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e J. Lambek 1958: the Lambek calculus (the logic of
residuated semigroups, introduced for linguistic purposes).

V. Pratt 1991: action algebras, or residuated Kleene algebras

(language: -, Vv, *,\,/)
e Motivation: action algebras form a finitely based variety (main

axiom: (p/p)* = p/p), while Kleene algebras do not
[V. N. Redko 1964].
D. Kozen 1994: action lattices (adding A)
e Motivation: action lattices are closed under matrix formation.

e W. Buszkowski, E. Palka 2007: an infinitary sequent calculus
for the inequational theory of *-continuous action lattices,

cut elimination & complexity. 123



Standard Examples of Action Lattices

e Algebra of formal languages, P(X*) (so-called L-models):

e multiplication is pairwise concatenation:
A-B={uv|ueA,veB};

e Kleene star is language iteration:

A ={u...u | k>0,u; € A},

e residuals are Lambek-style language divisions:
A\B={ueXx*|(VveA)we B},
B/A={ueX*|(VveAuveB}

e <is C; V and A are interpreted as U and N.
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e residuals are Lambek-style language divisions:
A\B={ueXx*|(VveA)we B},
B/A={ueX*|(VveAuveB}

e <is C; V and A are interpreted as U and N.

e Algebra of relations, P(W x W) (so-called R-models):

e multiplication is composition of relations;

e Kleene star is reflexive-transitive closure;

e residuals are relation divisions:

A\B={(y,z) e W x W | (V{(x,y) € A)(x,z) € B},
B/A={{x,y) € Wx W|(¥y,2) € A) (x,2) € B};

e =, V, and A are set-theoretic.
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e Kozen 2002: the Horn theory (talking about statements of the
form a; X B1&... & a, = B, = v < 6) is Mi-complete
already for the Kleene algebra signature (*,V, <), for L-models.

e For inequational theories, interesting complexity results can be
obtained.

e In presence of V, inequational theories are essentially the same
as equational ones, by a <X f <= aV g = 0.

3/23



ACT: Infinitary Action Logic

S Lavry —
ot « N1L,ARFYy A1

Mo TLB8AFy oS Mo B,AF~y
MMa\B,AFy NkEa\p Ma-B,AF~

Mo T8,AFy Makpg lNa AFRpS
re/al ARy Nk-g/a NMAFo-f

Ma, Ay Ta), A~y MNE q;
MaiVay, A~y MEaoag Vo
Mo, AR~y MEoa; MEa
Mai Aag, A~y MEai Aas
Ma", Ak o
( Nio MFa ... Mo o

Ma*  AkF~y My,....,M, Fa*
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o W. Buszkowski & E. Palka 2008: the derivability problem for
ACT,, is M-complete.
e E. Palka 2008: cut elimination for ACT,,
Mo Mo ARy
MILAEy
e ACT, is complete w.r.t. a general class of algebraic models,
namely, *-continuous residuated Kleene lattices:
e - and 1 impose a monoid structure;

e =< (in sequents, F) is a lattice preorder, V and A being join and
meet;

Cut

e \ and / are residuals of - w.r.t. <:
BRa\y <= a B2y < a=xv/p;

e a* =sup_{a”|n>0}.
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e However, ACT,, is incomplete w.r.t. L-models and R-models.

e The reason is the distributivity law,

aA(BVA)F(aAB)V(an).

e There are also corollaries of this law which yield
incompleteness for restricted languages:
o (s/(r/r)A(s/(pP" Ag*)) s /(p* Ag™) [S. K. 2018]
o ((x/y)vx)/((x/y)V(x/2)Vx),(x/y)Vx((x/y)V
X)\((x/2) Vx)E (x/(y V2))Vx
[M. Kanovich, S. K., A. Scedrov 2019]
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Completeness Results

e Completeness results for fragments:

e H. Andréka & Sz. Mikulds 1994: R-completeness for \, /,, A
e W. Buszkowski 1982: L-completeness for \, /, A

e M. Pentus 1995: L-completeness for \, /, -

N. Ryzhkova & S. K. 2015: L-completeness for \, /, A, and *
restricted to subformulae of the form a*\ 8 or 5/ a*

S. K. 2018: R-completeness for \,/,-, A, and restricted *.

7/23



Completeness Results

e Completeness results for fragments:
e H. Andréka & Sz. Mikulds 1994: R-completeness for \, /,, A
e W. Buszkowski 1982: L-completeness for \, /, A
e M. Pentus 1995: L-completeness for \, /, -
e N. Ryzhkova & S. K. 2015: L-completeness for \, /, A, and *
restricted to subformulae of the form a*\ 8 or 5/ a*
e S. K. 2018: R-completeness for \, /,-, A, and restricted *.

e Restricted fragments are still M%-hard [S. K. 2019]. Thus, we
get M%-hardness for inequational theories of L- and R-models.

