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History of Action Logic

• S. C. Kleene 1956: iteration (Kleene star) introduced.

• W. Krull 1924; M. Ward & L. P. Dilworth 1939: residuated

partially ordered algebraic structures.

• J. Lambek 1958: the Lambek calculus (the logic of

residuated semigroups, introduced for linguistic purposes).
• V. Pratt 1991: action algebras, or residuated Kleene algebras

(language: ·,∨, ∗, \, /)

• Motivation: action algebras form a finitely based variety (main

axiom: (p / p)∗ = p / p), while Kleene algebras do not

[V. N. Redko 1964].

• D. Kozen 1994: action lattices (adding ∧)

• Motivation: action lattices are closed under matrix formation.

• W. Buszkowski, E. Palka 2007: an infinitary sequent calculus

for the inequational theory of *-continuous action lattices,

cut elimination & complexity.
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Standard Examples of Action Lattices

• Algebra of formal languages, P(Σ∗) (so-called L-models):
• multiplication is pairwise concatenation:

A · B = {uv | u ∈ A, v ∈ B};
• Kleene star is language iteration:

A∗ = {u1 . . . uk | k ≥ 0, ui ∈ A};
• residuals are Lambek-style language divisions:

A \B = {u ∈ Σ∗ | (∀v ∈ A) vu ∈ B},
B /A = {u ∈ Σ∗ | (∀v ∈ A) uv ∈ B};

• � is ⊆; ∨ and ∧ are interpreted as ∪ and ∩.

• Algebra of relations, P(W ×W ) (so-called R-models):
• multiplication is composition of relations;

• Kleene star is reflexive-transitive closure;

• residuals are relation divisions:

A \B = {〈y , z〉 ∈W ×W | (∀〈x , y〉 ∈ A) 〈x , z〉 ∈ B},
B /A = {〈x , y〉 ∈W ×W | (∀〈y , z〉 ∈ A) 〈x , z〉 ∈ B};

• �, ∨, and ∧ are set-theoretic.

2/23



Standard Examples of Action Lattices

• Algebra of formal languages, P(Σ∗) (so-called L-models):
• multiplication is pairwise concatenation:

A · B = {uv | u ∈ A, v ∈ B};
• Kleene star is language iteration:

A∗ = {u1 . . . uk | k ≥ 0, ui ∈ A};
• residuals are Lambek-style language divisions:

A \B = {u ∈ Σ∗ | (∀v ∈ A) vu ∈ B},
B /A = {u ∈ Σ∗ | (∀v ∈ A) uv ∈ B};

• � is ⊆; ∨ and ∧ are interpreted as ∪ and ∩.

• Algebra of relations, P(W ×W ) (so-called R-models):
• multiplication is composition of relations;

• Kleene star is reflexive-transitive closure;

• residuals are relation divisions:

A \B = {〈y , z〉 ∈W ×W | (∀〈x , y〉 ∈ A) 〈x , z〉 ∈ B},
B /A = {〈x , y〉 ∈W ×W | (∀〈y , z〉 ∈ A) 〈x , z〉 ∈ B};

• �, ∨, and ∧ are set-theoretic.
2/23



(In)equational Theories

• In this talk, we are interested in inequational theories of

classes of algebraic systems with residuals and iteration.

• The inequational (atomic) theory is the set of all statements

of the form α � β, where α and β are formulae (terms) in the

signature of the algebra, which are generally true in all

algebras of the given class.
• Why inequational theories?

• Kozen 2002: the Horn theory (talking about statements of the

form α1 � β1 & . . .&αn � βn ⇒ γ � δ) is Π1
1-complete

already for the Kleene algebra signature (∗,∨,�), for L-models.

• For inequational theories, interesting complexity results can be

obtained.

