Formal approach to stratification in NF/NFU

Tin Adlešić

joint work with Vedran Čačić

Syntax

Alphabet is a collection of:

- (individual) variables $v_0, v_1, v_2, ...$
- logical symbols (connectives and a quantifier) \neg , \wedge , \vee , \exists
- non-logical (relation) symbols \in , =; set
- auxiliary symbols (parentheses) (,)

Syntax

Alphabet is a collection of:

- (individual) variables v_0, v_1, v_2, \dots
- logical symbols (connectives and a quantifier) ¬, ∧, ∨, ∃
- non-logical (relation) symbols ∈, =; set
- auxiliary symbols (parentheses) (,)

Formulas:

 $\varphi ::= x \in y \mid x = y \mid set(x) \mid \neg \varphi \mid (\varphi_1 \land \varphi_2) \mid (\varphi_1 \lor \varphi_2) \mid \exists x \varphi x$ and y are metavariables.

Syntax

Alphabet is a collection of:

- (individual) variables $v_0, v_1, v_2, ...$
- logical symbols (connectives and a quantifier) ¬, ∧, ∨, ∃
- non-logical (relation) symbols ∈, =; set
- auxiliary symbols (parentheses) (,)

Formulas:

$$\varphi ::= x \in y \mid x = y \mid set(x) \mid \neg \varphi \mid (\varphi_1 \land \varphi_2) \mid (\varphi_1 \lor \varphi_2) \mid \exists x \varphi x$$
 and y are metavariables.

A formula φ is **stratified** if there exists a mapping $type_{\varphi}$ from the variables of φ to the integers such that: if x=y is subformula of φ , then $type_{\varphi}(x)=type_{\varphi}(y)$, and if $x\in y$ is subformula of φ , then $type_{\varphi}(y)=type_{\varphi}(x)+1$.

Type mappings

An ordering on type mappings for a stratified formula φ can be defined as:

$$type_{\varphi} \leq type'_{\varphi} : \Leftrightarrow (\forall x \in Var \varphi) (type_{\varphi}(x) \leq type'_{\varphi}(x))$$

Type mappings

An ordering on type mappings for a stratified formula φ can be defined as:

$$\mathit{type}_\varphi \leq \mathit{type}_\varphi' : \Leftrightarrow (\forall x \in \mathsf{Var}\,\varphi) \big(\mathit{type}_\varphi(x) \leq \mathit{type}_\varphi'(x)\big)$$

Let φ be a stratified formula with underlying type mapping $type_{\varphi}$. Then for every integer k, $type_{\varphi}+k$ also satisfies stratification conditions.

Type mappings

An ordering on type mappings for a stratified formula φ can be defined as:

$$\mathit{type}_\varphi \leq \mathit{type}_\varphi' : \Leftrightarrow (\forall x \in \mathsf{Var}\,\varphi) \big(\mathit{type}_\varphi(x) \leq \mathit{type}_\varphi'(x)\big)$$

Let φ be a stratified formula with underlying type mapping $type_{\varphi}$. Then for every integer k, $type_{\varphi}+k$ also satisfies stratification conditions.

By convention, we will usually fix the least type of a variable to 1.

Variables $x, y \in \text{Var } \varphi$ are **connected**, written $x \parallel y$, if at least one of the formulas $x \in y$, $y \in x$, x = y or y = x is a subformula of φ .

Variables $x, y \in \text{Var } \varphi$ are **connected**, written $x \parallel y$, if at least one of the formulas $x \in y$, $y \in x$, x = y or y = x is a subformula of φ .

We will observe the reflexive and transitive closure of $\|$ denoted by $\|^*$. Then $x \|^* y$ is equivalent to $x \| z_1 \| \dots \| z_n \| y$ for some z_1, \dots, z_n .

Variables $x, y \in \text{Var } \varphi$ are **connected**, written $x \parallel y$, if at least one of the formulas $x \in y$, $y \in x$, x = y or y = x is a subformula of φ .

