,Γ2 → C
Γ1,∆, !eF,Γ2 → C

E2

SNILLΣ proof system.
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Proof System with Subexponentials

Σ = 〈I,�,W,C,E〉

• I is a set of lables,W,C,E ⊆ I

Subexponential Signature

• � is a pre-order relation over I upwardly closed w.r.t. W,C,E.

SNILLΣ proof system.

• Theorem For any well formed Σ, SNILLΣ admits cut-elimination.

Proof Extends our previous results [Dale-Fest, MSCS 18] with
quantifiers.
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Kinds of Formulas

• W ⊆ E

Assumption:

• Linear Formulas if s <W∪C. They can be non-commutative if
s < E and commutative otherwise if s ∈ E;

• C ⊆ E
These assumptions are enough for our examples and facilitate proof
search (focused proof system for SNILL).

A formula of the form !sF is

• Unbounded Formulas if s ∈ W ∩ C;
• Affine Formulas if s ∈ W and s < C;
• Relevant Formulas if s ∈ C and s <W;
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Kinds of Formulas

• Linear Formulas if s <W∪C. They can be non-commutative if
s < E and commutative otherwise if s ∈ E;

A formula of the form !sF is

• Unbounded Formulas if s ∈ W ∩ C;
• Affine Formulas if s ∈ W and s < C;
• Relevant Formulas if s ∈ C and s <W;

Logical frameworks have been proposed with unbounded, linear
and affine formulas, but without relevant formulas.
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Kinds of Formulas

Logical frameworks have been proposed with unbounded, linear
and affine formulas, but without relevant formulas.

!uF, !rH,Γ −→ G1 !uF,∆ −→ G2

!uF, !rH,Γ, !uF,∆ −→ G1 ·G2
⊗R

!uF, !rH,Γ,∆ −→ G1 ·G2
C

!uF, !rH,Γ −→ G1 !uF, !rH,∆ −→ G2

!uF, !rH,Γ, !uF, !rH,∆ −→ G1 ·G2
⊗R

!uF, !rH,Γ,∆ −→ G1 ·G2
2 ×C

Safe to contract unbounded
formulas as one does not lose
provability.

Not always safe to contract
relevant formulas as one may lose
provability.

Contribution 2: Logical framework with relevant formulas.
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Application: Type-Logical Grammar

Assign logical formulas (or types) to sentences.

“John loves Mary.” N → N
N → N S → S

N,N \ S → S
N,N \ S /N,N → SN N

N \ S /N

The proof of formulas for sentences may have contraction: parasitic
extraction.

“The paper that John signed without reading.”
“John signed the paper without reading it”

“It” has been omitted twice.
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Application: Type-Logical Grammar

“The paper that John signed without reading.”

N,N \ S /N,N, (N \ S ) \(N \ S ) /GC,GC /N,N → S

N,N \ S /N, !sN, (N \ S ) \(N \ S ) /GC,GC /N, !sN → S
Der

N,N \ S /N, (N \ S ) \(N \ S ) /GC,GC /N, !sN → S
CL

N,N \ S /N, (N \ S ) \(N \ S ) /GC,GC /N → S / !sN N /CN,CN,CN \CN → N
N /CN,CN, (CN \CN) /(S / !sN),N,N \ S /N, (N \ S ) \(N \ S ) /GC,GC /N → N

Contraction
to fill the
gap.
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Application: Type-Logical Grammar
On the other hand, weakening should be avoided:

“The girl whom John loves Mary.”

Is a mal-formed sentence which can be typed if weakening is
allowed:

N,N \ S /N,N → S
N,N \ S /N,N, !sN → S

WL

N,N \ S /N,N → S / !sN N /CN,CN,CN \CN → N
N /CN,CN, (CN \CN) /(S / !sN),N,N \ S /N,N → N

Relevant formulas are useful for Type-Logical
Grammars.
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Relevant Formulas
Contribution 2: Logical framework with relevant formulas.

Lemma 1: Contraction rules permute over all rules except rules
·R, \L, /L and Der.

This means that it is safe to not contract formulas for rules other than
·R, \L, /L and Der, but not safe otherwise.

Π1, !rF,Π2 −→ F1 Γ1, !rF,Γ2, F2,Γ3 −→ G
Γ1, !rF,Γ2,Π1, !rF,Π2, F1\F2,Γ3 −→ G

\L

Γ1,Γ2,Π1, !rF,Π2, F1\F2,Γ3 −→ G
CL

Let us take a closer look at the rules ·R, \L, /L and Der.
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Relevant Formulas

Γ1 → F Γ2, !rH,Γ3 → G
Γ1,Γ2, !rH,Γ3 → F ·G

·R

This formula has to be
necessarily be used in this
branch.

How about if this
other branch
requires a copy
of !rH to be
proved?