• In presence of ∨, inequational theories are essentially the same

as equational ones, by α � β ⇐⇒ α ∨ β = β.
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ACTω: Infinitary Action Logic

α ` α
Γ,∆ ` γ

Γ, 1,∆ ` γ Λ ` 1


L1



MALC

Π ` α Γ, β,∆ ` γ
Γ,Π, α \β,∆ ` γ

α,Π ` β
Π ` α \β

Γ, α, β,∆ ` γ
Γ, α · β,∆ ` γ

Π ` α Γ, β,∆ ` γ
Γ, β / α,Π,∆ ` γ

Π, α ` β
Π ` β /α

Γ ` α ∆ ` β
Γ,∆ ` α · β

Γ, α1,∆ ` γ Γ, α2,∆ ` γ
Γ, α1 ∨ α2,∆ ` γ

Π ` αi

Π ` α1 ∨ α2

Γ, αi ,∆ ` γ
Γ, α1 ∧ α2,∆ ` γ

Π ` α1 Π ` α2

Π ` α1 ∧ α2(
Γ, αn,∆ ` γ

)∞
n=0

Γ, α∗,∆ ` γ
Π1 ` α . . . Πn ` α

Π1, . . . ,Πn ` α∗
n ≥ 0
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Properties of ACTω

• W. Buszkowski & E. Palka 2008: the derivability problem for

ACTω is Π0
1-complete.

• E. Palka 2008: cut elimination for ACTω

Π ` α Γ, α,∆ ` γ
Γ,Π,∆ ` γ Cut

• ACTω is complete w.r.t. a general class of algebraic models,
namely, *-continuous residuated Kleene lattices

:

• · and 1 impose a monoid structure;

• � (in sequents, `) is a lattice preorder, ∨ and ∧ being join and

meet;

• \ and / are residuals of · w.r.t. �:

β � α \ γ ⇐⇒ α · β � γ ⇐⇒ α � γ / β;

• α∗ = sup�{αn | n ≥ 0}.
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Incompleteness

• However, ACTω is incomplete w.r.t. L-models and R-models.

• The reason is the distributivity law,

α ∧ (β ∨ γ) ` (α ∧ β) ∨ (α ∧ γ).

• There are also corollaries of this law which yield
incompleteness for restricted languages:

• (s /(r / r)) ∧ (s /(p+ ∧ q+)) ` s /(p∗ ∧ q∗) [S. K. 2018]

• ((x / y) ∨ x) /((x / y) ∨ (x / z) ∨ x), (x / y) ∨ x , ((x / y) ∨
x) \((x / z) ∨ x) ` (x /(y ∨ z)) ∨ x

[M. Kanovich, S. K., A. Scedrov 2019]
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Completeness Results

• Completeness results for fragments:

• H. Andréka & Sz. Mikulás 1994: R-completeness for \, /, ·,∧
• W. Buszkowski 1982: L-completeness for \, /,∧
• M. Pentus 1995: L-completeness for \, /, ·
• N. Ryzhkova & S. K. 2015: L-completeness for \, /,∧, and ∗

restricted to subformulae of the form α∗ \β or β /α∗

• S. K. 2018: R-completeness for \, /, ·,∧, and restricted ∗.

• Restricted fragments are still Π0
1-hard [S. K. 2019]. Thus, we

get Π0
1-hardness for inequational theories of L- and R-models.

• In whole, ACTω is complete w.r.t. syntactic concept lattices

introduced by C. Wurm in 2015–17 [D. Makarov 2019].
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Syntactic Concept Lattices

• Syntactic concept lattices are a modification of L-models

which avoid distributivity

... and are in a sense more natural

from the linguistic point of view!

• Fix a language L (“all correct sentences”).

• For an arbitrary language A, let

AB = {〈u, v〉 | (∀w ∈ A) uwv ∈ L}

ABC = {w | (∀〈u, v〉 ∈ AB) uwv ∈ L}

• BC is a closure operation: A ⊆ ABC and ABCBC = ABC.

• We use only closed sets (such that A = ABC), which

correspond to linguistic concepts: say, if A included the word

“dog,” ABC is likely to include “cat” also.

• When interpreting operations of ACTω, we add closure, if

needed.
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Proof of Π0
1-hardness

Buszkowski’s proof of Π0
1-hardness for ACTω goes via the totality

problem for context-free grammars.