We will observe the reflexive and transitive closure of $\|$ denoted by $\|^*$. Then $x \|^* y$ is equivalent to $x \| z_1 \| \dots \| z_n \| y$ for some z_1, \dots, z_n .

Let φ be a stratified formula with type mappings $type_{\varphi}$ and $type'_{\varphi}$. Then for every $x,y\in {\rm Var}\, \varphi$, if $x\parallel^* y$, then $type_{\varphi}(x)-type_{\varphi}(y)=type'_{\varphi}(x)-type'_{\varphi}(y)$

Variables $x, y \in \text{Var } \varphi$ are **connected**, written $x \parallel y$, if at least one of the formulas $x \in y$, $y \in x$, x = y or y = x is a subformula of φ .

We will observe the reflexive and transitive closure of $\|$ denoted by $\|^*$. Then $x \|^* y$ is equivalent to $x \| z_1 \| \dots \| z_n \| y$ for some z_1, \dots, z_n .

Let φ be a stratified formula with type mappings $type_{\varphi}$ and $type'_{\varphi}$. Then for every $x,y\in {\rm Var}\, \varphi$, if $x\parallel^* y$, then $type_{\varphi}(x)-type_{\varphi}(y)=type'_{\varphi}(x)-type'_{\varphi}(y)$

Let φ be a stratified formula with type mappings $type_{\varphi}$, and $z_1,\ldots,z_k\in \text{Var }\varphi.$ If $z_1\parallel\ldots\parallel z_k$, then the image of $\{z_1,\ldots,z_k\}$ under $type_{\varphi}$ must be of the form $\{m,m+1,\ldots,m+l\}$.

Variables $x, y \in \text{Var } \varphi$ are **connected**, written $x \parallel y$, if at least one of the formulas $x \in y$, $y \in x$, x = y or y = x is a subformula of φ .

We will observe the reflexive and transitive closure of $\|$ denoted by $\|^*$. Then $x \|^* y$ is equivalent to $x \| z_1 \| \dots \| z_n \| y$ for some z_1, \dots, z_n .

Let φ be a stratified formula with type mappings $type_{\varphi}$ and $type'_{\varphi}$. Then for every $x,y\in {\rm Var}\, \varphi$, if $x\parallel^* y$, then $type_{\varphi}(x)-type_{\varphi}(y)=type'_{\varphi}(x)-type'_{\varphi}(y)$

Let φ be a stratified formula with type mappings $type_{\varphi}$, and $z_1, \ldots, z_k \in \text{Var } \varphi$. If $z_1 \parallel \ldots \parallel z_k$, then the image of $\{z_1, \ldots, z_k\}$ under $type_{\varphi}$ must be of the form $\{m, m+1, \ldots, m+l\}$.

If φ is a stratified formula, then there exists the least type mapping $mintype_{\varphi}$ of φ .

Axioms of NFU

Extensionality:

$$\forall x \forall y \big(set(x) \land set(y) \land \forall z \big(z \in x \leftrightarrow z \in y \big) \rightarrow x = y \big).$$

Axioms of NFU

Extensionality:

$$\forall x \forall y \big(set(x) \land set(y) \land \forall z \big(z \in x \leftrightarrow z \in y \big) \rightarrow x = y \big).$$

Sethood:

$$\forall x \forall y (y \in x \rightarrow set(x)).$$

Axioms of NFU

Extensionality:

$$\forall x \forall y \big(set(x) \land set(y) \land \forall z \big(z \in x \leftrightarrow z \in y \big) \rightarrow x = y \big).$$

Sethood:

$$\forall x \forall y (y \in x \to set(x)).$$

Stratified comprehension: If $\varphi(z, x_1, \dots, x_n)$ is stratified, then

$$\forall x_1 \dots \forall x_n \exists y (set(y) \land \forall z (z \in y \leftrightarrow \varphi(z, x_1, \dots, x_n))).$$

Abstraction terms

Let $\varphi(x, x_1, ..., x_n)$ be a formula. An expression of the form $\{z \mid \varphi(z, x_1, ..., x_n)\}$ is called an **abstraction term**.

