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Background

Structural proof theory

Proof-theoretical semantics (PTS) builds on the goals of general proof
theory: shift from the so called reductionist study of mathematics (Hilbert’s
program) to the analysis of proofs in their own right (Gentzen, Prawitz).

Basic requirements to achieve these goals include
1 A precise definition of formal systems of derivation
2 Establishing structural properties, subformula property
3 Establishing the meaning-conferring nature of the rules of deduction

Achieved already by Gentzen for sequent calculi for purely logical systems
(1933) and for arithmetic (1935), and by Prawitz (1973) for natural
deduction [also, Gentzen 2008].

Considered an impossibility for extra-logical axioms (Girard 1987).
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Background

Proof analysis

The program of proof analysis extends the goals of PTS to elementary
mathematical theories such as

1 Theories with universal axioms (N and von Plato 1998)

2 Coherent theories (N 2003, Simpson 1994 in ND-style)

3 Arbitrary first-order theories (Dyckhoff and N 2015)

Geometric theories based on infinitary logic (N 202X)
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Background

Infinitary logic and cut elimination

(N 202X) introduces G3-style calculi for geometric theories based on
(classical and intuitionistic) infinitary logic

it shows that the structural rules of inference are admissible

BUT the proof of cut-elimination is not constructive

This is an instance of a common problem of cut-elimination procedures for
infinitary logics:1

the proof uses the ‘natural’ (or Hessenberg) commutative sum of ordinals α#β,

[whose] definition uses the Cantor normal form of ordinals to base ω.
This normal form is not available in CZF (or IZF) and thus a different
approach is called for.
(Rathjen 2016: 369)

We give a simple constructive proof of cut elimination fot geometric logic

1E.g., in Feferman (1968), Tait (1968), Takeuti (1975), Lopez-Escobar (1965)
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Coherent and geometric theories

Coherent implications

A formula is Horn iff built from atoms (and >) using only ∧.

A formula is coherent, or “positive”, iff built from atoms (and >,⊥) using only ∨,
∧ and ∃.

A sentence is a coherent implication iff of the form

∀x.C ⊃ D

where C ,D are coherent [∀x.D is a coherent implication, with > ≡ C ]

Theorem (Normal form)

Any coherent implication is equivalent to a finite conjunction of sentences of the
form

∀x.C ⊃ D

where C is Horn and D is a (finite) disjunction of existentially quantified Horn
formulae.
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Coherent and geometric theories

Examples of coherent theories

Theory of fields : ∀x(x = 0 ∨ ∃y(xy = 1)).

Theory of local rings : ∀x .∃y(xy = 1) ∨ ∃y((1− x)y = 1)

Theory of transitive relations : ∀xyz .(xRy ∧ yRz) ⊃ xRz

Theory of partial order : ∀xy . (x≤y ∧ y≤x) ⊃ x =y

Theory of strongly directed relations : ∀xyz .(xRy ∧ xRz) ⊃ ∃u.yRu ∧ zRu
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Coherent and geometric theories

Geometric implications

A formula is Horn iff built from atoms (and >) using only ∧.

A formula is geometric iff built from atoms (and >,⊥) using only ∨, ∧, ∃ and
infinitary disjunctions.

A sentence is a geometric implication iff of the form

∀x.C ⊃ D

where C ,D are geometric.

Theorem (Normal form)

Any geometric implication is equivalent to a (possibly infinite) conjunction of
sentences of the form

∀x.C ⊃ D

where C is Horn and D is a (possibly infinite) disjunction of existentially
quantified Horn formulae.
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Coherent and geometric theories

Examples of geometric theories

(Infinitary) theory of torsion abelian groups : ∀x .
∨

n>1(nx = 0)

Theory of Archimedean ordered fields : ∀x .
∨

n≥1(x < n)

Theory of connected graphs :

∀xy .x = y ∨
∨

n≥1 ∃z0 . . . ∃zn(x = z0 & y = zn & z0Rz1 & . . . & zn−1Rzn)
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Classical infinitary geometric logic G3c∗ω

Infinitary logics: syntax

Countably many predicates and function symbols, and identity

Formulas A are built up using, the standard connectives and quantifiers, and
countable disjunctions

∨
n>0 An and countable conjunctions

∧
n>0 An

The weight w(A) of a formula is defined inductively on the formation of A:

w(⊥) = w(P) ≡ 1 for P atomic

For compound formulas A,

w(A) ≡ supB∈IS(A)w(B) + 1

where B ∈ IS(A) iff B is an immediate subformula of A.

If B is a proper subformula of A, then w(B) < w(A).
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Classical infinitary geometric logic G3c∗ω

Infinitary logics as contraction-free sequent calculi

Sequents are expressions of the form Γ⇒ ∆ where Γ,∆ are finite multisets of
formulas.