7/23



Completeness Results

e Completeness results for fragments:
e H. Andréka & Sz. Mikulds 1994: R-completeness for \, /,, A
e W. Buszkowski 1982: L-completeness for \, /, A
e M. Pentus 1995: L-completeness for \, /, -
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restricted to subformulae of the form a*\ 8 or 5/ a*
e S. K. 2018: R-completeness for \, /,-, A, and restricted *.
e Restricted fragments are still M%-hard [S. K. 2019]. Thus, we
get M%-hardness for inequational theories of L- and R-models.

e In whole, ACT,, is complete w.r.t. syntactic concept lattices
introduced by C. Wurm in 2015-17 [D. Makarov 2019].
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Syntactic concept lattices are a modification of L-models
which avoid distributivity... and are in a sense more natural
from the linguistic point of view!

Fix a language L (“all correct sentences”).

For an arbitrary language A, let

A" = {(u,v) | (Yw € A)uwv € L}

AP =A{w | (V(u,v) € A%)uwv € L}
®<is a closure operation: A C A®< and A< = AP,
We use only closed sets (such that A = A”<), which
correspond to linguistic concepts: say, if A included the word
“dog,” A" is likely to include “cat” also.

When interpreting operations of ACT,,, we add closure, if

needed.
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hardness

Buszkowski's proof of M%-hardness for ACT,, goes via the totality
problem for context-free grammars.

N, x Gt Vo
Turing machine | ==————) | context-free | =3 | formula
and its input grammar of ACT,,
+ .
90 does not Gom,x generates .1/)971,)( l— Sis
halt on x all non-empty words derivable in ACT,,
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M, x Gon x Yo x
Turing machine | =——> | context-free| =——> formula
and its input grammar of ACT,,

e The construction of Goy , is standard (see textbooks).

e For 1 , we translate Gon  into Lambek categorial grammar.

o Let Gon « be in Greibach normal form, and for each rule

A= aB;...B take A/(BlBk)
e Let ¢, be the conjunction of all such formulae for a particular
acr.

o Let Yon x = V,cx Pa-
° w%,x F S means exactly “any non-empty word is derivable

from the starting symbol S."
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N9-hardness without VvV and A

e One can prove M9-hardness without V and A [S. K. 2019].
e This is achieved by using Lambek grammars with unique
type assignment [A. Safiullin 2007]. In such a grammar,

each letter receives a syntactic type ¢, without A.

e Next, we restrict ourselves to ¥ = {a, b} and use the sequent
(d o)t Fs.

e Safiullin’s construction originally worked for the Lambek
calculus with non-empty antecedent restriction, but can be
modified for Ly also.

11/23
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Action Lattices

In general, Kleene star is not required to be *-continuous, but
is rather defined as a least fixpoint:

a*=min{b|1=<b&a-b=b}.

Existence of non-*-continuous residuated Kleene algebras can
be shown by Godel-Mal'cev compactness theorem. Explicit
examples also available [S. K. 2018].

Yet, no natural classes of non-*-continuous RKLs known.

The inequational theory of all RKLs [V. Pratt 1991]:
ACT = MALC + 1vava' -a'Fao" +
aF(a+8) + (e\a)*Fa\a + Cut

Pozor! No good (cut-free) sequent calculus known, thus we

do not know conservativity of elementary fragments in ACT.
12/23



Complexity of ACT

e ACT is X9-complete [S. K. 2019]

13/23



Complexity of ACT

e ACT is X2-complete [S. K. 2019] (solving a problem left
open by D. Kozen, P. Jipsen, W. Buszkowski).

e We also feature Z(l)—completeness of fragments \, /,-,V,*
(original action algebras by Pratt) and \, /,-, A, *.
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Inspiration: Circular Proofs for ACT

e ACT, can be equivalently reformulated as a system with
non-well-founded proofs [A. Das & D. Pous 2018]:

rvAFﬂY raoﬁa*vAF’y e Al_Oé*
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non-well-founded proofs [A. Das & D. Pous 2018]:

ARy oo Aby TFa AFa*
Ma*, AkF~y ANFa* MAEFo*
e Proofs are allowed to have infinite branches.
e Correctness condition: each infinite branch has an
application of the left rule for *, where the branch goes right.
e Circular fragment: consider non-well-founded proofs,
possibly with cut, with a finite number of non-isomorphic
subtrees. This fragment axiomatises ACT.

e Caveat! Adding symmetric versions of the rules yields a
system ACTyicycle Which is stronger than ACT: it derives
(pAgA(p/q)A(pP\qg))TE p, which is not derivable in ACT
[S. K. 2018].
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e In circular proofs, an argument supporting a sequent relies on
the sequent itself. However, correctness conditions make this
sound, since we have to use the left rule and thus perform an
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Inspiration: Circular Proofs for ACT

e In circular proofs, an argument supporting a sequent relies on
the sequent itself. However, correctness conditions make this
sound, since we have to use the left rule and thus perform an
inductive step.