Abstraction terms

Let $\varphi(x, x_1, ..., x_n)$ be a formula. An expression of the form $\{z \mid \varphi(z, x_1, ..., x_n)\}$ is called an **abstraction term**.

We can eliminate abstraction terms in the following way:

- $x \in \{z \mid \varphi(z, x_1, \dots, x_n)\} :\Leftrightarrow \varphi(x, x_1, \dots, x_n)$
- $x = \{z \mid \varphi(z, x_1, \dots, x_n)\} :\Leftrightarrow \forall y (y \in x \leftrightarrow y \in \{z \mid \varphi(z, x_1, \dots, x_n)\})$
- $\{z \mid \varphi(z, x_1, \ldots, x_n)\} \in x : \Leftrightarrow (\exists y \in x) (y = \{z \mid \varphi(z, x_1, \ldots, x_n)\}).$
- $set(\{z \mid \varphi(z, x_1, \dots, x_n)\}) :\Leftrightarrow \exists t(t = \{z \mid \varphi(z, x_1, \dots, x_n)\} \land set(t))$

Abstraction terms

Let $\varphi(x, x_1, ..., x_n)$ be a formula. An expression of the form $\{z \mid \varphi(z, x_1, ..., x_n)\}$ is called an **abstraction term**.

We can eliminate abstraction terms in the following way:

- $x \in \{z \mid \varphi(z, x_1, \dots, x_n)\} :\Leftrightarrow \varphi(x, x_1, \dots, x_n)$
- $x = \{z \mid \varphi(z, x_1, \dots, x_n)\} :\Leftrightarrow \forall y (y \in x \leftrightarrow y \in \{z \mid \varphi(z, x_1, \dots, x_n)\})$
- $\{z \mid \varphi(z, x_1, \ldots, x_n)\} \in x : \Leftrightarrow (\exists y \in x) (y = \{z \mid \varphi(z, x_1, \ldots, x_n)\}).$
- $set(\{z \mid \varphi(z, x_1, \dots, x_n)\}) :\Leftrightarrow \exists t(t = \{z \mid \varphi(z, x_1, \dots, x_n)\} \land set(t))$

Some sets in NFU: \emptyset , *SET*, V, $x \cup y$, $x \setminus y$, $\bigcap x$, $\{x\}$, $\mathscr{P}(x)$, $\mathscr{P}_1(x) := \{\{t\} \mid t \in x\} \dots$

Types of abstraction terms

Let ψ' be a formula in the language extended by abstraction terms, ψ the corresponding formula in the basic language, and let ψ be a stratified formula with type mapping $type_{\psi}$. Let $t = \{z \mid \varphi(z, x_1, \ldots, x_n)\}$ be an abstraction term in formula ψ' , where $\varphi(x, x_1, \ldots, x_n)$ is stratified formula, and let $type_{\varphi}$ be a restriction of mapping $type_{\psi}$ on variables of φ . We extend $type_{\psi}$ to the mapping $type_{\psi'}$ so that $type_{\psi'}(t) := 1 + type_{\varphi}(z)$.

Nested terms

Let $\varphi(x_1,\ldots,x_n,y_1,\ldots,y_m)$ and $\psi(w,x_1,\ldots,x_n)$ be formulas. By a **nested abstraction term** we mean a term of the form $\{f(x_1,\ldots,x_n)\mid \varphi(x_1,\ldots,x_n,y_1,\ldots,y_m)\}$, where $f(x_1,\ldots,x_n)$ itself is an abstraction term.

