
1

Towards the Verification of Industry 4.0 Applications

Vivek Nigam & Carolyn Talcott

fortiss GmbH, Germany & SRI International, USA

2

Industry 4.0

New manufacturing paradigm where devices (IoT devices, sensors)
are highly interconnected, forming a cyber-physical system.

Smart Factory
• Key features: Interoperability, Information Transparency (raw data

into high level data), Decentralized Decisions, Technical
Assistance;

• Examples: Plug and Produce; using the cloud to optimize
production, easy configuration of new production variants;

• Fortiss Future Factory: https:
//www.youtube.com/watch?time_continue=202&v=Tkcv-mbhYqk

3

4Diac

Programming Industry 4.0 Applications using Models: 4Diac
framework.

4Diac implements the IEC 61499
standard for distributed industrial

processes.

An application is
composed by

function block
(FB) connected

by links.
Links transmit

events and data
between FBs.

The behavior of
the FB is

specified by a
(deterministic)
Mealy Machine.

4

4Diac Modeling by Example

Application: Simplified PickNPlace

Vac Arm

ControllerVacOn

VacOff GoL

GoR

HasVac

NoVac

AtL

AtR
on
off

L
mvL
R
mvR

5

4Diac Modeling by Example

Good
Controller

Init LOff

LOn

ROff

ROn
start
GoR

atR
VacOn

HasVac

GoL

atL

VacOffGoREvent
sent

Event
received

6

Challenges

Cyber Attacks can cause Catastrophic Events.

• Cyber-attacks were able to take control of a German mill;

• Ukranian power-station disabled by a cyber-attack;
• Jeep hijacked by hackers;
• Cyber-attacks are able to disable car safety mechanisms.

7

Levels of Abstraction

• Application Level: Logical
level without taking into
account the deployment nor
the network topology of the
system.

• System Level: FBs are
deployed into devices. The
network topology is abstract.
(The colours of the FBs in
4Diac.)

• Network Level: FBs are
deployed into devices which
are connected through a
network topology. (Currently
being implemented in 4Diac.)

8

Levels of Abstraction

• Application Level: Logical
level without taking into
account the deployment nor
the network topology of the
system.

• System Level: FBs are
deployed into devices. The
network topology is abstract.
(The colours of the FBs in
4Diac.)

• Network Level: FBs are
deployed into devices which
are connected through a
network topology. (Currently
being implemented in 4Diac.)

Vast number of examples
where formal verification
can help, including
intruder models.

New challenges for formal
verification. Devices are weak
devices. Powerful Dolev-Yao
intruders are not realistic. We
need new intruder models with
simpler decision problems.

Additionally, one can use
network defences, such as,
filtering suspicious
messages.

9

4Diac Modeling by Example

Overview
• We formally specified an extension with security concerns of

4Diac semantics in Maude.

Features:

• Feature 1 - Specification of Applications: Model check for logic
errors in the application;

• Feature 2 - Deployment: Deployment of applications in systems
(sets of devices) as well as in networks (sets of devices
connected through switches);

• Feature 4 - Defensive Wrappers: Specification of wrappers
relying on signed messages;

• Feature 3 - Intruders: Specification of intruders that can inject
messages into channels;

10

4Diac Modeling by Example

Good
Controller

Init LOff

LOn

ROff

ROn
start
GoR

atR
VacOn

HasVac

GoL

atL

VacOffGoREvent
sent

Event
received

11

4Diac Modeling by Example
Vac Arm

ControllerVacOn

VacOff GoL

GoR

HasVac

NoVac

AtL

AtR
on
off

L
mvL
R
mvR

Bad State: Arm in state mvL and Vac in state
off as may lead to the safety hazard of dropping

the cap.

12

4Diac Modeling by Example

Encoding of example in Maude:

[[app, fb(vac, st("off"), none, none)
fb(track, st("L"), none, none)
fb(ctl, st("init"), none, none)
{{ctl,inEv("start")},ev("start")},none]]

appInit = Function
Block States

Input messages to be processed

Configurations

State Transitions specified as equations

tr(st("init"), st("LOff"), inEv("start") is ev("start"), outEv("GoR") :~ev("GoR"))

13

4Diac Modeling by Example

Encoding of example in Maude:

Operational Semantics specified as rewrite rules over configurations

crl[app-exe1]: [[id,fbs,iMsgs,none]]
=>

[[id,deliverToFBs(fbs,iMsgs),none,none]]
if not (iMsgs == none) .

14

4Diac Modeling by Example

Bad
Controller

Init LOff

LOn

ROff

ROn
start
GoR

atR
VacOn

HasVac

GoL

atL

VacOff

GoR

May lead to a bad state depending on which event is processed first.

15

4Diac Modeling by Example

• Feature 1 - Specification of Applications: Model check for logic
errors in the application;

search badappInit =>* app such that badState(app) .

Finds 4 ways of reaching a bad state in less than 2ms traversing 35
states.

search appInit =>* app such that badState(app) .

Determines that there is no way to reach a bad state in 1ms
traversing 36 states.

• badappInit is the configuration with the bad controller.

• appInit is the configuration with the good controller.

16

4Diac Modeling by Example
• Feature 2 - Deployment: Deployment of applications in systems

(sets of devices)...;

Device 1

FB11
· · · FB1n1

Device 2

FB21
· · · FB2n2

Device m

FBm1
· · ·

FBmnm

· · ·

Abstract Network

Deployment is computed automatically from the applications and a
function block to device mapping.

