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Incidence theorems

For three mutually distinct colinear points X, Y and Z in R2, let

(X,Y;Z) =df

{ XZ
YZ , if Z is between X and Y,

−XZ
YZ , otherwise.

Menelaus’ theorem
For a triangle ABC and points P, Q and R (different from the vertices) on the
lines BC, CA and AB respectively, it holds that

P,Q,R are colinear iff (B,C ;P) · (C,A ;Q) · (A,B ;R) = −1.
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The sextuple ABCPQR is a Menelaus configuration.



Incidence theorems

Desargues’ theorem
If ABC and UVW are two triangles such that A ̸= U, B ̸= V and C ̸= W, if
BC ∩ VW = {P}, AC ∩ UW = {Q} and AB ∩ UV = {R}, then

AU, BV and CW are concurrent iff P, Q and R are colinear.
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(C,D ;W) · (D,B ;V) · (B,C ;P) = −1
(D,C ;W) · (A,D ;U) · (C,A ;Q) = −1
(B,D ;V) · (D,A ;U) · (A,B ;R) = −1

(B,C ;P) · (C,A ;Q) · (A,B ;R) = −1

By Menelaus, P,Q,R are colinear.

Cyclic sequent:
⊢ ABCPQR,ABDVUR,ACDWUQ,BCDWVP

Whenever 3 out of 4 sextuples is a Menelaus configuration, then so is the fourth.
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Homology meets Menelaus

J. Richter-Gebert
Meditations on Ceva’s theorem
The Coxeter Legacy: Reflections and Projections (C. Davis and E.W. Ellers,
editors), American Mathematical Society and Fields Institute, Providence, 2006,
pp. 227-254

We consider compact, orientable 2-manifolds without boundary and
subdivisions by CW-complexes whose faces are triangles. Consider such
a cycle as being interpreted by flat triangles. The presence of Menelaus
configurations on all but one of the faces implies the existence of a
Menelaus configuration on the final face.

M-complexes:
finite, homogeneous 2-dimensional, regular, linked, orientable ∆-complexes
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Permutations of vertices and switching of triangles

◦ If A1A2A3B1B2B3 makes a Menelaus configuration and π is a permutation
of the set {1, 2, 3}, then the sextuple

Aπ(1)Aπ(2)Aπ(3)Bπ(1)Bπ(2)Bπ(3)

makes a Menelaus configuration, too.

◦ If ABCPQR makes a Menelaus configuration, then the sextuples BPRQAC,
ARQPCB and CPQRAB make Menelaus configurations, too.
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The Menelaus system

◦ Atomic formulae: F 6(W) = W 6 − {X1 . . .X6 ∈ W | Xi ̸= Xj for i ̸= j}

◦ Sequents: finite multisets of formulae; denoted by ⊢ Γ

◦ For an M-complex L such that L0 ∪ L1 ⊆ W, let ν : L2 → F 6(W) be
defined as νx = d1d2x d0d2x d0d0x d0x d1x d2x.

⊢ {νx | x ∈ L2}

⊢ ABCPQR,BCAQRP ⊢ ABCPQR,ARQPCB

⊢ Γ, φ ⊢ ∆, φ

⊢ Γ,∆



The Menelaus system is sound

◦ A Euclidean interpretation is a function from W to R2.
◦ An interpretation satisfies the atomic formula ABCPQR when the sextuple

ABCPQR of points in R2 is a Menelaus configuration.
◦ Let Γ |=E φ mean that every Euclidean interpretation that satisfies every

formula in Γ also satisfies φ.

Theorem
Suppose that Γ = {x1, . . . , xn}. If ⊢ Γ, xi is derivable, then Γ |=E xi.

Proof. By induction on the complexity of a derivation of ⊢ Γ, xi. aa
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◦ Suppose ⊢ Γ, xi is an axiomatic sequent derived from an M-complex L.

Define h : (C1,+, 0) → (R\{0}, ·, 1) by h(a) = h(y1)α1 ·. . .· h(ym)αm , for

a =

m∑
i=1

αiyi and h(yi) = (vd0yi, vd1yi; vyi).
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Therefore, assuming that ∂xi = P − Q + R, we have

h(∂xi) = (C,B ;P) · (C,A ;Q)−1 · (B,A ;R)

= ((B,C ;P) · (C,A ;Q) · (A,B ;R))−1.



