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Social choice theory

Some topics of social choice theory:

I preference aggregation

I judgment aggregation

I strategic behavior in this context

So, social choice theory is an interdisciplinary study. It involves:

I economics (strategic behavior – game theory)

I law (judgment aggregation)

I politics (preference aggregation)

I mathematics (to model the above)

I computer science (complexity of issues involved)

I logic (formalization of reasoning about these issues)

We focus on formalizations in modal logic.
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Modal logics for social choice

We consider the following three logical systems for social choice:

I modal logic of judgment aggregation1, which in particular
formalizes preference aggregation, i.e. social welfare functions

I modal logic of social choice functions2, which only choose
winner from individual preferences

I logic of knowledge and voting3, aimed to express some
strategic aspects of voting

1T. Ågotnes, W. van der Hoek, and M. Wooldridge. On the logic of
preference and judgment aggregation. Journal of Autonomous Agents and
Multi-Agent Systems, 22:4–30, 2011

2N. Troquard, W. van der Hoek, and M. Wooldridge. Reasoning about
social choice functions. Journal of Philosophical Logic, 40:473–498, 2011

3Z. Bakhtiarinoodeh. The Dynamics of Incomplete and Inconsistent
Information: Applications of Logic, Algebra and Coalgebra. PhD thesis,
University of Lorraine, Nancy, 2017



Judgment aggregation

Judgment aggregation problem: how to make a collective decision
based on individual judgments?

Judgments can be formalized as consistent sets of logical formulas.
A framework for judgment aggregation:

I a set N of n individuals (agents, judges, voters),

I agenda A, a set of formulas of a fixed underlying logic
(containing ¬ and → with standard semantics), s.t. if A is not
of the form ¬B, then A ∈ A iff ¬A ∈ A,

I judgment set is a consistent Ri ⊆ A s.t. A ∈ Ri or ¬A ∈ Ri

for all A ∈ A not of the form ¬B,

I profile is an n-tuple R = (R1, . . . ,Rn) of judgment sets,

I judgment aggregation rule (JAR) is a function F which maps
each profile R to a judgment set F (R).

Judgment set Ri represents judgments of agent i , while F (R)
represents resulting collective judgment.
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Preference aggregation

Preference aggregation problem: how to determine society’s
preference (e.g. results of elections) from individual preferences
(votes)?

This is a special case of judgment aggregation:

I agenda is defined w.r.t. a fixed set M of m alternatives

I agenda items are “x ∈ M is preferred to y ∈ M”

I underlying logic is first-order theory of strict linear orderings.
Agenda items are expressed as formulas of the form x < y or
¬(x < y).

I a judgment set determines a strict linear ordering on M. A
JAR is in this case called a social welfare function (SWF).

If we are only interested in the winner (e.g. of an election), we
consider social choice functions (SCF), which map each profile to
an alternative (instead of an ordering of alternatives).
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Modal logic of judgment aggregation

Ågotnes et al. developed a sound and complete modal logic JAL
for reasoning about judgment aggregation, using a Hilbert-style
axiomatization.

The language of JAL is parametrized by N and A:

I a propositional variable pi for each i ∈ N,

I a propositional variable qA for each A ∈ A,

I a special propositional variable σ, representing the aggregated
judgment,

I formulas are built inductively using Boolean connectives and
modalities � and �.

Formulas are interpreted on the fixed Kripke frame:

I worlds are all pairs (R,A), where R is a profile and A ∈ A,
I accessibility relations corresponding to modalities are:

I �: “have the same agenda item,”
I �: “have the same profile.”
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Semantics

A model is determined by a judgment aggregation rule F .

The
truth of a formula is defined inductively:

I F ,R,A 
 pi iff A ∈ Ri (“i judges that A holds”),

I F ,R,A 
 qB iff A = B,

I F ,R,A 
 σ iff A ∈ F (R) (“group judges that A holds”),

I F ,R,A 
 ¬ϕ iff F ,R,A 6
 ϕ,

I F ,R,A 
 ϕ ∨ ψ iff F ,R,A 
 ϕ or F ,R,A 
 ψ,

I F ,R,A 
 �ϕ iff F ,R ′,A 
 ϕ for all profiles R ′,

I F ,R,A 
 �ϕ iff F ,R,A′ 
 ϕ for all agenda items A′.

The validity (denoted 
 ϕ) and the global truth in a model
(F 
 ϕ) is defined as usual.
For C ⊆ N, we denote pC :=

∧
i∈C pi ∧

∧
i∈N\C ¬pi (“exactly

voters from C judge that A holds”).
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Expressivity of some properties of SWF’s

Recall that preference aggregation is a special case of judgment
aggregation.

Namely, we can consider agenda items to be ordered
pairs of alternatives, with the intended meaning that the first one
is preferred to the second. Now, consider some properties of
SWF’s which are expressive in JAL:

I We say that a social welfare function F satisfies the Pareto
condition if, whenever all voters prefer x to y , then so does
society. Clearly, this holds iff F 
 ��(p1 ∧ · · · ∧ pn → σ).

I We call F a dictatorship if there is a voter whose preferences
always agree with society’s, i.e. F 


∨
i∈N ��(pi → σ).