Infinitary rules for disjunction:

{Γ,An ⇒ ∆ | n > 0}
Γ,
∨

n>0 An ⇒ ∆
L
∨ Γ⇒ ∆,

∨
n>0 An,Ak

Γ⇒ ∆,
∨

n>0 An
R
∨

k .

L
∨

has countably many premisses, one for each n > 0.

Derivations built using these rules are, in general, infinite trees, with
countable branching but where each branch has finite length.

13 / 35



Classical infinitary geometric logic G3c∗ω

Infinitary logics as contraction-free sequent calculi

Sequents are expressions of the form Γ⇒ ∆ where Γ,∆ are finite multisets of
formulas.

Infinitary rules for disjunction:

{Γ,An ⇒ ∆ | n > 0}
Γ,
∨

n>0 An ⇒ ∆
L
∨ Γ⇒ ∆,

∨
n>0 An,Ak

Γ⇒ ∆,
∨

n>0 An
R
∨

k .

L
∨

has countably many premisses, one for each n > 0.

Derivations built using these rules are, in general, infinite trees, with
countable branching but where each branch has finite length.

13 / 35



Classical infinitary geometric logic G3c∗ω

Derivations and their height in infinitary sequent calculi

Definition (Derivation and its height)

1 Any sequent Γ⇒ ∆, where some atomic formula occurs in both Γ and ∆ or
⊥ occurs in Γ), is a derivation, of height 0 ;

2 If each Dn is a derivation, of height αn, with end-sequent Γn ⇒ ∆n and

. . . Γn ⇒ ∆n . . .

Γ⇒ ∆
R

is an inference (i.e. an instance of a rule), then

. . .

Dn

Γn ⇒ ∆n . . .

Γ⇒ ∆
R

is a derivation, of height the countable ordinal supn(αn) + 1.
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Classical infinitary geometric logic G3c∗ω

Derivations in infinitary sequent calculi (cont.)

It follows from the definition that:

Each derivation has a countable ordinal height (the successor of the
supremum of the heights of its immediate subderivations).

If D′ is a subderivation of D, then ht(D′) < ht(D).2

2The definitions of depth and height differ from those in (Feferman 1968): we use the
successor of a supremum rather than the supremum of the successors: note that
supn>0(n + 1) = ω 6= ω + 1 = (supn>0(n)) + 1
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Classical infinitary geometric logic G3c∗ω

The calculus G3cω

P, Γ⇒ ∆,P ⊥, Γ⇒ ∆
L⊥

A,B, Γ⇒ ∆

A ∧ B, Γ⇒ ∆
L∧

Γ⇒ ∆,A Γ⇒ ∆,B

Γ⇒ ∆,A ∧ B
R∧

A, Γ⇒ ∆ B, Γ⇒ ∆

A ∨ B, Γ⇒ ∆
L∨

Γ⇒ ∆,A,B

Γ⇒ ∆,A ∨ B
R∨

Γ⇒ ∆,A B, Γ⇒ ∆

A ⊃ B, Γ⇒ ∆
L ⊃

A, Γ⇒ ∆,B

Γ⇒ ∆,A ⊃ B
R ⊃

A(t/x), ∀xA, Γ⇒ ∆

∀xA, Γ⇒ ∆
L∀

Γ⇒ ∆,A(y/x)

Γ⇒ ∆,∀xA R∀ (y fresh)

A(y/x), Γ⇒ ∆

∃xA, Γ⇒ ∆
L∃ (y fresh)

Γ⇒ ∆,∃xA,A(t/x)

Γ⇒ ∆,∃xA R∃

Ak ,
∧

n>0 An, Γ⇒ ∆∧
n>0 An, Γ⇒ ∆

L
∧ {Γ⇒ ∆,An | n > 0}

Γ⇒ ∆,
∧

n>0 An
R
∧

{Γ,An ⇒ ∆ | n > 0}
Γ,

∨
n>0 An ⇒ ∆

L
∨ Γ⇒ ∆,

∨
n>0 An,Ak

Γ⇒ ∆,
∨

n>0 An
R
∨
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Classical infinitary geometric logic G3c∗ω

Extensions with rules for geometric theories

Extension of G3c with rules for finitary coherent theories (N 2003) and infinitary
geometric ones (N202X) maintains the structural properties of the ground
calculus.

Recall that a geometric implication is a sentence G of the form

∀x.P1 ∧ · · · ∧ Pk ⊃
∨

En

where En ≡ ∃yn(Qn1 ∧ · · · ∧ Qnmn)

Such a sentence G determines a (finitary or infinitary) geometric rule:

. . . Qn1(x, yn), . . . ,Qnmn(x, yn),P1(x), . . . ,Pk(x), Γ⇒ ∆ . . .