M, x

Turing machine

and its input

GM,x

context-free

grammar

ψM,x

formula

of ACTω

M does not

halt on x

GM,x generates

all non-empty words

ψ+
M,x ` S is

derivable in ACTω

⇐⇒ ⇐⇒
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Proof of Π0
1-hardness

M, x

Turing machine

and its input

GM,x

context-free

grammar

ψM,x

formula

of ACTω

• The construction of GM,x is standard (see textbooks).

• For ψM,x , we translate GM,x into Lambek categorial grammar.

• Let GM,x be in Greibach normal form, and for each rule

A⇒ aB1 . . .Bk take A /(B1 · . . . · Bk).

• Let ϕa be the conjunction of all such formulae for a particular

a ∈ Σ.

• Let ψM,x =
∨

a∈Σ ϕa.

• ψ+
M,x ` S means exactly “any non-empty word is derivable

from the starting symbol S .”
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Π0
1-hardness without ∨ and ∧

• One can prove Π0
1-hardness without ∨ and ∧ [S. K. 2019].

• This is achieved by using Lambek grammars with unique

type assignment [A. Safiullin 2007]. In such a grammar,

each letter receives a syntactic type ϕa without ∧.

• Next, we restrict ourselves to Σ = {a, b} and use the sequent

(ϕ+
a · ϕ+

b )+ ` s.

• Safiullin’s construction originally worked for the Lambek

calculus with non-empty antecedent restriction, but can be

modified for L1 also.
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Action Lattices

• In general, Kleene star is not required to be *-continuous, but

is rather defined as a least fixpoint:

a∗ = min{b | 1 � b & a · b � b}.

• Existence of non-*-continuous residuated Kleene algebras can

be shown by Gödel–Mal’cev compactness theorem. Explicit

examples also available [S. K. 2018].

• Yet, no natural classes of non-*-continuous RKLs known.

• The inequational theory of all RKLs [V. Pratt 1991]:

ACT = MALC + 1 ∨ α ∨ α∗ · α∗ ` α∗ +

α∗ ` (α + β)∗ + (α \α)∗ ` α \α + Cut

• Pozor! No good (cut-free) sequent calculus known, thus we

do not know conservativity of elementary fragments in ACT.
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Complexity of ACT

• ACT is Σ0
1-complete [S. K. 2019]

(solving a problem left

open by D. Kozen, P. Jipsen, W. Buszkowski).

• We also feature Σ0
1-completeness of fragments \, /, ·,∨, ∗

(original action algebras by Pratt) and \, /, ·,∧, ∗.
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Inspiration: Circular Proofs for ACT

• ACTω can be equivalently reformulated as a system with

non-well-founded proofs [A. Das & D. Pous 2018]:

Γ,∆ ` γ Γ, α, α∗,∆ ` γ
Γ, α∗,∆ ` γ Λ ` α∗

Γ ` α ∆ ` α∗
Γ,∆ ` α∗

• Proofs are allowed to have infinite branches.

• Correctness condition: each infinite branch has an

application of the left rule for ∗, where the branch goes right.

• Circular fragment: consider non-well-founded proofs,
possibly with cut, with a finite number of non-isomorphic
subtrees.

This fragment axiomatises ACT.

• Caveat! Adding symmetric versions of the rules yields a

system ACTbicycle which is stronger than ACT: it derives

(p ∧ q ∧ (p / q) ∧ (p \ q))+ ` p, which is not derivable in ACT

[S. K. 2018].
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Inspiration: Circular Proofs for ACT

• In circular proofs, an argument supporting a sequent relies on

the sequent itself. However, correctness conditions make this

sound, since we have to use the left rule and thus perform an

inductive step.

• Idea: while ACTω can prove non-halting for an arbitrary

Turing machine M and input word x (if it is so), by deriving

ψ+
M,x ` S , the circular fragment could prove it in the case

when M goes into a cycle while running on x .

15/23



Inspiration: Circular Proofs for ACT

• In circular proofs, an argument supporting a sequent relies on

the sequent itself. However, correctness conditions make this

sound, since we have to use the left rule and thus perform an

inductive step.

• Idea: while ACTω can prove non-halting for an arbitrary

Turing machine M and input word x (if it is so), by deriving

ψ+
M,x ` S , the circular fragment could prove it in the case

when M goes into a cycle while running on x .
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Proving Σ0
1-hardness for ACT

• Let qc be a state of M in which it goes into a cycle.