We eliminate nested abstraction terms in the following way:

$$\left\{\left\{w\mid\psi(w,x_1,\ldots,x_n)\right\}\mid\varphi(x_1,\ldots,x_n,y_1,\ldots,y_m)\right\}:=\left\{z\mid\exists x_1\ldots\exists x_n\big(\varphi(x_1,\ldots,x_n,y_1,\ldots,y_m)\land z=\{w\mid\psi(w,x_1,\ldots,x_n)\}\big)\right\}$$

Types of nested terms

Let $\psi(w,x_1,\ldots,x_n)$ be a stratified formula, $\varphi(x_1,\ldots,x_n,y_1,\ldots,y_m)$ a stratified formula with underlying type mapping $type_{\varphi}$, let $s=\{w\mid \psi(w,x_1,\ldots,x_n)\}$ and let $t=\{s\mid \varphi(x_1,\ldots,x_n,y_1,\ldots,y_m)\}$ be a nested abstraction term. If $z\in s\leftrightarrow \psi(z,x_1,\ldots,x_n)$ is stratified, where types of x_1,\ldots,x_n are determined by the mapping $type_{\varphi}$, then the type of a nested term t is one greater than the type of s.

Natural numbers and ordered pairs

Zero: $0 := \{\emptyset\}$

Successor: $S(x) := \{ y \mid (\exists z \in y)(y \setminus \{z\} \in x) \}$

Natural numbers: $\mathbb{N} := \bigcap \{x \mid 0 \in x \land (y \in x \rightarrow S(y) \in x)\}$

Natural numbers and ordered pairs

Zero: $0 := \{\emptyset\}$

Successor: $S(x) := \{ y \mid (\exists z \in y)(y \setminus \{z\} \in x) \}$

Natural numbers: $\mathbb{N} := \bigcap \{ x \mid 0 \in x \land (y \in x \rightarrow S(y) \in x) \}$

"Axiom of infinity"; P4:

$$(\forall x \in \mathbb{N})(S(x) = S(y) \to x = y)$$

Natural numbers and ordered pairs

Zero: $0 := \{\emptyset\}$

Successor:
$$S(x) := \{ y \mid (\exists z \in y)(y \setminus \{z\} \in x) \}$$

Natural numbers: $\mathbb{N} := \bigcap \{x \mid 0 \in x \land (y \in x \rightarrow S(y) \in x)\}$

"Axiom of infinity"; P4:

$$(\forall x \in \mathbb{N})(S(x) = S(y) \to x = y)$$

Quine's functions:

- $Q_1(x) := (x \setminus \mathbb{N}) \cup \{S(y) \mid y \in x \cap \mathbb{N}\}$
- $Q_2(x) := Q_1(x) \cup \{0\}$

Ordered pairs: $(x, y) := \{Q_1(z) \mid z \in x\} \cup \{Q_2(z) \mid z \in y\}$

Relations and functions

Cartesian product: $X \times Y := \{(x,y) \mid x \in X \land y \in Y\}$

Binary relation: $R \subseteq X \times Y$, written rel(R, X, Y).

Function: $rel(f, X, Y) \land (\forall x \in X)(\exists ! y \in Y)(x f y)$, written func(f, X, Y)

Equivalence relation: reflexive, symmetric and transitive

Equivalence class: $[x]_R := \{y \mid rel(R, X, X) \land x R y\}$

Quotient set: $X/R := \{[x]_R \mid x \in X\}$

Orders

Partial order:

$$rel(<, X, X) \land \forall x (x \not< x) \land \forall x \forall y \forall z (x < y \land y < z \rightarrow x < z),$$
 written $Po(X, <)$

Well-order: $Po(X, <) \land (\forall x \in X)(\forall y \in X)(x < y \lor x = y \lor y < x) \land \forall Y (Y \subseteq X \land Y \neq \emptyset \rightarrow (\exists m \in Y)(\forall y \in Y)(m < y \lor m = y)),$ written Wo(X, <)