P1(x), . . . ,Pk(x), Γ⇒ ∆
RG

with one premiss for each of the countably many disjuncts En of D. The variables
in yn are fresh, i.e. are not in the conclusion.
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Classical infinitary geometric logic G3c∗ω

Closure condition

To ensure the hp-admissibility of contraction geometric rules must respect the
closure condition

Definition

If the calculus contain a geometric rule with repetition of some principal
formula:

. . . ~Q,P1, . . . ,P,P, . . . ,Pk , Γ⇒ ∆ . . .

P1, . . . ,P,P, . . . ,Pk , Γ⇒ ∆

Then it contains the corresponding contracted instance:

. . . ~Q,P1, . . . ,P, . . . ,Pk , Γ⇒ ∆ . . .

P1, . . . ,P, . . . ,Pk , Γ⇒ ∆
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Classical infinitary geometric logic G3c∗ω

Coherent rules for identity

The rules introduced in (N & von Plato 1998)

s = s, Γ⇒ ∆

Γ⇒ ∆
Ref

P(t/x), s = t,P(s/x), Γ⇒ ∆

s = t,P(s/x), Γ⇒ ∆
Repl

to derive the following theorem of FOL:

x = f (x) ⊃ x = f (f (x))

we add contracted instance of rule Repl:

t = f (. . . , f n(. . . , t, . . . ), . . . ), t = f (. . . , t, . . . ), Γ⇒ ∆
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Classical infinitary geometric logic G3c∗ω

Examples of geometric rules

Axiom of torsion abelian groups, ∀x .
∨

n>1(nx = 0), becomes the rule

. . . nx = 0, Γ⇒ ∆ . . .

Γ⇒ ∆
RTor

Axiom of Archimedean ordered fields, ∀x .
∨

n≥1(x < n), becomes the rule

. . . x < n, Γ⇒ ∆ . . .

Γ⇒ ∆
RArc

Axiom of connected graphs,

∀xy .x = y ∨
∨
n≥1

∃z0 . . . ∃zn(x = z0 & y = zn & z0Rz1 & . . . & zn−1Rzn)

becomes the rule

x = y , Γ⇒ ∆ xRy , Γ⇒ ∆ . . . x = z0, y = zn, z0Rz1, . . . , zn−1Rzn, Γ⇒ ∆ . . .

Γ⇒ ∆
RConn
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Classical infinitary geometric logic G3c∗ω

Structural properties (N 202X)

Lemma (α-conv)

If S is n-derivable then each bound alphabetic variant of S is n-derivable.

Lemma (hp-substitution)

If `α Γ⇒ ∆ then `α Γ(t/x)⇒ ∆(t/x) (for t free for x in Γ,∆).

Theorem (hp-weakening)

The left and right rules of weakening are hp-admissible.

Lemma (hp-invertibility)

Each rule is hp-invertible.

Theorem (hp-contraction)

The left and right rules of contraction are hp-admissible.
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Classical infinitary geometric logic G3c∗ω

Admissibility of cut for G3c∗ω

Admissibility of
Γ⇒ ∆,A A, Γ′ ⇒ ∆′

Γ, Γ′ ⇒ ∆,∆′
Cut

(N 202X) and Here: finite multisets and extension with rules for geometric
implications.3

Inductive parameters
Rank π(I ) of an instance I of Cut with cut-free premisses D and D′ is the
(lexicographically ordered) pair (δ, σ) where

δ ≡ w(A) ≡ weight of A

σ ≡ h(D) # h(D′) ≡ natural sum of the heights of the premisses

Here # is the standard notion of (natural or Hessenberg) commutative sum α#β
for ordinals α and β

3for the infinitary calculus proved using finite sets is shown by a Gentzen-style argument in
Feferman (1968) and by Tait (1968) using single-sided sequents. Takeuti (1975) uses infinitary
sequents. Lopez-Escobar (1965) infinitary sequents as sets.
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Constructive cut elimination for G3c∗ω

Outline

1 Background

2 Coherent and geometric theories

3 Classical infinitary geometric logic G3c∗ω

4 Constructive cut elimination for G3c∗ω

5 Intuitionistic infinitary geometric logic G3i∗ω

6 A proof of the infinitary Barr theorem
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Constructive cut elimination for G3c∗ω

A proof strategy avoiding cut-height

We use a cut-elimination strategy that is often used for hypersequents and
substructural logics (Metcalfe, Olivetti, Gabbay 2008):

Definition (Cut rank)

Let the cut rank of a derivation D – cr(D) – be the maximal weight of cut
formulas in D.

The proof is by lexicographical induction on the pair

(cr(D), n(cr(D))

the latter being the number of cuts of maximal rank occurring in D.