• Then we add the following production rules to GM,x , making

this fact explicit:

U ⇒ a U ⇒ aU S ⇒ #CU C ⇒ aC C ⇒ qcU

(# is the starting symbol of a protocol)

• We also add S ⇒ #TU, where T (“trash”) generates all

malformed protocols, which cannot be repaired by further

extension.

• Now, if a word starting with # is long enough (longer than

the length of a partial protocol reaching qc), it can be

generated either by S ⇒ #CU (if it is a prefix of the correct

infinite protocol), or by S ⇒ #TU.

• (If the word does not start with #, we can use the rule

S ⇒ aU, where a 6= #.)
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Proving Σ0
1-hardness for ACT

• We encode this reasoning in ACT by using the long rule:

ψ ` S ψ2 ` S . . . ψn ` s ψn, ψ+ ` s

ψ+ ` S

• The first n premises are derivable exactly as in ACTω (they

do not contain ∗).
• For the last one, the derivation is as follows.

• We derive all sequents of the form ϕa1 , . . . , ϕan , ψ
+ ` S .

Consider the case where one of the ai is qc , and we use

S ⇒ #CU (others are similar).

• First we derive ψ+ ` U (see next slide).

• Then we do the following (by cut):

ϕa2 , . . . , ϕan ` C S /(C · U),C ,U ` S

S /(C · U), ϕa2 , . . . , ϕan ,U ` S
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Derivation of ψ+ ` U

ψ ` U

Λ ` ψ \U
ψ ` ψ

ψ ` U /U

ψ,U ` U

U ` ψ \U
ψ,ψ \U ` ψ \U

ψ∗ ` ψ \U
ψ,ψ∗ ` U

ψ+ ` U

18/23



Proving Σ0
1-hardness of ACT

• In order to finish the proof, introduce the following notations:

• C = {〈M, x〉 |M reaches qc on x}
• H = {〈M, x〉 |M halts on x}
• K(ACT) = {〈M, x〉 | ACT derives ψ+

M,x ` s},
ditto for ACTω.

• We now know that

C ⊆ K(ACT) ⊆ K(ACTω) = H.

• C and H are recursively inseparable, thus ACT is

undecidable.

• C and H are effectively inseparable, thus ACT is

Σ0
1-complete.
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Σ0
1-hardness with only one of ∨ and ∧

• In order to leave only one of ∨ and ∧, we use the

pseudo-double-negation trick.

• For a variable b, let αb = b /α.

• In MALC, α1, . . . , αn ` β is equiderivable with

αbb
1 , . . . , αbb

n ` βbb.

• In order to get rid of ∧, we replace ϕa with ϕbb
a , and use the

fact that (γ ∨ δ)b ≡ γb ∧ δb. The sequent used now is

ψ̃+ ` Sbb.

• For the system without ∨, we take the original ϕa’s, but

replace ψ with ψbb (again, ∨ turns to ∧).

• Since we do not know conservativity, we need to reprove

everything (including the long rule)!
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Complexity Synopsis

• For ACTω, we have Π0
1-completeness, starting from the

language of \, /, ·, ∗.
• For ACT, we have Σ0

1-completeness, even with only one of ∨
and ∧.

• In the language of ·,∨, ∗ (Kleene algebras), the two systems

coincide and the fragment is PSPACE-complete [D. Kozen

1994].

• MALC is PSPACE-complete [M. Kanovich 1994], even in the

minimal fragments (\,∨) and (\,∧) [M. Kanovich, S. K.,

A. Scedrov 2019].

• The Lambek calculus is NP-complete [M. Pentus 1996], even

in fragments (\, /) and (\, ·) [Yu. Savateev 2008].

• The Lambek calculus with only one division is polytime

decidable [Yu. Savateev 2007].
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Open Questions

• Complexity:

• Kleene lattices (·,∨,∧, ∗).

• ACT with only \, /, ·, ∗ (Lambek calculus with iteration).

• L-/R-completeness: Lambek calculus with iteration.

• Cut-free sequent calculus for ACT (maybe some circular

approach?).
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