The Menelaus system is sound

◦ A Euclidean interpretation is a function from W to R2.
◦ An interpretation satisfies the atomic formula ABCPQR when the sextuple

ABCPQR of points in R2 is a Menelaus configuration.
◦ Let Γ |=E φ mean that every Euclidean interpretation that satisfies every

formula in Γ also satisfies φ.

Theorem
Suppose that Γ = {x1, . . . , xn}. If ⊢ Γ, xi is derivable, then Γ |=E xi.

Proof. By induction on the complexity of a derivation of ⊢ Γ, xi.
◦ Suppose ⊢ Γ, xi is an axiomatic sequent derived from an M-complex L.

By orientability of L, we have that
∂xi =

∑
j̸=i

εj∂xj,

where |{j | j ̸= i}| is odd, and where h(εj∂xj) = −1. Therefore, h(∂xi) = −1.



The Menelaus system is decidable
For a multiset Γ of formulae, let λ(Γ) be the set of elements of W occurring in Γ,
and let κ(Γ) be the number of elements of Γ.
Lemma (finiteness of the search space). For every sequent ⊢ ∆ that occurs in
a derivation of ⊢ Γ, we have that λ(∆) ⊆ λ(Γ) and 2 ≤ κ(∆) ≤ κ(Γ).

Theorem
There exists a decision procedure for determining whether a sequent ⊢ Γ is
derivable in the Menelaus system.

Proof. First, note that the set of axiomatic sequents is decidable. Then, let
S = {⊢ ∆ |λ(∆) ⊆ λ(Γ) and 2 ≤ κ(∆) ≤ κ(Γ)}.

Let S0 ⊆ S be the subset of axiomatic sequents.
◦ If Γ ⊆ S0, ⊢ Γ is derivable.
◦ Otherwise, let S1 contain the elements of S0 and all the sequents from S

obtained from two S0 sequents by a single application of cut.
→ If S1 = S0, ⊢ Γ is not derivable.
→ Otherwise, we proceed in the same manner...
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From derivable sequents to incidence results

Desargues’ theorem
If ABC and UVW are two triangles such that A ̸= U, B ̸= V and C ̸= W, if
BC ∩ VW = {P}, AC ∩ UW = {Q} and AB ∩ UV = {R}, then

AU, BV and CW are concurrent iff P, Q and R are colinear.
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From derivable sequents to incidence results

Theorem
Let AU, BV and CW be concurrent lines in R2, and let X and E be such that B,
X and E are colinear. For {P} = BC ∩ VW, {Q} = AC ∩ UW, {R} = AB ∩ UV,
{Y} = AX ∩ RE, {Z} = XC ∩ EP, the points Q, Y and Z are colinear.

A

B

C

D

U

V

W

Z

P

Q

RX

Y

E

⊢ ABDVUR, BCDWVP, ACDWUQ,ABCPQR
⊢ ABCPQR,BPRQAC
⊢ BREYXA,BPEZXC, RPEZYQ, BPRQAC

⊢ ABDVUR, BCDWVP, ACDWUQ,
⊢ BREYXA,BPEZXC, RPEZYQ
aaa
aaa



From derivable sequents to incidence results

X Z

X

Z

X

ZX

Z

X

Z

Y

1

1

2

2 3

3

4

4 5

5

A B

C

D

E
FG

H

I

J

⊢ (X,Y,Z,B, 1,A), (X,Y,Z,B, 2,C), (X,Y,Z,D, 3,C), (X,Y,Z,D, 4,E),

(X,Y,Z,F, 5,E), (X,Y,Z,F, 1,G), (X,Y,Z,H, 4,G),

(X,Y,Z,H, 5, I), (X,Y,Z, J, 2, I), (X,Y,Z, J, 3,A)



From derivable sequents to incidence results

⊢ (X,Y,Z,B, 1,A), (X,Y,Z,B, 2,C), (X,Y,Z,D, 3,C), (X,Y,Z,D, 4,E),

(X,Y,Z,F, 5,E), (X,Y,Z,F, 1,G), (X,Y,Z,H, 4,G),

(X,Y,Z,H, 5, I), (X,Y,Z, J, 2, I), (X,Y,Z, J, 3,A)

G A I C E X
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Z

1
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4
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D

B
F
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H



Thank you!
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