It is based on three lemmas:
1 Cut-substitutivity takes care of non-principal cuts;
2 Right reduction takes care of cases with cut formula principal in the left

premiss
3 Left reduction covers all other cases.
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Constructive cut elimination for G3c∗ω

Lemma for non-principal cuts

Lemma (Cut-substitutivity)

Each rule of G3C∗ω is cut-substitutive: each instance of cut with cut formula not
principal in the last rule instance Rule of one of the premisses of cut can be
permuted upwards w.r.t. Rule.

Proof.

By inspecting the rules (using Lemma 6 for rules L∃, R∀, and LQ) it is immediate
to realise that each rule is cut-substitutive.
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Constructive cut elimination for G3c∗ω

Lemma for cut formula principal in the left premiss

Lemma (Right reduction)

If all of the following hold:

1 D1 ` Γ⇒ ∆,A

2 D2 ` A,Π⇒ Σ

3 cr(D1,D2) < w(A)

4 A is principal in the last rule instance applied in D1

5 If A ≡ ∃xB or A ≡
∨
Bi , then A is not principal in the last rule instance

applied in D2

Then there is a derivation D concluding Π, Γ⇒ ∆,Σ and such that
cr(D) < w(A).

Proof.

By induction on the derivation of the right premiss.
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Constructive cut elimination for G3c∗ω

Lemma for all other cases

Lemma (Left reduction)

If all of the following hold:

1 D1 ` Γ⇒ ∆,A

2 D2 ` A,Π⇒ Σ

3 cr(D1,D2) < w(A)

Then there is a derivation D concluding Π, Γ⇒ ∆,Σ and such that
cr(D) < w(A).

Proof.

By induction on the derivation of the left premiss.
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Constructive cut elimination for G3c∗ω

Constructive cut elimination

Theorem (Cut elimination)

Cut is admissible in G3C∗ω.

Proof.

The proof is by lexicographical induction on cr(D), n(cr(D)).
We consider an uppermost application of Cut whose rank is cr(D) and we apply
the Left-reduction lemma to it.
This decreases either cr(D) or n(cr(D)), and the theorem holds by inductive
hypothesis.
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Intuitionistic infinitary geometric logic G3i∗ω

Outline
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Intuitionistic infinitary geometric logic G3i∗ω

G3iω, an infinitary intuitionistic calculus

The intuitionistic infinitary calculus is obtained from the classical one by

1 making implication intuitionistic.

A ⊃ B, Γ⇒ A B, Γ⇒ ∆

A ⊃ B, Γ⇒ ∆
L⊃

A, Γ⇒ B

Γ⇒ ∆,A ⊃ B
R⊃

2 making the universal quantifier intuitionistic.

∀xA,A(t/x), Γ⇒ ∆

Γ,∀xA⇒ ∆
L∀

Γ⇒ A(y/x)

Γ⇒ ∆,∀xA R∀

3 Making infinitary conjunction intuitionistic (like ∀).

Ak ,
∧

n>0 An, Γ⇒ ∆∧
n>0 An, Γ⇒ ∆

L
∧

k

{Γ⇒ An | n > 0}
Γ⇒ ∆,

∧
n>0 An

R
∧
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Intuitionistic infinitary geometric logic G3i∗ω

Structural properties of G3i∗ω

The proofs of the structural properties for G3iω involve some “Dragalin-style”
subtleties, similar to those in use for the finitary intuitionistic multisuccedent
calculus.

α-conversion and substitution are hp-admissible

Left and right weakening are hp-admissible in G3i∗ω
All the rules of G3i∗ω except R

∧
, R⊃, and R∀ are hp-invertible in G3i∗ω

Left and right contraction are hp-admissible in G3i∗ω
Cut is admissible in G3i∗ω
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A proof of the infinitary Barr theorem

A proof of the infinitary Barr theorem

First-order Barr’s theorem: If a (finitary) geometric implication is provable
classically in a geometric theory, it is provable also intuitionistically.

Several proofs in the literature for the finitary case: Orevkov (1968), Palmgren
(1998), Coste and Coste (1975), Nadathur (2001) .... ; for the infinitary Rathjen
(2016). We extend the method of Negri (2003).

1 Consider a classical theory T axiomatized by finitary or infinitary geometric
implications.

2 Convert the geometric axioms into infinitary geometric rules

3 Transform the classical theory into a contraction- and cut-free sequent
calculus, denoted by G3cωT.

4 Denote by G3iωT the corresponding intuitionistic extension of G3iω.
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A proof of the infinitary Barr theorem

A proof of the infinitary Barr theorem (cont.)

Theorem

If a finitary or infinitary geometric implication is derivable in G3cωT, it is
derivable in G3iωT.

Proof.

Almost nothing to prove.
Any derivation in G3cωT uses only rules that follow the geometric rule scheme
and logical rules. Because of the shape of the conclusion, no instance of the rules
that violates the intuitionistic restrictions is used, so the derivation directly givesa

a derivation in G3iωT of the same conclusion.

athrough the addition, where needed, of the missing implications in steps of L⊃.
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