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Multiple conclusion deductions
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Based on inferences with multiple conclusions
(by W. Kneale)

(I∧)
A B
A ∧ B

(E∧)
A ∧ B

A
A ∧ B

B

(I∨)
A

A ∨ B
B

A ∨ B
(E∨)

A ∨ B
A B

(I→)
B

A→ B A A→ B
(E→)

A A→ B
B

(I¬)
A ¬A

(E¬)
A ¬A

Local inference rules (unlike hypothetical in NK).



MCD example
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Proof of Modus tolens

AA → B ¬A
B¬B

Proofs branch (both) upward and downward.



What is underneath?
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¬B B

A → B ¬AA

MCD is a formula graph (bipartite DAG)
Bipartition of formula nodes and “stroke” nodes

Premisses (conclusions) are minimal (maximal) formula nodes in
induced p.o.



Contraction
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Contraction of duplicate premisses (conclusions)

Π′
AΠ A

A

Contraction is Kneale’s missing piece
for completeness (of MCD for CPL)



Styled in a “traditional” fashion
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Contraction of conclusion A

A ∨ (A ∧ B)

SSA(1) A ∧ B
A(1)

Discharged, indexed
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DAG transpose
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Reversing arrows = turning Π upside down? Symmetry?

What to do with formulas?
1. Dual proof Π 7→ Πd

Replace formulas with duals

A B
A ∧ B

transpose−−−−−−→ (A ∧ B)d

Ad Bd =
A ∨ B

A B

2. Negation
N.B. downward reading (the usual) is “truth preserving”
Upward reading (from conclusions to premisses) is “falsity
preserving”.
Useful for semantic analysis



Going against the flow
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A B
A ∧ B

read as
A⊥ B⊥
(A ∧ B)⊥

(A ∧ B)> implies A⊥ or B⊥

A A→ B
B

read as
A⊥ (A→ B)>

B>

(A→ B)> implies A⊥ or B>



Granularity of MCDs
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Formula-level
Inference-level
View: MCDs are assembled from inferences (instances)

Bigger blocks/proof fragments
Analytic examples are interesting



Proof assembly/disassembly
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The idea:

+

Provided by the local inference rules.
Π1/A + A/Π2



Consequences for MCD calculus
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Subformula property, Normal form theorem
Trivial
Simple proof search
(naivé, greedy)
Explained as semantic analysis (of α and β formulas)
Synthesis explained as Robinson’s resolution



Proof search of∆ from Γ
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Sketch:
Grow analytic MCDs from Γ downward
(and from ∆ upward)
Simplify leaves (until atomic)
Assemble proof from analytic parts

Output
A set of “analytic” MCDs
Byproduct is a clausal form (CNF) of Γ,¬∆



Example
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A ∨ (B ∧ C) ` (A ∨ B) ∧ (A ∨ C)

A ∨ (B ∧ C)

HHA (1) B ∧ C

B

A ∨B

(A ∨B) ∧ (A ∨ C)

A ∨ (B ∧ C)

B ∧ C

C

A ∨ C

A (1)

Π1

A (2)

A ∨B

(A ∨B) ∧ (A ∨ C)

HHA (2)

A ∨ C

Π2



Example
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X ∨ (Y ∧ Z)

HHX (1) Y ∧ Z

Y

X ∨ Y

(X ∨ Y ) ∧ (X ∨ Z)

X ∨ (Y ∧ Z)

Y ∧ Z

Z

X ∨ Z

X (1), (2)

X ∨ Y

(X ∨ Y ) ∧ (X ∨ Z)

HHX (2)

X ∨ Z

Π1

Π2

Π3

Π4

A final proof is formed by appropriate joins of analytic MCDs
Robinson’s resolution



Disassembly
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Split MCD along cut vertex
Plus contraction cleanup
Component subgraphs are MCDs
Compare with NK

(E∨)G
A ∨ B

��
�A

...
C

��
�B

...
C

C

Is given Π an MCD?
Check inferences and contractions.



Quantification rules, CFL
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(I∃)
A(a)

∃xA(x)
(E∃)
∃xA(x)

A(a)

(I∀)
A(a)

∀xA(x)
(E∀)
∀xA(x)

A(a)

With proviso: NK: No a-connected path between (E∃) and (I∀)!
Because we don’t want ∃xP(x) ` ∀xP(x) . . .

Necessary bookkeeping of parameters introduced by δ formula.

Proof search works as before (with minor tweaks).



Transpose example
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∀xA(x)

A(a)

∃xA(x)

transpose + dual−−−−−−−−−−→

(∃xA(x))d

(A(a))d

(∀xA(x))d
=

. . .

It is self-dual.
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On MCD
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ND system desiderata (informal)
simple inference rules, easy to follow proofs (readable for
humans), applicability of simple proof search strategies, ...
Argue for the Simplicity and accessibility to humans for
MCD calculus

Relation to other established formalisms
Discussed at LAP before
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