17

4Diac Modeling by Example
• Feature 2 - Deployment: Deployment of applications in systems

(sets of devices)...;

Vac Arm

ControllerVacOn

VacOff GoL

GoR

HasVac

NoVac

AtL

AtR
on
off

L
mvL
R
mvR

Device 1 Device 2

Device 3

18

4Diac Modeling by Example
• Feature 3 - Intruders: Specifcation of intruders that can inject

messages into channels;

Msg 1

Msg n

Intruder
Device

. . .

• Intruder can inject at any time any anyone of the
messages Msg 1, . . ., Msg n in the system.

• In the current implementation, intruders can only
use a message once. On the one hand, it reduces
state space, but on the other hand, it reduces the
capabilities of the intruder.

19

4Diac Modeling by Example
• Feature 3 - Intruders: Specifcation of intruders that can inject

messages into channels;

Vac Arm

ControllerVacOn

VacOff GoL

GoR

HasVac

NoVac

AtL

AtR
on
off

L
mvL
R
mvR

Device 1 Device 2

Device 3

Msg 1

Msg n

Intruder
Device

. . .

20

4Diac Modeling by Example
• Feature 3 - Intruders: Specifcation of intruders that can inject

messages into channels;

Configuration: wsysIntruderNoPol
• Intruder possess only one message:

{{dev3,{ctl,outEv("VacOff")}},{dev1,{vac,inEv("VacOff")}},ev("VacOff")} .

search wsysIntruderNoPol =>* wsys such that badState(wsys) .

Finds 7 attacks in less than 4ms traversing 154 states.

21

4Diac Modeling by Example
• Feature 4 - Defensive Wrappers: Specifcation of wrappers

relying on signed messages;

Device

FB1
· · · FBn

In
Policy

Out
Policy

Set of out events specifying
which events, {ev1, . . . , evn}

that are sent to the network
signed:
sign(ev1, sk), . . . , sign(evn, sk).

For example, out policy of
Device 1 with the controller:
{VacOff}.

Set of pairs of input events
and devices,
{(ev1, dev1), . . . , (evn, devn)}.

Device only accepts these
events if signed by the
correct device.
For example, device with Vac
in policy: {(VacOff,Device 1}.

22

4Diac Modeling by Example
• Feature 4 - Defensive Wrappers: Specifcation of wrappers

relying on signed messages;

Configuration: wsysIntruderPol
• Intruder possess only one message:

{{dev3,{ctl,outEv("VacOff")}},{dev1,{vac,inEv("VacOff")}},ev("VacOff")} .

search wsysIntruderPol =>* wsys such that badState(wsys) .

Check that there are no attack in less than 4ms traversing 38 states.

• Devices with defensive wrappers.

23

4Diac Modeling by Example
• Feature 2 - Deployment: ... as well as in networks (sets of

devices connected through switches);

Device 1

FB11
· · · FB1n1

Device 2

FB21
· · · FB2n2

Device m

FBm1
· · ·

FBmnm

· · ·

Switch 1 Switch k· · ·
Foward Rules Foward Rules

24

4Diac Modeling by Example
• Feature 2 - Deployment: ... as well as in networks (sets of

devices connected through switches);

Configuration: netIntruderNoPol
• Intruder possess only one message:

{{dev3,{ctl,outEv("VacOff")}},{dev1,{vac,inEv("VacOff")}},ev("VacOff")} .

search netIntruderNoPol =>* nsys such that badState(nsys) .
Finds 12 attacks in around 60ms traversing 488 states.

• Devices without defensive wrappers;
• Devices connected through one switch.

Configuration: netIntruderPol
• Devices with defensive wrappers;

search netIntruderPol =>* nsys such that badState(nsys) .
Concludes that there are no attacks in 25ms traversing 200 states.

25

4Diac Modeling by Example
• Feature 2 - Deployment: ... as well as in networks (sets of

devices connected through switches);

Configuration: netIntruderPol
• Intruder possess only one message:

{{dev3,{ctl,outEv("VacOff")}},{dev1,{vac,inEv("VacOff")}},ev("VacOff")} .

search netIntruderPol =>* nsys such that badState(nsys) .

Checks that no attack is possible in 13ms traversing 98 states.

• Devices with defensive wrappers;

• Devices connected through one switch.

26

Other uses of Formal Verification
Deployment Optimization: Encryption is heavy and undersirable
as it leads to delays. Unfeasible for applications such as the Tomato
Separator:

https://www.youtube.com/watch?v=EBddJjYNp0g

FB1, . . . , FBn

Bad States

Intruder
Model

Our Idea (still under development)

Model
Checker

Assuming
finest

distribution,
i.e., a FB per

device.

Upper-Bound
on Critical

Events

Ev1, . . . , Evn

Dv1, . . . ,Dvm

Actual Devices
(network topology)

Deployment
that minimizes
the number of
critical events
sent into the

network.

SMT-
Solver

27

Further Questions

Issues / Questions

• Intruder Model:

Is it running on a good device?
Is it running on its own device?
What information can we rely on the HW/wiring to provide that
is not fungible?

• Defenses using Network:

Can we use firewall to mitigate attacks, by, e.g., isolate
sub-nets?
Port Security?

• Performance:
TSN communication;
What is the impact of signature? Weaker signature schemes?

28

Future Work

• Model defenses for switches: firewalls?, SDN rules?

• Include data channels;
• Stronger Intruder Models: Symbolic Analysis
• Stronger defensive wrappers;
• Investigate scalability;
• Extend model with TSN.

Questions?

• Decision problems and complexity results;

