

On geometric aspects of multiple conclusion deductions

Marcel Maretić

Contents

1. Introduction

On multiple conclusion deductions (MCDs) in classical logic (CPL, CFL)

2. "Geometry" of MCDs

Some visual notions, related to the underlying formula graph

Introduction

Introduction 1/22

Multiple conclusion deductions

Based on inferences with multiple conclusions

(by W. Kneale)

$$(I \wedge) \frac{A \quad B}{A \wedge B}$$

$$(\mathsf{E}\wedge)\ \frac{A\wedge B}{A} \qquad \frac{A\wedge B}{B}$$

$$(I\vee) \frac{A}{A\vee B} \qquad \frac{B}{A\vee B}$$

$$(E\lor) \frac{A\lor B}{A B}$$

$$(I \rightarrow) \frac{B}{A \rightarrow B} \qquad \frac{A}{A \rightarrow B}$$

$$(\mathsf{E} \to) \ \frac{A \qquad A \to B}{B}$$

$$(I\neg) \frac{}{A \qquad \neg A}$$

Local inference rules (unlike hypothetical in NK).

MCD example

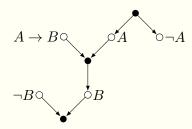
Proof of Modus tolens

$$\begin{array}{ccc}
 & A \to B & \overline{A} & \neg A \\
 \hline
 \neg B & B &
\end{array}$$

Proofs branch (both) upward and downward.

Introduction 3/22

What is underneath?



MCD is a formula graph (bipartite DAG)

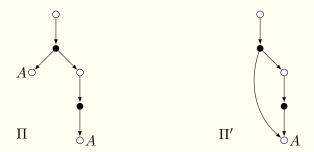
Bipartition of formula nodes and "stroke" nodes

Premisses (conclusions) are minimal (maximal) formula nodes in induced p.o.

Introduction 4/22

Contraction

Contraction of duplicate premisses (conclusions)



Contraction is Kneale's missing piece

for completeness (of MCD for CPL)

ntroduction 5/22

Styled in a "traditional" fashion

Contraction of conclusion A

$$\frac{A \vee (A \wedge B)}{A_{(1)}} \frac{A \wedge B}{A_{(1)}}$$

Discharged, indexed

Introduction 6/22

Graph-related notions

Graph-related notions 7/22

DAG transpose

Reversing arrows = turning Π upside down? Symmetry?

What to do with formulas?

1. Dual proof $\Pi \mapsto \Pi^d$ Replace formulas with duals

$$\frac{A \quad B}{A \wedge B} \qquad \xrightarrow{\text{transpose}} \qquad \frac{(A \wedge B)^d}{A^d \quad B^d} \qquad = \qquad \frac{A \vee B}{A \quad B}$$

2. Negation

N.B. downward reading (the usual) is "truth preserving"

Upward reading (from conclusions to premisses) is "falsity preserving".

Useful for semantic analysis

Graph-related notions 8/22

Going against the flow

$$\frac{A}{A \wedge B}$$

read as

$$\frac{A\bot \qquad B\bot}{(A\land B)\bot}$$

$$(A \wedge B) \top$$
 implies $A \bot$ or $B \bot$

$$\frac{A \qquad A \to B}{B}$$

read as

$$\frac{A\bot \qquad (A\to B)\top}{B\top}$$

$$(A \rightarrow B) \top$$
 implies $A \bot$ or $B \top$

Graph-related notions

Granularity of MCDs

- Formula-level
- Inference-level View: MCDs are assembled from inferences (instances)
- Bigger blocks/proof fragments Analytic examples are interesting

Graph-related notions 10/22

Proof assembly/disassembly

The idea:

Provided by the local inference rules.

$$\Pi_1/A + A/\Pi_2$$

Graph-related notions 11/

Consequences for MCD calculus

- Subformula property, Normal form theorem Trivial
- Simple proof search (naivé, greedy) Explained as semantic analysis (of α and β formulas) Synthesis explained as Robinson's resolution

Graph-related notions 12/2

Proof search of \triangle from Γ

Sketch:

- Grow analytic MCDs from Γ downward (and from Δ upward)
- Simplify leaves (until atomic)
- Assemble proof from analytic parts

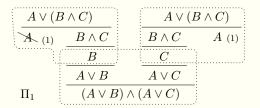
Output

A set of "analytic" MCDs Byproduct is a clausal form (CNF) of $\Gamma, \neg \Delta$

Graph-related notions 13/22

Example

$$A \vee (B \wedge C) \vdash (A \vee B) \wedge (A \vee C)$$



 $\begin{array}{c|c}
A & (2) & A & (2) \\
\hline
A \lor B & A \lor C \\
\hline
(A \lor B) \land (A \lor C)
\end{array}$

 Π_2

Graph-related notions 14/22

Example

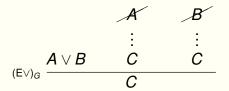


A final proof is formed by appropriate joins of analytic MCDs Robinson's resolution

Graph-related notions 15/22

Disassembly

- Split MCD along cut vertex Plus contraction cleanup Component subgraphs are MCDs
- Compare with NK



Is given Π an MCD? Check inferences and contractions.

Graph-related notions 16/22

Quantification rules, CFL

$$(I\exists) \frac{A(a)}{\exists x A(x)}$$

$$(E\exists) \ \frac{\exists x A(x)}{A(a)}$$

$$(\forall) \frac{A(a)}{\forall x A(x)}$$

$$(E\forall) \frac{\forall x A(x)}{A(a)}$$

With proviso: *NK:* No a-connected path between (E \exists) and (I \forall)! Because we don't want $\exists xP(x) \vdash \forall xP(x) \dots$

Necessary bookkeeping of parameters introduced by δ formula.

Proof search works as before (with minor tweaks).

Graph-related notions 17/

Transpose example

$$\frac{\forall x A(x)}{A(a)} \xrightarrow{\text{transpose + dual}} \frac{(\exists x A(x))^d}{(A(a))^d} = \dots$$

It is self-dual.

Graph-related notions 18/22

Conclusion

Conclusion 19/22

On MCD

- ND system desiderata (informal) simple inference rules, easy to follow proofs (readable for humans), applicability of simple proof search strategies, ...
- Argue for the Simplicity and accessibility to humans for MCD calculus
- Relation to other established formalisms Discussed at LAP before

Conclusion 20/22

Acknowledgments

This work has been supported by the Croatian Science Foundation under the FORMALS project.

http://formals.ufzg.hr/

Conclusion 21/22

References

Based on:

M. Maretić, On Multiple Conclusion Deductions in Classical Logic, Mathematical Communications 23 (1), 79-95, 2018.

http://www.mathos.unios.hr/mc/index.php/mc/article/view/2349

M.D'Agostino, *Classical Natural Deduction*, In *We Will Show Them!*, Essays in Honour of Dov Gabbay, Volume 1, College Publications, 2005.

A. INDRZEJCZAK, *Natural Deduction, Hybrid Systems and Modal Logics*, vol. 30 of *Trends in Logic*, Springer, 2010.

W. KNEALE, M. KNEALE, *Development of Logic*, Clarendon Press, 1956, 538–548.

Conclusion 22/22