Preserving well order:

$$Wo(X, <) \land Wo(Y, \prec) \land func(f, X, Y) \land \forall x \forall y (x < y \rightarrow f(x) \prec f(y)),$$
 written $wop(f, X, <, Y, \prec)$

Similarity: $bij(f, X, Y) \land wop(f, X, <, Y, \prec) \land wop(f^{-1}, Y, \prec, X, <)$, written $sim(f, X, <, Y, \prec)$

Ordinal numbers

Class of well-ordered sets: $W = \{(X, <) \mid Wo(X, <)\}$ is a set

Ordinal numbers

Class of well-ordered sets: $W = \{(X, <) \mid Wo(X, <)\}$ is a set

Similarity class:

$$(\simeq) := \{((X,<),(Y,\prec)) \mid \exists f \ \mathit{sim}(f,X,<,Y,\prec)\}$$
 is a set

Ordinal numbers

Class of well-ordered sets: $W = \{(X, <) \mid Wo(X, <)\}$ is a set

Similarity class:

$$(\simeq) := \{((X, <), (Y, \prec)) \mid \exists f \ \textit{sim}(f, X, <, Y, \prec)\} \ \text{is a set}$$

Class of ordinal numbers: $ORD := W/(\simeq)$ is a set.

Cardinal numbers

Equinumerosity: $\exists f \ bij(f, x, y)$, which is written $x \sim y$

Cardinal numbers

Equinumerosity: $\exists f \ bij(f, x, y)$, which is written $x \sim y$

Equinumerosity class: $(\sim) := \{(x,y) \mid x \sim y\}$ is a set

Cardinal numbers

Equinumerosity: $\exists f \ bij(f, x, y)$, which is written $x \sim y$

Equinumerosity class: $(\sim) := \{(x,y) \mid x \sim y\}$ is a set

Class of cardinal numbers: $CARD := SET/(\sim)$ is a set

Ordinal numbers – a harder approach

$$\{[(X,<)]_{\simeq} \mid Wo(X,<)\} = \{t \mid \exists X \exists < (t = [(X,<)]_{\simeq} \land Wo(X,<))\}$$

Ordinal numbers – a harder approach

$$\{[(X,<)]_{\simeq} \mid Wo(X,<)\} = \{t \mid \exists X \exists < (t = [(X,<)]_{\simeq} \land Wo(X,<))\}$$

$$\exists X \exists < (\forall z (z \in t \leftrightarrow \exists Y \exists \prec (\forall u (u \in z \leftrightarrow ((\exists t \in Y))(u = Q_1(t)) \lor (\exists t \in \prec)(u = Q_2(t)))) \land \exists f((\forall t \in f \rightarrow (\exists x \in X))(\exists y \in Y)(\forall u (u \in t \leftrightarrow ((\exists v \in x)(u = Q_1(v)) \lor (\exists v \in y)(u = Q_2(v))))) \land (\forall x \in X)(\exists ! y \in Y)((x,y) \in f)) \land (\forall y \in Y)(\exists x \in X)((x,y) \in f) \land (\forall x_1 \in X)(\forall x_2 \in X)(f(x_1) = f(x_2) \rightarrow x_1 = x_2) \land Wo(X,<) \land Wo(Y,\prec) \land \forall x \forall y (x < y \rightarrow f(x) \prec f(y)) \land \forall u \forall v (u \prec v \rightarrow f^{-1}(u) < f^{-1}(v))))) \land Wo(X,<))$$

Bibliography

- Ronald Björn Jensen. "On the consistency of a slight (?) modification of Quine's New Foundations". In: *Words and objections*. Springer, 1969.
- Willard V Quine. "New foundations for mathematical logic". In: *The American mathematical monthly* 44.2 (1937).
- Thomas E Forster. Set theory with a universal set. Exploring an untyped universe. Oxford University press, 1995.
- M Randall Holmes. Elementary set theory with a universal set. URL: http://math.boisestate.edu/~holmes/indstudy/proofsetslogic.pdf.