e Idea: while ACT,, can prove non-halting for an arbitrary
Turing machine 9% and input word x (if it is so), by deriving
%;’X F S, the circular fragment could prove it in the case
when 91 goes into a cycle while running on x.
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Proving ¥ 9-hardness for ACT

e Let g be a state of 91 in which it goes into a cycle.
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Proving ¥ 9-hardness for ACT

e Let g. be a state of 91 in which it goes into a cycle.
e Then we add the following production rules to Gay «, making
this fact explicit:

U= a U= aU S=#CU C=aC C=qU

(# is the starting symbol of a protocol)

e We also add S = #TU, where T (“trash”) generates all
malformed protocols, which cannot be repaired by further
extension.

e Now, if a word starting with # is long enough (longer than
the length of a partial protocol reaching q.), it can be
generated either by S = #CU (if it is a prefix of the correct
infinite protocol), or by S = #TU.

e (If the word does not start with #, we can use the rule
S = aU, where a # #.) 16/23
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Proving ¥ 9-hardness for ACT

e We encode this reasoning in ACT by using the long rule:
YES Y’FS ... Y"Fs " YT Es
Pt =S

e The first n premises are derivable exactly as in ACT,, (they
do not contain *).
e For the last one, the derivation is as follows.
e We derive all sequents of the form ¢,,,..., ¢, , 0" = S.
Consider the case where one of the a; is g, and we use
S = #CU (others are similar).
e First we derive ¢b* = U (see next slide).
e Then we do the following (by cut):

Gapy -y 02, - C S/(C-U),C,UES
S/HC-U), s, .- pa,UES
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Derivation of )t - U

vEU/U
b, UFU
YU yYFy UFp\U
AEP\U 99 \UF$\U
PrEPA\U
D, U
YytEU
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Proving ¥ 9-hardness of ACT

e In order to finish the proof, introduce the following notations:
o C={(M,x) | M reaches g, on x}
o H ={(M,x)| M halts on x}
o K(ACT) = {(9,x) | ACT derives ¢ s},
ditto for ACT,,.
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Proving ¥ 9-hardness of ACT

e In order to finish the proof, introduce the following notations:
C = {(M,x) | M reaches g. on x}

H = {(M, x) | M halts on x}

K(ACT) = {(M, x) | ACT derives ¢, .+ s},

ditto for ACT,,.

e We now know that

C C K(ACT) C K(ACT,) = H.

e C and H are recursively inseparable, thus ACT is
undecidable.

e C and H are effectively inseparable, thus ACT is
> %-complete.
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¥ %-hardness with only one of \V and A

e In order to leave only one of VV and A, we use the
pseudo-double-negation trick.
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¥ %-hardness with only one of \V and A

e In order to leave only one of VV and A, we use the
pseudo-double-negation trick.

e For a variable b, let a® = b/ a.

e In MALC, ay,...,a, - [ is equiderivable with
abb, .. kb 38D,

e In order to get rid of A, we replace @, with ©2° and use the
fact that (7 Vv §)? = P A 6. The sequent used now is
Pt | PP,

e For the system without V, we take the original ¢,'s, but
replace 1 with 1/?? (again, V turns to A).

e Since we do not know conservativity, we need to reprove
everything (including the long rule)!
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Complexity Syn

e For ACT,,, we have I'I?—completeness, starting from the
language of \,/, -, ™.

e For ACT, we have Z?-completeness, even with only one of Vv
and A.
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For ACT,,, we have I'I?—completeness, starting from the
language of \,/, -, ™.

For ACT, we have ¥9-completeness, even with only one of V
and A.

In the language of -, V,* (Kleene algebras), the two systems
coincide and the fragment is PSPACE-complete [D. Kozen
1994].

MALC is PSPACE-complete [M. Kanovich 1994], even in the
minimal fragments (\, V) and (\,A) [M. Kanovich, S. K.,

A. Scedrov 2019].

The Lambek calculus is NP-complete [M. Pentus 1996], even
in fragments (\, /) and (\,-) [Yu. Savateev 2008].

The Lambek calculus with only one division is polytime

decidable [Yu. Savateev 2007]. )
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Open Questions

e Complexity:
e Kleene lattices (-, V, A, *).
e ACT with only \, /,-,* (Lambek calculus with iteration).
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Open Questions

e Complexity:
e Kleene lattices (-, V, A, *).
e ACT with only \, /,-,* (Lambek calculus with iteration).

e L-/R-completeness: Lambek calculus with iteration.

e Cut-free sequent calculus for ACT (maybe some circular

approach?).
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Thanks™
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