Γ′1 → F Γ2, !rH,Γ3 → G

Γ′1,Γ2, !rH,Γ3 → F ·G
·R

Γ1,Γ2, !rH,Γ3 → F ·G
n ×CLWe could make as many copies as needed

and move them to this branch.This
decision can be done in a lazy fashion.

Key Observation 1: During proof search, any relevant formula
moved to one premise of ·R, \L, /L can be considered unbounded in

the other premise.
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Relevant Formulas

Γ1,H,Γ2 −→ G
Γ1, !rH,Γ2 −→ G

Der

Key Observation 2: During proof search, any relevant formula
derelicted by Der can be considered unbounded in its premise.

If this branch needs more
copies of !rH to be proved?

Γ1,H, !rH, . . . , !rH,Γ2 −→ G
Γ1, !rH, !rH, . . . , !rH,Γ2 −→ G

Der

Γ1, !rH,Γ2 −→ G
n ×CR

Copies can be made before
dereliction. Moreover this
decision can be made in a
lazy fashion.
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Relevant Formulas

!rA −→ A
Der, I

!rA −→ A
Der, I A′ −→ A′ I

!rA, A′ −→ A′
WL !rA −→ A

Der, I

!rA, A′ −→ A · A′ · A
2 × ·R

!rA, A′ −→ A · A′ · A
!rA, A \ A′ −→ A · A′ · A

\L

Considered as an
Unbounded Formula

Sound to weaken
this formula.

!rA −→ A
Der, I

!rA, A′, !rA −→ A · A′ · A
!rA, !rA, A \ A′, !rA −→ A · A′ · A

\L

!rA, A \ A′ −→ A · A′ · A
2 ×CL

Corresponds to
the proof
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Relevant Formulas

How about non-commutative relevant formulas? Assume s ∈ C
and s < E ∪W.

!sA −→ A

!sA, A1, A2 −→ A1 · A · A2

!sA, A1 · A2 −→ A1 · A · A2

!sA −→ (A1 · A2 / A1 · A · A2)
!sA −→ A · (A1 · A2 / A1 · A · A2)

Not possible to finish the
proof as s does not allow
exchange.

Key observation 1 does not work. It should be possible to refine it
by remembering the positions where non-commutitative
relevant formulas can be contracted to. Not needed for our
applications and left for future work.
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Logical Framework

We propose a logical framework with
commutative and non-commutative

subexponentials which incorporates the two
key observations.

• Details of the system can be found in the paper.

• Focused proof system for SNILL;
• Prove to be sound and complete with respect to SNILL;
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Application
Example: Distributed System Semantics

Machine 1

FIFO
Buffer : L1

Machine 2 Machine n

FIFO
Buffer : L2

FIFO
Buffer : Ln

· · ·

Deq(i, j) = !misynmj · !
miend \ !miend · !N ackmj

Enq(i, j) = !mjstart · !mjackmj / !Nackmj · !mjstart

Dequeues a syn message and sends an
ack to the network.

Receives an ack from the network and
enqueues it.

Θ; [start,Γ1, end]m1; [start,Γ2, end]m2; · · · ; [start,Γn, end]mn −→ G
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Application
Θ, [start,Γ1, end]m1 [start,Γ2, end]m2 · · · [start,Γn, end]mn −→ G

Deq(i, j) = !misynmj · !
miend \ !miend · !N ackmj

Enq(i, j) = !mjstart · !mjackmj / !Nackmj · !mjstart

Dequeues a syn message and sends an
ack to the network.

Receives an ack from the network and
enqueues it.

• Our logical framework reduces considerably proof search.

• Adequacy on the level of derivation: A focused derivation
corresponds exactly to a step of enqueueing or dequeueing.
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Application: Type-Logical Grammar
“The paper that John signed without reading.”

N,N \ S /N,N, (N \ S ) \(N \ S ) /GC,GC /N,N → S

N,N \ S /N, !sN, (N \ S ) \(N \ S ) /GC,GC /N, !sN → S
Der

N,N \ S /N, (N \ S ) \(N \ S ) /GC,GC /N, !sN → S
CL

N,N \ S /N, (N \ S ) \(N \ S ) /GC,GC /N → S / !sN N /CN,CN,CN \CN → N
N /CN,CN, (CN \CN) /(S / !sN),N,N \ S /N, (N \ S ) \(N \ S ) /GC,GC /N → N

• Our logical framework reduces considerably proof search.

• Proof search naturally follows a backward search strategy;

• No need to reason when a relevant formula should be
contracted or not.
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Conclusions and Future Work
• We proposed a sound and complete logical framework with

both commutative and non-commutative subexponentials;

• We are investigating the impact of our logical framework for
categorial parsers;

• Classical logic versions of our logical framework;

• Proposed general techniques to reduce non-determinism for
commutative relevant formulas;

• Demonstrated its use in two applications: distributed
systems and tpe-logical grammars;

• Reduce the non-determinism of non-commutative relevant
formulas;

• Semantic interpretations for subexponentials.
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