I A SWF F is independent of irrelevant alternatives (IIA) if
society’s preference between two alternatives does not depend
on any individual’s ranking of any other alternative. This is
equivalent to F 
 ��

∧
C⊆N(pC ∧ σ → �(pC → σ)).
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Arrow’s Theorem

Denote the formulas from previous examples as follows:

I Pareto := ��(p1 ∧ · · · ∧ pn → σ),

I IIA := ��
∧

C⊆N(pC ∧ σ → �(pC → σ)),

I Dictatorial := F 

∨

i∈N ��(pi → σ).

We can now express (instances of) Arrow’s impossibility theorem
(if there are more then two alternatives, there is no non-dictatorial
SWF that satisfies the Pareto condition and IIA): if |M| > 3, then

 ¬(Pareto ∧ IIA ∧ ¬Dictatorial). Ågotnes et al. make some steps
towards a formal Hilbert-style proof. Later, I developed a natural
deduction system for JAL and provided a formal proof of Arrow’s
Theorem4.

4T. Perkov. Natural deduction for modal logic of judgment aggregation. J.
Log. Lang. Inf., 25:335–354, 2016



Modal logic of social choice functions

Troquard et al. developed a simpler system, aimed to formalize
preference aggregation, instead of judgment aggregation in
general, furthermore considering SCF’s instead of SWF’s, which
enables further simplification.
Nevertheless, it is sufficiently expressive to formalize classical
results of social choice theory, as demonstrated by Ciná and
Endriss, who provided formal proofs of Arrow’s Theorem and some
other results using this system.5

5G. Ciná and U. Endriss. Proving classical theorems of social choice theory
in modal logic. Journal of Autonomous Agents and Multi-Agent Systems,
30:963–989, 2016



Syntax and semantics
We present a fragment used by Ciná and Endriss. As in the case of
JAL, the language is parametrized by N and M. The language has:

I a propositional variable pi ,x ,y for each i ∈ N, x , y ∈ M,

I a propositional variable x for each x ∈ M,

I formulas are built inductively using Boolean connectives and
modalities ♦C , for each C ⊆ N.

This enables perhaps a more intuitive modal interpretation, in
which possible worlds are profiles. The model is determined by a
SCF, similarly as in the case od JAL. Profiles R,R ′ are related by
the accessibility relation corresponding with ♦C iff Ri = R ′i for all
i /∈ C . Naturally:

I F ,R 
 pi ,x ,y iff (x , y) ∈ Ri (“i prefers x to y”),

I F ,R 
 x iff F (R) = x (“x is the winner”),

I F ,R 
 ♦Cϕ iff there is R ′ s.t. R ′i = Ri for all i /∈ C and
F ,R ′ 
 ϕ. (“C can force ϕ by a change of vote, assuming
others do not change the vote”)
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Expressivity of properties of SCF’s

Clearly, a profile R can be specified by a formula, namely the
conjunction of all pi ,x ,y s.t. (x , y) ∈ Ri . It should not lead to
confusion to denote this formula R.

For fixed distinct x and y , by
Rx ,y we denote the conjunction of all pi ,x ,y s.t. (x , y) ∈ Ri and all
pj ,y ,x s.t. (y , x) ∈ Rj . Again, consider properties (adapted to make
sense in the setting of SCFs) involved in Arrow’s Theorem:

I a social choice function F satisfies the Pareto condition iff
F 
 Pareto ′ :=

∧
(x ,y)∈X 2(p1,x ,y ∧ · · · ∧ pn,x ,y → ¬y)

I F is independent of irrelevant alternatives iff
F 
 IIA′ :=

∧
R,x 6=y (♦N(R ∧ x)→ (Rx ,y → ¬y))

I F is dictatorial iff
F 
 Dictatorial ′ :=

∨
i∈N

∧
(x ,y)∈X 2(pi ,x ,y → ¬y).

Similarly as in the case of JAL, Arrow’s Theorem now formalizes
as: if |M| > 3, then 
 ¬(Pareto ′ ∧ IIA′ ∧ ¬Dictatorial ′).
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∨
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 ¬(Pareto ′ ∧ IIA′ ∧ ¬Dictatorial ′).



Logic of knowledge and voting

Bakhtiarinoodeh proposed a modal logic to reason about some
strategic aspects of voting, in particular an ability to manipulate
having only uncertain or incomplete information.

The language of
logic of knowledge and voting (LKV) contains:

I profiles and alternatives as propositional variables

I formulas are built using Boolean connectives, epistemic
modalities Ki for each i ∈ N and public announcement
modalities [ϕ] for each formula of the language
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Semantics of LKV

I possible worlds w are epistemic alternatives, in fact they
correspond to profiles, but there may be several copies of the
same profile. Denote by R(w) the profile corresponding to w .

I accessibility relations corresponding to modalities Ki are usual
epistemic indistinguishability relations (equivalence relations),
denoted by ∼i

A model is determined by a choice of SCF. Truth clauses (omitting
Boolean cases) are:

I F ,w 
 R iff R = R(w)

I F ,w 
 x iff w ∈ V (x) iff x = F (R(w))

I F ,w 
 Kiϕ iff for all v s.t. w ∼i v we have F , v 
 ϕ (“i
knows ϕ if ϕ holds in all worlds indistiguishable to i from the
current world”)

I F ,w 
 [ϕ]ψ iff F ,w 
 ϕ implies that ψ holds in the model
restricted only to worlds in which ϕ holds (“after the public
announcement of ϕ, ψ holds”)
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